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Abstract Cellular solids inherit their macroscopic mechanical properties directly from the cellular
microstructure. However, the characteristic material length scale is often not small
compared to macroscopic dimensions, which limits the applicability of classical continuum-
type constitutive models. Cosserat theory, however, offers a continuum framework that
naturally features a length scale related to rotation gradients. In this paper a homogenization
procedure is proposed that enables the derivation of macroscopic Cosserat constitutive
equations based on the underlying microstructural morphology and material behavior.To
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Modélisation des solides cellulaires selon Cosserat

Résumé Les solides cellulaires doivent leurs propriétés mécaniques directement à leur structure
microcellulaire. Néanmoins, la longueur caractéristique du matériau est souvent non-
négligeable comparée aux dimensions macroscopiques, ce qui limite le domaine de validité
des modèles classiques, basés sur une description continue. En revanche, la théorie de
Cosserat offre un cadre continu incorporant naturellement une échelle de longueur liée
aux gradients de rotation. Dans cette Note nous proposons un procédé d’homogénéisation
permettant de dériver, au niveau macroscopique, les équations constitutives de Cosserat,
tenant compte de la morphologie de la microstructure concernée ainsi que le comportement
du matériau considéré.Pour citer cet article : P.R. Onck, C. R. Mecanique 330 (2002)
717–722.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

Continuum theory is valid when each material point of the macroscopic structure (specimen or
component) represents a volume of material (material sample) that has a sizeD that is much smaller than
the specimen sizeL. Furthermore, the constitutive behavior of this material sample must be representative
for all material in the structure. When one of these conditions is violated, continuum theory should not
be used and one should resort to methods that take the discrete nature of the materials’ microstructure
into account. Classical continuum theory is based on the assumption that the transfer of load between two
neighboring material points occurs only through a force vector, leading to the definition of (symmetric)
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stresses and strains. This implies that classical continuum theory is well-suited for situations where the
variations in stresses and strains (with wavelengthλ) are smooth enough so that they can be approximated
as being uniform on the scale of the material points (L> λ�D). However, in many situations this is not
necessarily the case, e.g., near notch and crack tips, in the case of the localization of deformation and in the
case of the formation of boundary layers (e.g., [1–3]). In these situations (L> λ>D) one often resorts to
enhanced continuum theories (also called enriched or generalized) that take into account the nonuniformity
of stresses and strains at the scale of the material point.

Three classes of enhanced continuum theories can be identified: (i) higher-grade, (ii) higher-order and
(iii) non-local continuum theories. One of the simplest higher-order theories is Cosserat (or micro-polar)
theory, in which the interaction between neighboring material points is governed by a moment vector in
addition to the force vector from classical continuum theory. As a result, next to displacements, rotations are
introduced as kinematic quantities. From a mechanics point of view, many cellular materials (e.g., foams,
truss structures, trabecular bone) can be seen as a structure of interconnected beams. In these materials
bending is often a prominent deformation mechanism, so that at the microscale both displacements and
rotations are present. In a recent theoretical study [2] it was shown that the enhanced or reduced constraint
of rotations at the specimen edge is vital in predicting size effects. This, in addition to experimental evidence
reported by, e.g., Lakes [4], makes Cosserat theory a suitable candidate for continuum modeling of cellular
materials, because it contains rotations as degrees of freedom.

Homogenization procedures for dense solids have been proposed in the literature that assume a Cosserat
material at the macroscopic scale and either a classical continuum material [5–7] or a Cosserat material
[8,9] at the microscale. Homogenization of (discrete) cellular solids has mainly been performed for
periodic beam structures leading to macroscopic couple stress theory [10,11] and Cosserat theory [12–14].
In [8] a heterogeneous beam network is subjected to Cosserat homogenization, assuming a priori that the
macroscopic response is elastic and isotropic. In the current paper a more general Cosserat homogenization
framework is proposed that yields a macroscopic constitutive response that is an outcome of the procedure
and depends on the specific (elastic, visco-plastic) material behavior and topology of the underlying cellular
microstructure.

