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Abstract A modified Terzaghi principle is proposed to describe the influence of locally coupled
electro-chemo-mechanical processes in highly compacted swelling clays upon the form
of the macroscopic modified effective stress principle. The two-scale model is derived
using the homogenization procedure to upscale the microscopic behavior of a two-phase
system composed of clay particles saturated by a completely dissociated electrolyte aqueous
solution. Numerical experiments are performed to illustrate the results in a particular cell
geometry. To cite this article: M.A. Murad, C. Moyne, C. R. Mecanique 330 (2002) 865–
870.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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Modélisation micromécanique des milieux poreux déformables

Résumé Un principe de Terzaghi modifié est proposé pour décrire les phénomènes électro-chimico-
mécaniques couplés dans des argiles gonflantes fortement compactées. Le modèle à deux
échelles utilise la méthode de l’homogénéisation pour un système diphasique composé
de particules d’argile saturées par une solution aqueuse d’un sel complètement dissocié.
Quelques résultats numériques illustrent les résultats dans un cas particulier. Pour citer cet
article : M.A. Murad, C. Moyne, C. R. Mecanique 330 (2002) 865–870.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

The swelling of clay minerals, particularly montmorillonites is of widespread importance in geotechnical
and geoenvironmental fields. It is of concern to the civil engineer because of the severe structural damage
caused by collapsible and expansive soils. In petroleum engineering, borehole instability in expansive shales
is a technical problem in oil and gas drilling in particular using water-based drilling muds. Compacted
swelling clays (bentonites) have received great attention because of their use as sealing materials to impede
the leakage of radioactive materials from waste repositories into the groundwater supply.
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Clay particles are mostly colloidal aluminosilicates. When water comes in contact with a mass of clay
crystals, it penetrates between the layers forcing them apart. As hydration progresses, water is adsorbed
by the minerals and the crystals may expand to several times their original thickness. For long-range
interactions swelling is dominated by electrostatic forces. In this range the adsorbed fluid is a structureless
electrolyte solution consisting of water and an entirely dissociated salt with strong electrolytes Na+ and
Cl−. At the microscale, ion concentrations and electric potential are governed by the Poisson–Boltzmann
equation [1], which reduces to the conventional Gouy–Chapman theory of diffuse double layer in one-
dimensional infinite plane geometries [2]. The electrostatic component of the repulsive force between the
minerals arises from the overlapping between ionic double layers. Derjaguin [3] described this lyophilic
interaction in terms of a disjoining pressure, defined as an excess in the normal pressure applied to the
mineral surfaces relative to the surrounding bulk phase.

At the macroscale (the homogenized microscale) the complex microstructural solid-fluid physico-chemi-
cal interactions are represented in an averaged fashion, with fluid and solid modeled as overlaying continua
with averaged properties established at every point in the mixture. At this scale, the expansion of the
aggregates is manifested in the experimentally observed swelling pressure, defined as an overburden
pressure excess that must be applied to a stacked layered arrangement of clay particles to prevent further
uptake of water [4].

The development of microscopic models aiming at generalizing the disjoining pressure concept and
the Gouy–Chapman double layer theory to non-parallel particles has pursued the numerical solutions of
the Poisson–Boltzmann equation in general random domains [5]. On the other hand, macroscopic models
for swelling media have been developed within phenomenological approaches [6] or based on the mixture
theory [7]. In both frameworks, novel forms of Terzaghi’s effective principle have been postulated aiming at
incorporating the influence of physico-chemical effects [6]. In this paper a macroscopic form of Terzaghi’s
effective stress principle is derived based on a rigorous scale-up procedure of the local electro-chemo-
mechanical microstructural behavior of the clay–water–electrolyte system. For simplicity we consider the
case wherein solid, fluid and ions are at thermodynamic equilibrium. We then apply the homogenization
procedure to scale up the pore-scale model, given by the Poisson–Boltzmann problem coupled with the fluid
equilibrium condition under the action of a body force of Coulombic type and with the elasticity system
governing the deformation of the clay particles.

The homogenization procedure is capable of capturing the precise correlation between macroscopic
swelling pressure and microscopic disjoining pressure. By discretizing the local cell problems by the finite
element method, numerical results are presented illustrating the potential of the proposed procedure in
computing the behavior of the swelling pressure in a general cell geometry. Further work is in progress to
treat the general non-equilibrium case of electro-chemo-mechanical coupled phenomena.

