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Abstract The sloshing problem is considered in a half-space covered by a rigid dock with apertures.
The dependence of the fundamental sloshing frequency on the shape of the free surface
region is studied. It is proved that the inequality holds between the fundamental eigenvalues
corresponding to two different regions if some conditions are fulfilled. These conditions are
verified for particular classes of regions of a fixed area in order to demonstrate that the disk
yields the maximum of the fundamental eigenvalue for each of these classes. On the other
hand, examples of regions are constructed for which the fundamental eigenfrequency is
larger than that for the circular aperture of the same area and even as large as one wishes.
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Sur la fréquence de ballottement principale dans le problème de la
glace avec trous pour pêcher

Résumé On considère le problème du ballottement dans un demi-espace couvert part un couvercle
rigide avec des ouvertures. On étudie la dépendance de la valeur propre fondamentale par
rapport à la forme de la région de surface libre, sous l’hypothèse que l’aire de cette région
est fixée. Pour citer cet article : V. Kozlov, N. Kuznetsov, C. R. Mecanique 330 (2002)
723–728.
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1. Introduction: statement of the problem

The aim of the present Note is to study the dependence of the fundamental sloshing eigenvalue on the
shape of the free surface region in the so-called ice-fishing problem (IFP for the sake of brevity in what
follows). Our starting point is the following observation. In the linear theory of surface waves, boundary
value problems for the two-dimensional Helmholtz equation arise when it is possible to separate the vertical
coordinate; that is, when fluid has a constant depth and is bounded by vertical walls (see, for example, [1],
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Section 2.4). Therefore, many classical results for the Helmholtz equation can be reformulated in terms
of surface waves. In particular, the Szegö–Weinberger isoperimetric inequality for free membranes (see,
for example, [2], Sections 3.3 and 5) provides the following assertion “For all vertical-walled containers
having a given constant depth and a given area of the free surface the circular cylinder yields the maximum
of the fundamental sloshing eigenfrequency”. In the recent note [3], a similar result was obtained for the
sloshing problem in a half-plane covered by a rigid dock with two equal gaps. Namely, it was demonstrated
that “the zero spacing between gaps yields the maximum of the fundamental sloshing eigenfrequency”. Here
we show that the situation is much more complicated for IFP.

Let an inviscid, incompressible, heavy fluid occupy the half-space R
3− = {x = (x1, x2) ∈ R

2, y < 0}
and be covered by a rigid dock with an aperture F which is an arbitrary bounded open set in the plane
y = 0. Neglecting the surface tension, we consider free, small-amplitude, time-harmonic oscillations of the
fluid and its motion is assumed to be irrotational. Mathematically one has to find the eigenvalues ν for the
boundary value problem:

∇2u = 0 in R
3−, uy = νu on F, uy = 0 on ∂R

3− \ F

where u ∈ H 1(R3−) and satisfies the orthogonality condition
∫
F
u(x,0)dx = 0. This problem is usually

referred to as IFP and its eigenvalues produce the sloshing frequencies
√
ν/g, where g is the acceleration

due to gravity. In this Note we are interested only in the fundamental eigenvalue, that is, the smallest positive
one which we denote by νF .

2. Comparison theorem for fundamental eigenvalues

In [4], it is demonstrated that IFP is equivalent to the following integral equation in L2(F ):

u0 = ν(I −M)K̂(I −M)u0 (1)

where u0(x)= u(x,0), x ∈ F , and u(x, y) is a solution of IFP, I is the identity operator in L2(F ),

(
K̂u0

)
(x) = 1

2π

∫
F

u0(ξ)dξ

|x − ξ | , Mu0 = 1

|F |
∫
F

u0(x)dx, and |F | = mes2 F

The operator in (1) is compact, self-adjoint, and positive semidefinite in L2(F ). If u0 is an eigenfunction
of (1) corresponding to ν, then

u(x, y)= 1

2π

∫
F

u0(ξ)dξ

[|x − ξ |2 + y2]1/2 −MK̂u0 (2)

satisfies IFP.
Let F1 and F2 be bounded open regions in the plane y = 0. The following theorem is proved by using the

variational principle for Eq. (1) and provides rather general conditions allowing us to compare νF1 and νF2 .