2. Cosserat theory: equilibrium and kinematics

In a Cosserat model the independent kinematic degrees of freedom are the displacementsUi and the
microrotationsΦi , i = 1,2,3. In addition to the classical Cauchy stressΣij a material point can support
couple stressesMij (moment per unit area). Force and moment equilibrium dictates

Σji,j = 0 and Mji,j + eijkΣjk = 0 (1)

whereeijk is the usual permutation tensor. Note that moment equilibrium (1(b)) implies that the Cauchy
stress is not symmetric, due to the presence of the couple stresses. Equilibrium on the surface of the body
gives

Ti =Σjinj and Qi =Mjinj (2)

whereTi is the surface traction,Qi the surface couple andnj the unit vector normal to the surface. The
principle of virtual work reads

∫
V

(ΣjiδΓji +MjiδKji)dV =
∫
S

(TiδUi +QiδΦi)dS (3)

where body forces and couples are omitted for simplicity. The (small) strainsΓji and curvaturesKji are
defined as

Γji =Ui,j − ekjiΦk and Kji =Φi,j (4)
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We can decompose the non-symmetric stresses and strains in a symmetric and anti-symmetric part

Σji = Sji + Tji and Γji =Eji +Aji (5)

where

Eji ≡ 1

2
(Γji + Γij )= 1

2
(Ui,j +Uj,i ) and Aji ≡ 1

2
(Γji − Γij )= ejik(Ωk −Φk). (6)

Note that the antisymmetric strainAji is a measure for the relative rotation between the microrotationΦk

and the macrorotationΩk = 1
2ekijUj,i . With this, the principal of virtual work can be written as

∫
V

(SjiδEji + TjiδAji +MjiδKji)dV =
∫
S

(TiδUi +QiδΦi)dS (7)

For the special case that the micro- and macrorotations are constrained to be equal,Φk =Ωk, the relative
strainAji vanishes and the anti-symmetric stressTji does not contribute to the internal work. In that case
the Cosserat (micropolar) theory reduces to couple stress theory [15].

3. Cosserat homogenization framework

3.1. Kinematic boundary conditions

The Cosserat framework of the previous section must be complemented by constitutive equations,
relating the dual measuresSji to Eji , Tji to Aji andMji to Kji . One way to do this is to use a
homogenization procedure as outlined in Fig. 1. At the macroscopic scale it is assumed that the material

Figure 1. Cosserat homogenization procedure using kinematic boundary conditions.
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behaves as a Cosserat solid (see Fig. 1(a)) with the deformation rates given instantaneously byĖji , Ȧji
andK̇ji . Then a representative material sample (representative volume element, RVE) with volumeV (see
Fig. 1(b)) is identified. The RVE can have any disordered cell structure; the cell structure of Fig. 1(b) is an
arbitrary choice shown for illustrative purposes. The RVE is subjected to the boundary conditions

u̇i = Ėjixj , φ̇i = 1

2
eljiȦj l + K̇ji(xj −Xj) (8)

with Xj the coordinates of an arbitrary reference point of the RVE, added to ensure objectivity of the
resulting work rate (9). The material sample responds in terms of forcesfi and momentsµi , at each point
on the boundary of the sample (Fig. 1(c)). The average work rate can be written as

�̇W = 1

V

{∑
k

(
f
(k)
i u̇

(k)
i +µ(k)i φ̇(k)i

)}
(9)

The homogenization is based on the equivalence between�̇W and the mechanical work rate in the
macroscopic material poinṫW ,

�̇W ≡ Ẇ = SjiĖji + TjiȦji +MjiK̇ji (10)

Substitution of (8) in (9) and (10) results in the following definitions for the effective macroscopic stress
and couple stress measures:

Sji = 1

V

∑
k

1

2

(
f
(k)
i x

(k)
j + f (k)j x

(k)
i

)
(11)

Tji = 1

2V
eijl

∑
k

µ
(k)
l (12)

Mji = 1

V

∑
k

µ
(k)
i

(
x
(k)
j −Xj

)
(13)

Note that the expression forSji is identical to the average stress tensor used in the homogenization of
granular media (e.g., [16]).

