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Abstract

This paper presents the application of a recently proposed ‘second-order’ homogenization method (J. Mech. Phys. Solids 50
(2002) 737–757) to the estimation of the effective behavior of hyperelastic composites subjected tofinite deformations. The
main feature of the method is the use of ‘generalized’ secant moduli that depend not only on the phases averages of the fields,
but also on the phase covariance tensors. The use of the method is illustrated in the context of particle-, or fiber-reinforced
elastomers and estimates analogous to the well-known Hashin–Shtrikman estimates for linear-elastic composites are generated.
The new estimates improve on earlier estimates (J. Mech. Phys. Solids 48 (2000) 1389–1411) neglecting the use of fluctuations.
In particular, the new estimates, unlike the earlier ones, are capable of recovering the exact incompressibility constraint when
the matrix is also taken to be incompressible.To cite this article: O. Lopez-Pamies, P. Ponte Castañeda, C. R. Mecanique 331
(2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Cet article présente l’application d’une méthode d’homogénéisation récente, dite de deuxième ordre (J. Mech. Phys. Solids
50 (2002) 737–757), afin d’estimer le comportement effectif de matériaux composites hyperélastiques sujets à des grandes
déformations. La principale caractéristique de cette méthode est l’utilisation d’un module sécant généralisé par phase qui
dépend non seulement des moyennes des champs par phase mais aussi des tenseurs de covariance des fluctuations des
phases. L’utilisation de cette procédure est illustrée dans le cas particulier d’élastomères renforcés à particules ou à fibres. Ces
nouvelles estimations généralisent celles bien connues de Hashin–Shtrikman obtenues pour des composites élastiques linéaires
et améliorent certaines estimations décrites antérieurement (J. Mech. Phys. Solids 48 (2000) 1389–1411) qui, elles, négligeaient
l’existence de fluctuations des champs. En particulier, ces nouvelles estimations, contrairement a celles étudiées précédemment,
sont capables d’établir la contrainte exacte d’incompressibilité lorsque la matrice est elle aussi supposée incompressible.Pour
citer cet article : O. Lopez-Pamies, P. Ponte Castañeda, C. R. Mecanique 331 (2003).
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E-mail addresses: olp@seas.upenn.edu (O. Lopez-Pamies), ponte@seas.upenn.edu (P. Ponte Castañeda).

1631-0721/03/$ – see front matter 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
doi:10.1016/S1631-0721(03)00021-4



2 O. Lopez-Pamies, P. Ponte Castañeda / C. R. Mecanique 331 (2003) 1–8

Keywords: Computational solid mechanics; Homogenization; Finite deformations; Elastomers

Mots-clés : Mécanique des solides numérique ; Homogénéisation ; Déformations ; Matériaux élastomères

1. Introduction

The aim of this paper is to develop estimates for the effective behavior ofhyperelastic composite materials
subjected tofinite deformations. The materials are made up ofN different (homogeneous) phases, which are
assumed to be distributedrandomly in a specimen occupying a volumeΩ0 in the reference configuration.
Furthermore, the size of the typical inhomogeneity (e.g., particle, or void) is much smaller than the size of
the specimen and the scale of variation of the loading conditions. The constitutive behavior of the phases is
characterized by stored energiesW(r) (r = 1, . . . ,N ) that arenonconvex functions of the deformation gradientF,
which is required, in turn, to satisfy theimpenetrability condition: detF(X) > 0 for X in Ω0. The local or
microscopic constitutive relation for the composite is given by

S= ∂W

∂F
(X,F), W(X,F)=

N∑
r=1

θ(r)(X) W(r)(F) (1)

whereS denotes the first Piola–Kirchhoff stress tensor, and the functionsθ(r) are such thatθ(r) = 1 if X ∈Ω(r)
0

and 0 otherwise.
Following Hill [1], the effective or macroscopic constitutive relation for the hyperelastic composite is defined

by

�S= ∂W̃

∂�F , W̃ (�F)= min
F∈K(�F)

〈
W(X,F)

〉 = min
F∈K(�F)

N∑
r=1

c(r)
〈
W(r)(F)

〉(r) (2)

where�S= 〈S〉 is theaverage stress, �F = 〈F〉 is theaverage deformation gradient andW̃ is theeffective stored-
energy function of the composite. In these expressions, the symbols〈·〉 and〈·〉(r), denote volume averages over the
composite (Ω0) and over phaser (Ω(r)