PROPOSITION 1. – Let uF1
0 ∈ L2(F1) be an eigenfunction of (1) with F = F1 corresponding to νF1 and let

the following two assumptions hold:∫
F2

u
F1
0 dx = 0,

∫
F2

(
u
F1
0

)2 dx −
∫
F1

(
u
F1
0

)2 dx + νF1

2π

∫
R2

∫
R2

V (x)V (ξ)dx dξ

|x − ξ | � 0

where V (x) = [χ2(x) − χ1(x)]uF1
0 (x), χ1 and χ2 are the indicator functions of F1 and F2, respectively,

and the same notation u
F1
0 is used for the trace of extension (2) on the plane y = 0. Then νF2 � νF1 .

As in the water-wave application of the Szegö–Weinberger isoperimetric property, we use the unit disk
D = {|x| < 1, y = 0} as the gauge free surface domain and compare fundamental eigenvalues of IFP for
various regions with νD = 2.754 . . . (see [4] and [5] for this and other numerical results concerning sloshing
frequencies for D).
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Figure 1. Normalised fundamental eigenfunction
v(r) from Eq. (3).

LEMMA 1. – For F = D the eigenspace of (1) corresponding to νD is spanned by v(r)xi/r, r = |x|, i =
1,2, where v(r) > 0 is the fundamental eigensolution of

v(r) = νD
∫ 1

0
v(s)s ds

∫ ∞

0
J1(kr)J1(ks)dk, r ∈ (0,1) (3)

The kernel of this equation has a logarithmic singularity as |r − s| → 0.

Using properties of the Bessel function J1, one obtains that: (i) v(0) = 0; (ii) if v is normalised so that
v(1) = 1, then the following asymptotic formula holds:

v(r) − 1 = νDπ−1(r − 1) log |r − 1| + O
(|r − 1|) as r → 1 (4)

In Fig. 1, the normalised fundamental eigenfunction v(r) of (3) is plotted for 0 � r � 1. Formula (3) with
r > 1 gives the radial factor in the trace on the plane y = 0 of the IFP fundamental eigenfunction and v(r)

is convex and monotonically decreasing for r > 1, and tends to zero as r → ∞.
Combining Proposition 1 with the above description of the fundamental eigenfunctions in the case when

the free surface is the unit disk D, we obtain the following:

COROLLARY 1. – Let F be a bounded open region such that the following two conditions hold:∫
F

v(r)
xi

r
dx = 0, i = 1,2 (5)

there exists a nonzero vector (α1, α2) such that(∫
F

−
∫
D

)
v2(r)

(α1x1 + α2x2)
2

r2 dx + νD

2π

∫
R2

∫
R2

V (x)V (ξ)dx dξ

|x − ξ | � 0 (6)

where

V (x)= [
χF (x)− χD(x)

]
v(r)

α1x1 + α2x2

r
(7)

and χF and χD are the indicator functions of F and D, respectively. Then νF � νD and the equality is
attained only if F = D.

The next assertion is a straightforward modification of a lemma proven in [6] and demonstrates that (5)
holds when the origin is chosen properly. Let F be a bounded region in the plane y = 0, then there exists
such a position of the origin within the convex hull of F that (5) is valid for i = 1,2.

Let us give several applications of Corollary 1 to concrete types of the free surface regions of the same
area as the unit disk D. Examples 2.1 and 2.2 are concerned with simple families of regions depending
on one real parameter, whereas Examples 2.3 and 2.4 deal with small perturbations of D having the form
r = 1 + εψ0(θ) + · · · . For all of the examples, the unit disk yields a local maximum of the fundamental
eigenvalue.
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2.1. Annular domains

Let the free surface be an annulus FR = {R < r <
√
R2 + 1, y = 0}, where R > 0. It is clear that

|FR| = |D|. By R∗ we denote the smallest positive root of

∫ √
R2+1

R

v2(r)r dr =
∫ 1

0
v2(r)r dr

In order to ensure the existence of R∗ we note two facts about the left-hand side in the latter equation: (i) it
is larger than the right-hand side for small R > 0 because v(0) = 0; (ii) it tends to zero as R → ∞ because
v(r) → 0 as r → ∞ (in fact, the behaviour of v shown in Fig. 1 guarantees that there is only one root of
the last equation). Therefore,

∫ √
R2+1

R

v2(r)r dr �
∫ 1

0
v2(r)r dr for R � R∗ (8)

It is obvious that (5), i = 1,2, holds for FR . Moreover, (8) implies that (6) is valid either for α1 = 1 and
α2 = 0 or for α1 = 0 and α2 = 1. Then Corollary 1 yields that νFR < νD for 0 <R � R∗.