3.2. Static boundary conditions

A dual problem can be formulated by applying uniform surface tractions (see Fig. 2)

ti = (Sji + Tji)nj , mi =m0
i +Mjinj (14)

with

m0
i = − �Vjk

S
eij lTkl, where�Vjk =

∑
k

x
(k)
j n

(k)
k ds(k) andS =

∑
k

ds(k) (15)

The surface tractions and couples are transmitted to the discrete material sample through local force and
moment equilibrium (see Fig. 2(b)):

f
(k)
i = t(k)i ds(k) and µ

(k)
i =m(k)i ds(k) (16)

wheref (k)i andµ(k)i are the force and moment acting on the individual cell wall(k), which is associated

with the surface area ds(k). Note that these boundary conditions satisfy force equilibrium,
∑
k f

(k)
i = 0, and
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Figure 2. Cosserat homogenization procedure with static boundary conditions.

moment equilibrium,
∑
k (eij lx

(k)
j f

(k)
l +µ(k)i ) = 0, of the representative material sample. Using similar

homogenization arguments as in Section 3.1 the effective macroscopic strain rate and curvature rate
measures can be identified as:

Ėji = 1

V

∑
k

1

2

(
n
(k)
j u̇

(k)
i + n(k)i u̇(k)j

)
ds(k) (17)

Ȧji = 1

V

∑
k

(
1

2

(
n
(k)
j u̇

(k)
i − n(k)i u̇(k)j

) − eqpi V̄pj
S
φ̇(k)q

)
ds(k) (18)

K̇ji = 1

V

∑
k

n
(k)
j φ̇

(k)
i ds(k) (19)

Note that the expressions forĖji andK̇ji are the discrete equivalents of the average continuum strain rates
1
V

∫ 1
2(nj u̇i + ni u̇j )dS and curvature rates1

V

∫
nj φ̇i dS, respectively. By using similar static boundary

conditions and associated effective strain and curvature rate measures it has been demonstrated in [17] that
the macroscopic response for a rectangular elasto-viscoplastic lattice can be obtained analytically.

4. Discussion

The key difference between Cosserat and couple stress homogenization lies in the application of the
skew-symmetric part of the strain tensorAji , see Eq. (8), and its conjugate stress measureTji , Eqs. (14)
and (15). ApplyingAji in terms of displacements results in a rigid body rotation of the representative
material sample which obviously will not induce a mechanical response. By applyingAji in terms of
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boundary rotations as proposed here (see Eq. (8)), we apply a relative rotation, being the difference between
the micro- and macrorotation (see Eq. (6)). Similar considerations are used in [6]. By applying static
boundary conditions, Cosserat theory is essentially different from classical continuum and couple stress
theory in the sense that a body under uniform tractionsti = Σjinj and couple stressesmi =Mjinj does
not satisfy moment equilibrium, because the stress tensor is not symmetric. To restore equilibrium we
propose here to apply an additional uniform momentm0

i (see Eq. (14)) that results in boundary conditions
that are mathematically conjugate to the kinematic boundary conditions (8).

The current paper provides a general framework to identify the effective macroscopic Cosserat properties.
However, there are still some open issues that need to be addressed.

• Applying a uniform momentm0
i (Eq. (14)) is not a unique way of restoring equilibrium in case of static

boundary conditions (see [17] for an alternative set of static boundary conditions). Different boundary
conditions will lead to a different material response.

• Since Cosserat theory features a length scale associated with rotation gradients, there will inherently
be a dependence of the effective ‘bending’ properties on the size of the representative volume element.

Work is in progress to investigate the effects of boundary conditions and RVE-size on the overall properties.
The quality of the obtained overall properties for a certain cellular material (e.g., foams, bone) needs to be
assessed by comparing continuum Cosserat with discrete calculations for a specific application.
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