2. Microscopic description of the problem

Consider at the microscale the expansive medium a biphasic aggregate composed of clay particles and
an aqueous dilute solution consisting of water and an entirely dissociated salt with strong electrolytes
(for example Na+ (cations) and Cl− (anions)) whose volumetric concentrations in the fluid phase are de-
noted by c+ and c−. The solution is at thermodynamic equilibrium with an outer saline bath (with salin-
ity cb). The equality between the electro-chemical potentials leads to the classical Boltzmann distributions
c± = cb exp(∓Fϕ/RT ), where ϕ is the electrical potential, F the Faraday constant, T the absolute tem-
perature and R the universal gas constant [8]. If ε̃0 and ε̃ designate the vacuum permittivity and the relative
dielectric constant of the solvent and q ≡ F(c+ − c−) = −2Fcb sinh(Fϕ/RT ) the net charge density,
the electric potential is governed by the Poisson–Boltzmann problem (Eq. (1) with ε = 1) [8]. Denot-
ing E = −∇ϕ the electric field satisfying ε̃ε̃0∇ · E = q and {p,σ f } the hydrodynamic pressure and the
stress tensor of the electrolyte solution, the equilibrium of the fluid is dictated by the electric body force
of Coulombic type qE. Further, if I and ⊗ designate the unit tensor and the tensorial product between
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vectors, the Maxwell stress tensor is classically defined as τM ≡ (1/2)ε̃ε̃0(2E ⊗ E −E2I ) (see [9]). This
form is motivated by the property ∇ · τM = qE which can be obtained from the above definitions. Whence,
neglecting gravity, the fluid equilibrium is represented by (2). The solid phase is supposed isotropic and
linear elastic with Lamé parameters λs and µs . The displacement u, stress tensor σ s and deformation
E(u) ≡ (∇u + (∇u)T)/2 satisfy (3). Finally, denoting � and n the common interface and the unit normal
exterior to the fluid domain and σ < 0 the fixed surface charge of the solid particles, continuity of the normal
component of the stress tensor together with the charge balance on � are represented by (4) (with ε = 1).

3. Homogenization

We upscale to the macroscale using the homogenization procedure. Following the classical framework
of [10], the swelling clay is comprised of a spatially periodic porous structure. Two disparate length scales
are introduced; a microscopic scale � of the order of the pore size and a macroscopic one L of the overall
dimensions of the swelling medium. Their ratio ε ≡ �/L is a small parameter. The periodic bounded domain
�ε is composed of spatially repeated unit disjoint parallelepiped periods, Y ε , congruent to a standard Y ,
formed by the union of cell domains Yf and Ys occupied by the fluid and solid respectively, whereas the
reference interface � is given by the union of ∂Yf s interfaces. The basic problem is to investigate the
asymptotics of the solution as ε → 0 and obtain the homogenized limit as the scale of the inhomogeneity
tends to zero. In what follows, the microscopic governing equations are written in dimensionless form
thoroughly using references values (denoted by the subscript “ref”) and the magnitudes of the dimensionless
parameters involved are investigated. The reference characteristic length �ref is chosen of the order of
the macroscopic medium, i.e., �ref ≡ L such that the macroscopic length L is used to normalize the
spatial differential operators. The choice of the reference electric field Eref is based on boundary condition
(4)(a) which suggests Eref ≡ σ/ε̃ε̃0. In addition, the reference value of the electric potential is selected
ϕref = �Eref. From the overall condition of electroneutrality (5), the net charge q counterbalances the
surface charge σ and therefore the reference concentration is selected as cref = σ/(F�). The choice
of the reference solid displacement uref is based on (4)(b) together with the constitutive equations for
the stresses in (2) and (3). This suggests the choice (λs + 2µs)(uref/L) = max(pref,0.5ε̃ε̃0E

2
ref). By

rephrasing the micromodel in dimensionless form, three dimensionless quantities naturally appear namely
N = Fσ�/(ε̃ε̃0RT , M1 = σ 2/(ε̃ε̃0pref) and M2 = (ε̃ε̃0E

2
refL)/(2uref(3λs + 2µs)). The former measures

the ratio of electric energy to the thermal energy of an ion whereas the two latter parameters measure the
magnitude of Maxwell stresses relative to the fluid pressure and stresses in the solid particles. From the
conventional Gouy–Chapman theory of diffuse double layer, the magnitude of the physico-chemical forces
is of the same order as the contact forces and thus we choose the three parameters of O(1). Making use of
the above scaling laws, the micromechanical model is rephrased below with a formal εn factor to indicate
the order of magnitude of each term.