2.2. Thin ice bridge over a circular fluid domain

Let Fε = D1+δ \ {−∞ < x1 < +∞, |x2| < ε, y = 0}. Here ε > 0 and D1+δ is the disk centred at the
origin and having radius 1 + δ, where δ is chosen so that |Fε| = π . It is clear that (5) is fulfilled for i = 2
and (6) is true for α1 = 0 and α2 = 1 when ε is small because the function v(|x|,0) (x2/|x|) vanishes along
the x1 axis. By Corollary 1 we get that νFε < νD for small ε > 0.

2.3. Small perturbation of the unit disk, nondegenerate case

Let Fε = {r < 1 + εψ(θ, ε)}, where ψ(θ, ε) = ψ0(θ) + ψ1(θ, ε). Here ψ0 and ψ1 are 2π -periodic,
continuous functions and ψ1 → 0 as ε → 0 uniformly in θ ∈ [0,2π]. From the assumption that |Fε| = π ,
it follows that ∫ 2π

0
ψ0(θ)dθ = 0 (9)

Moreover, the following two equalities∫ 2π

0
ψ0(θ) cosθ dθ = 0 and

∫ 2π

0
ψ0(θ) sin θ dθ = 0 (10)

must hold when (5) is fulfilled for i = 1,2. Let us assume that either∫ 2π

0
ψ0(θ) cos2θ dθ �= 0 or

∫ 2π

0
ψ0(θ) sin 2θ dθ �= 0 (11)

Since (9) and (10) are invariant with respect to rotation about the origin, we can suppose without loss of
generality that the first of these integrals is nonzero and positive. These relations allow us to verify that (6)
holds for α1 = 1 and α2 = 0 in the case when F = Fε and ε > 0 is sufficiently small. Now Corollary 1
yields that νFε < νD for such values of ε. In particular, for all ellipses, having area equal to π and small
value of eccentricity, the unit disk yields the maximum fundamental sloshing frequency.

2.4. Small perturbation of the unit disk, degenerate case

Let Fε be the same as in 2.3, but now we additionally require ψ0 to be Lipschitz continuous and suppose
that it not only satisfies the orthogonality conditions (9) and (10), but both integrals in (11) do vanish
(therefore, the proof applicable for 2.3 fails to guarantee the result now). Moreover, let the following
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asymptotic representation ψ1(θ, ε) = ε logε%1(θ) + O(ε) hold uniformly in θ ∈ [0,2π] as ε → 0. Then
from the area preserving condition |Fε| = π , we get that

∫ 2π
0 %1(θ)dθ = 0 must be valid along with (9).

Furthermore, (5) and Lemma 1 imply that∫ 2π

0
%1(θ) cosθ dθ = −νD

2π

∫ 2π

0
ψ2

0 (θ) cosθ dθ

and the similar equality with sine instead of cosine must be valid along with (10). Finally, let us assume
that either ∫ 2π

0
%1(θ) cos2θ dθ �= 0 or

∫ 2π

0
%1(θ) sin 2θ dθ �= 0

Again the invariance with respect to rotation about the origin, allows us without loss of generality to suppose
that the first of these integrals is nonzero and negative. These assumptions allow us to verify that (6) is valid
for α1 = 1 and α2 = 0 if ε > 0 is sufficiently small. Then Corollary 1 yields that νFε < νD for such values
of ε.

In Examples 2.1–2.3, it was sufficient to show that the difference of the first two terms on the left-hand
side of (6) is positive, thus guaranteeing the inequality between eigenvalues to be valid. In the present
example, all terms on the left-hand side of (6) are involved in the demonstration that (6) holds.