0 ), respectively, so that the scalarsc(r) = 〈θ(r)〉 serve to denote the volume
fractions of the given phases, andK denotes the set of admissible deformation gradientsF, such that there exists
a deformation fieldx = χ(X) with F = Gradχ ,detF> 0 inΩ0, x =�FX on ∂Ω0. More precise definitions of the
effective energỹW are available forperiodic microstructures [2], which generalize the classical definition of the
effective energy for periodic media with convex energies, by allowing for possible interactions between unit cells,
essentially by taking an infimum over all possible sets of units cells. Physically, this corresponds to accounting for
the possible development of instabilities in the composite at sufficiently high deformation [3].

The focus here will be in the characterization of the effective behavior of composites made up ofrubber elastic
phases. Their stored-energy functions are objective and isotropic, so that the stored-energy functions of the phases
are symmetric functions of the principal stretchesλ1, λ2, λ3, such thatW(r)(F) = Φ(r)(λ1, λ2, λ3). Numerous
models have been proposed in the literature for the constitutive behavior of rubbers. A simple, special class of
materials, which will be considered in some detail below, is given by thecompressible neo-Hookean material with:

W(F)= µ

2

(
λ2

1 + λ2
2 + λ2

3 − 3
) + µ′

2
(J − 1)2 −µ lnJ (3)

where the parametersµ > 0 andµ′ > 0 denote the standard Lamé moduli, andJ = detF = λ1λ2λ3. Note that
W(F) ∼ (1/2)µ′(trε)2 + µ trε2 asF → I , so that the stored-energy function (3) linearizes properly. In addition,
the limit asµ′ → ∞ corresponds to incompressible behaviorJ → 1.

The objective of this work then becomes to obtain estimates for the effective stored-energy functionW̃ of
hyperelastic composites subjected to finite deformations. This is an extremely difficult problem, because it amounts
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to solving a set of highly nonlinear partial differential equations with random coefficients. As a consequence, there
are precious fewanalytical estimates for̃W . An upper bound analogous to the Voigt bound in linear elasticity has
been proposed by Ogden [4]. The existence of a lower bound corresponding to the Reuss bound in linear elasticity is
hampered by the difficulties associated with the lack of convexity of the stored-energy functions in finite elasticity,
which makes troublesome the position of a principle of minimum complementary energy. However, some non-
trivial lower bounds have been proposed by Ponte Castañeda [5], exploiting the polyconvexity hypothesis. There
are also numerous empirically based andad hoc estimates for various special cases, including the case of rigidly
reinforced rubbers [6–9]. Our aim here is to develop a general class ofanalytical estimates that are based on
homogenization theory and that are applicable to large classes of composite systems, including rigidly reinforced
rubbers. Such estimates should allow for the incorporation of statistical information beyond the phase volume
fractions, thus allowing for a more precise characterization of the influence of microstructure on effective behavior.
Some progress along these lines has been made recently [10,11] with the extension to finite elasticity of an earlier
version of the ‘second-order’ nonlinear homogenization technique, originally developed [12] in the context of
nonlinearly viscous composites with convex, nonlinear potentials.

2. The second-order variational homogenization method

In this section, a recently developed new version (Ponte Castañeda [13]) of the ‘second-order’ homogenization
procedure is adapted to finite elasticity. This new method is a generalization of the ‘linear comparison’ variational
method [14] in a way that incorporates many of the desirable features of an earlier version of the second-order
method [12], including the fact that the estimates generated should be exact to second-order in the contrast [16].
A brief description of the proposed method is provided next.

The key idea is to introduce a ‘comparison’ linear composite withthermoelastic phases and the same
microstructure (i.e., sameθ(r)) as the nonlinear composite defined by (1). Its phase potentials are quadratic and
defined by:

W
(r)
0 (F)=W(r)

(
F(r)

) + (
F − F(r)

) · ∂W
(r)

∂F

(
F(r)

) + 1

2

(
F − F(r)

) · L (r)0

(
F − F(r)

)
(4)

whereF(r) andL (r)0 are second- and fourth-order constant tensors to be specified later. The stored-energy functions
W(r) of the hyperelastic composite can then beapproximated as:

W(r)(F)=W
(r)
0 (F)+ V (r)

(
F(r),L (r)0

)
(5)

where theV (r) are ‘error’ functions defined by

V (r)
(
F(r),L (r)0

) = stat
F̂(r)