• Poisson–Boltzmann:

ε2 ∇2ϕ = − q

ε̃ε̃0
= 2Fcb

ε̃ε̃0
sinh

(
Fϕ

RT

)
(1)

• Equilibrium of the electrolyte solution

∇ · σ f = ∇ · (−pI + τM)= −∇p + qE = −∇p − q∇ϕ = 0 (2)

• Elasticity equation for the solid phase

∇ · σ s = 0; σ s = λs∇ · uI + 2µsE(u) (3)

• Boundary conditions

−E · n = ε∇ϕ · n = σ

ε̃ε̃0
; σ f n = σ sn (4)
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• Electroneutrality condition∫
Yf

q dY = ε̃ε̃0

∫
Yf

∇ · E dY = ε̃ε̃0

∫
∂Yf s

E · nd� = −
∫
∂Yf s

σ d� (5)

Within the classical approach based on perturbation, two independent variables x and y, denoting
macroscopic and microscopic coordinates, are introduced. The formal method based on asymptotic
expansions consists in postulating a development in series of the small parameter ε for each variable in
the form ψ = ∑

k ε
kψk . After replacing the differential operator ∂/∂x by ∂/∂x + ε−1∂/∂y and collecting

the powers of ε, local cell problems parametrized by x are obtained. The homogenized results include a
Poisson–Boltzmann equation for ϕ0 and the macroscopic modified Terzaghi’s decomposition. To pursue the
two-scale version of these results begin by noting that an important consequence of the scaling factor ε2 in
(1) is the “shrinking” of the homogenized result which preserves the original form of the unscaled Poisson–
Boltzmann problem, but is posed locally within each unit cell, as is easily seen from (1) and (4) at O(ε0)

ε̃ε̃0%yyϕ
0 = −q0 = 2Fcb sinh

(
Fϕ0/RT

)
in Yf

(6)−ε̃ε̃0E
0 · n = ε̃ε̃0∇yϕ

0 · n = σ on ∂Yf s

together with periodicity conditions on the frontier of the unit cell. Hence, the zeroth order electric potential
depends on the fast variable y. This characterizes ϕ0 and E0 as highly oscillatory quantities. Notably this
fact is consistent with the electrical double layer results at equilibrium where these quantities vary in the
pore fluid domain [1]. Moreover, from (2) at O(ε−1) p0 also varies across the fluid domain as ∇yp

0

balances the local variation of the Coulomb term q0∇yϕ
0. On the other hand one may introduce a non-

oscillatory apparent bulk phase pressure by rewriting the Coulomb term in (2) at O(ε−1) along with (6) as

q0∇yϕ
0 = ∇y

∫ ϕ0

0
q0 dϕ = −2Fcb∇y

∫ ϕ0

0
sinh

(
Fϕ0

RT

)
dϕ = −2cbRT∇y

[
cosh

(
Fϕ0

RT

)
− 1

]
(7)

Hence, defining the Donnan osmotic pressure π0 ≡ 2cbRT [cosh(Fϕ0/RT )−1] one may define a local ap-
parent bulk phase pressure p0

b ≡ p0 −π0. Note that using (7), Eq. (2) at order O(ε−1), ∇yp
0 +q0∇yϕ

0 = 0
can be rephrased as ∇yp

0
b = 0 or p0

b = p0
b(x). This shows that, in contrast to p, p0

b does not oscillate.
This result can be exploited to derive the modified Terzaghi’s effective principle. To this end begin by
noting that (3) at O(ε−2) implies that u0 = u0(x). Denoting 〈·〉 ≡ |Y |−1

∫
Yα

·dYα (α = f, s) the volume
average operator over the unit cell Y , we begin by averaging the fluid and solid equilibrium conditions
and use boundary condition (4)(b) at O(ε1). Denoting σ 0

T ≡ 〈σ 0
f 〉 + 〈σ 0

s 〉 the overall stress tensor of the
mixture, using the divergence theorem and the periodicity we obtain the overall equilibrium ∇x · σ 0

T = 0.
Further to obtain a local cell problem for u1, we consider the elasticity problem at O(ε−1) together with
boundary condition (4)(b) and the constitutive equation for the stress tensors at O(ε0), with p0(x,y)

replaced by p0
b(x). Denoting δij the Kronecker delta and cs the fourth-order tensor with components

cijkl = λsδij δkl +µs(δikδjl + δilδjk) we have

∇y · (csEy

(
u1)) = 0 in Ys (8)

−[
p0
b(x)I + 	0(x,y)

]
n = cs

[
Ex

(
u0(x)

) + Ey

(
u1)]n on ∂Yf s (9)

where 	0 is a disjoining stress tensor which incorporates the chemico-osmotic pressure π0 and Maxwell
stresses τ 0