3. Regions with the fundamental eigenvalue larger thanνD

The aim of this section is to provide conditions on a plane region F , guaranteeing that the fundamental
eigenvalue of the corresponding IFP is larger than νD .

PROPOSITION 2. – Let F be an open subset of D2 = {r < 2, y = 0} and such that the following
assumptions hold:
(i) |F | = |D|, (5) is valid, and ε = |F \D| is smaller than a certain absolute constant ε0;

(ii) for all α1, α2 ∈ R the following inequality holds:(∫
F

−
∫
D

)
v2(r)

(α1x1 + α2x2)
2

r2 dx + νD

2π

∫
R2

∫
R2

V (x)V (ξ)dx dξ

|x − ξ | � −κ
(
α2

1 + α2
2

)
Here v and V are the functions defined by (3) and (7), respectively, and κ is a constant such that |κ | < ε0.
Then

1

νF
� 1

νD
−Cκ +Cβε

1+β

where C is an absolute positive constant, β is an arbitrary number in (0,1), and Cβ is a positive constant
depending only on β .

The following example illustrates this theorem and demonstrates that even a simply connected fishing
hole close to the unit disk D in the sense of Hausdorff can have the fundamental eigenvalue larger than that
for D. However, the boundary of the corresponding hole is rather complicated (it is not convex and is as
long as approximately 6π ).

3.1. Ice inclusions in a circular free-surface domain

Let Fδ = D1+δ0 \ {a − δ � r � a}, where 0 < a < 1, 0 < δ < a, and δ0 = √
1 + 2aδ − δ2 − 1 =

aδ − 2−1(1 + a2)δ2 + O(δ3), and so |Fδ| = π . For Fδ , (5) holds in view of the axial symmetry. Moreover,
if δ is sufficiently small, then Fδ ⊂ D2 and ε = |D \Fδ| = πδ(2a − δ) < ε0.

Under these assumptions, Proposition 2 yields that

1

νFδ
� 1

νD
−Cδ

[
v2(a)− v2(1)

] + o(δ) (12)
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According to (4), there exists a value of a that is close to one and provides the inequality v(a) > v(1). Then
(12) implies that νD < νFδ .

In our example, Fδ is the union of a disk and an annulus and so it is not a domain. Let us modify Fδ in
order to obtain a domain F ′

δ such that νF
′
δ is still larger than νD . For this purpose, we connect the ice annulus

{a − δ � r � a} with the main sheet of ice {y = 0} \ D1+δ0 by an ice bridge, having its sides parallel, say,
to the x1 axis and its width proportional to δ2. On the opposite side of the ice annulus, we make a gap in it
thus connecting the main circular free surface with the annular strip of the water surface. Let the sides of
this gap also be parallel to the x1 axis, but the width of the gap must be proportional to δ in order to equalize
the areas of the gap and the bridge. Thus we obtain F ′

δ , for which our considerations remain valid up to
changing the term o(δ) in (12), but this does not violate the inequality for the fundamental eigenvalues.

4. Free surface regions providing arbitrarily large fundamental eigenvalues

Let F be the union of N disks D(i) (i = 1, . . . ,N), having the same radius N−1/2, which implies that
|F | = π . Let these disks be placed on the plane y = 0 so that the distance from D(i) to D(j) is larger than
L for i �= j .

Starting from the variational principle for compact, self-adjoint operators, we observe that

1

νF
� max

(K̂ w,w)F

‖w‖2
F

where the maximum being taken over all nonzero elements of L2(F ). Splitting w into the following sum:

w =
N∑
i=1

wi, where wi =
{
w in D(i)

0 elsewhere

stretching coordinates, and applying the Schwarz inequality, one arrives at(
νF

)−1 � CN−1/2 + (2L)−1

where C is an absolute constant. This inequality shows that νF → ∞ as L,N → ∞.
This result is natural from the physical point of view. Indeed, sloshing in a hole that is sufficiently remote

from others is an independent process and the fundamental frequency of sloshing in a single hole can attain
as large value as one wishes by making the radius of hole sufficiently small.
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