M

	0 = π0I − τ 0
M = 2c0

bRT

[
cosh

(
Fϕ0

RT

)
− 1

]
I − ε̃ε̃0

2

[
2E0 ⊗ E0 −E02

I
]

(10)

When comparing the cell problem (8) for u1 with the similar Neumann problems which typically arises in
the homogenization derivation of Biot’s equations of poroelasticity (see [11]), the novelty is the appearance
of the disjoining tensor 	0 which incorporates the influence of physico-chemical effects on the traction
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boundary condition in (9). By linearity we have

u1(x,y)= ζ (y)p0
b(x)+ ξ (y)Ex

(
u0(x)

) + u1
π (x,y)+ û1(x) (11)

The canonical cell problems for the third-order tensor ξ and the vector ζ are classical [11]. The novelty in
(11) is the appearance of the component u1

π which measures the particle displacement component arising
from the traction induced by the physico-chemical tensor 	0, i.e.,

∇y · (csEy

(
u1
π

)) = 0 in Ys
(12)(

csEy

(
u1
π

))
n = −	0n on ∂Yf s

Denoting Cs ≡ 〈cs(II + Ey(ξ))〉 the macroscopic elastic modulus, by averaging the constitutive equation
for σ 0

s and using (11) we obtain 〈σ 0
s 〉 = CsEx(u0)+ 〈csEy(ζ )〉p0

b + 〈csEy(u1
π)〉. Denoting nα (α = f, s)

the volume fraction of the α-phase, in terms of p0
b(x) the averaged constitutive equation for σ 0

f is given as

〈σ 0
f 〉 = −nf p

0
bI − 〈	0〉. Using the above results in the definition of σ 0

T gives

σ 0
T = −αp0

b + CsEx(u0)− 	0∗ (13)

	0∗ = 〈
	0〉 + ns	

0
S, where 	0

S ≡ −〈
csEy

(
u1
π

)〉s with 〈·〉s ≡ n−1
s 〈·〉

and α ≡ nf I − 〈csEy(ζ )〉 is the Biot coefficient for the particles. Eq. (13) is nothing but Terzaghi’s de-
composition for the swelling clay. In addition to the pore pressure p0

b and contact stresses CsEx(u0), it
incorporates physico-chemical component 	0∗. This latter quantity may be decomposed into the averaged
counterpart of 	0 and the additional component 	0

S , which consists of chemical stresses in the particles
due to the traction induced by 	0 in (12). Since 	0

S represents stresses acting effectively in the solid
phase, it may be viewed as the physico-chemical component which dictates the expansion of the aggre-
gates. Whence, this quantity shall be referred to as swelling stress tensor, as it plays the role of a tensorial
generalization of the swelling pressure to incorporate deviatoric effects. Hence, we remark the strong poten-
tial of the proposed formulation in providing a precise microstructural representation for the macroscopic
expansive stresses and their role in the modified effective stress principle [6].

Figure 1. Periodic unit cell and computational
domain (square of side H ).

Figure 2. Dimensionless electric potential
elevation (the constant value ϕ∗ ≈ −1.5 at the

particle surface is extended over the solid
domain).
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Figure 3. Dimensionless swelling pressure as a function of
the interlayer spacing.

4. Numerical results

To illustrate the capability of the micromechanical approach in furnishing an accurate portrait of the
swelling stress tensor, in what follows we consider the finite element approximation of the aforementioned
cell problems. To this end we begin by solving the discrete version of the local PB problem (6) in its
Debye–Hueckel linearized form [1,2] to obtain discrete ϕ0 and E0 fields. Disjoining stresses are then
computed within a post-processing using (10) and subsequently used as input traction boundary conditions
in (12), (13) to obtain swelling stresses. The computational square domain (side H ) together with the
periodic cell geometry are depicted in Fig. 1. Fig. 2 shows the behavior of the normalized electric potential
ϕ∗ ≡ ϕ0ε̃ε̃0/σLD (whereLD ≡ ε̃ε̃0RT/2cbF 2 is the Debye length [1,2]) as a function of the dimensionless
coordinate x∗ = x/H (with H = LD). As expected it reaches a maximum negative value near the solid
surface. For completeness, the values of ϕ0 over the solid surface are extended using the maximum
negative value at the surface. Lastly Fig. 3 shows the normal component of the dimensionless swelling
stress 	∗

S ≡ (2	0
Sε̃ε̃0/σ

2) as a function of the interlayer spacing H/LD . As expected disjoining effects are
highly pronounced for small interlayer spacings.
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