[
W(r)

(
F̂(r)

) −W
(r)
0

(
F̂(r)

)]
(6)

It is noted that thestationarity operation with respect to a variable means taking a derivative with respect to the
variable and setting the result equal to zero to generate an expression for the optimal value of the relevant variable.
Since expression (5) gives an approximation for the nonlinear energy functionsW(r) in terms of quadratic energy
functionsW(r)

0 corresponding to comparison materials with linear behavior, it is expected that the error functions
V (r) will contain information on the nonlinearity of the original energiesW(r). Indeed, it is easy to verify that
stationarity with respect tôF(r) in (6) leads to the relations:

∂W(r)

∂F

(
F̂(r)

) − ∂W(r)

∂F

(
F(r)

) = L (r)0

(
F̂(r) − F(r)

)
(7)

These conditions can be visualized aslinearizations of the nonlinear constitutive relations of the hyperlastic
materials in each of the phases, interpolating between the deformationsF(r) andF̂(r). They correspond to a new
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type of approximation – different from the more standard ‘secant’ and ‘tangent’ approximations that have been
used in the past – which has been referred to as a ‘generalized secant’ approximation [13].

Making use of expressions (5) in relation (2), it is possible to generate an expression for the effective
energy function of the hyperelastic composite involving the effective energy function of the above-defined linear
comparison composite, which is given by:

W̃0
(�F;F(s),L (s)0

) = min
F∈K

〈
W0(X,F)

〉 = min
F∈K

N∑
r=1

c(r)
〈
W

(r)
0 (F)

〉(r) (8)

Note that this fictitious problem for a linear thermoelastic composite is one involving, in general, non-symmetric
‘stress’ and ‘strain’ measures, so that suitable generalizations [10] of the classical [15] thermoelastic analyses are
required.

It follows from the form of expressions (8) with (4) that optimization with respect to the variablesF(r) andL (r)0
in the resulting expression for̃W will involve the first moments of the deformation fields in the phases�F(r) .= 〈F〉(r),
as well as on thecovariance tensor of thedeformation fluctuations C(r)

F
.= 〈(F −�F(r))⊗ (F −�F(r))〉(r). In fact, it

can be shown [13] that optimization with respect to the variablesF(r) andL (r)0 in the resulting expression for̃W
leads to the prescriptions:

F(r) =�F(r) and
(
F̂(r) −�F(r)) ⊗ (

F̂(r) −�F(r)) = C(r)
F (9)

In connection with these prescriptions, it is necessary to make the following clarifications. Concerning the first
prescription, it should be noted that relation (9)1 only makes stationary with respect toF(r) the terms arising
from the linear comparison energỹW0. In other words, there are additional terms arising from the functionsV (r),
which have been neglected, for simplicity. Concerning the second, it needs to be emphasized that it is not possible
to satisfy conditions (9)2 in full generality. This is due to the fact that the left-hand side of relation (9)2 is a
fourth-order tensor of rank 1, whereas the right-hand side is generally of full rank. This means that only certain
components (or traces) of these expressions can be enforced. This point will be discussed in more detail in the
context of the specific examples considered in the applications section.

The prescriptions (9), together with condition (7), serve to completely specify the propertiesF(r) andL (r)0 of the
linear comparison composite introduced above. Making use of all these conditions, the following estimate can be
generated for the effective energy function of the hyperelastic composite:

W̃ (�F)=
N∑
r=1

c(r)
[
W(r)

(
F̂(r)

) − ∂W(r)

∂F

(�F(r)) · ( F̂(r) −�F(r))] (10)

This estimate can be seen to depend not only on the phase averages�F(r) of the deformation field in the linear
‘thermoelastic’ comparison composite, but also – through the variablesF̂(r), as well as the ‘generalized secant’
moduli L (r)0 of the phases of the linear comparison composite – on (appropriate traces of) the deformation field

fluctuations C(r)
F . Furthermore, like the earlier ‘second-order’ estimates, they are known to be exact to second-order

in the heterogeneity contrast [16].
It is remarked finally that the linear comparison problem (8) that needs to be considered for the determination

of the phase averages�F(r) and fluctuationsC(r)
F needed in expression (10) for̃W is precisely the same that was

considered by Ponte Castañeda and Tiberio [10] in the earlier version of the second-order method. These authors
provided expressions of the Hashin–Shtrikman type [17] for the average deformations�F(r) in these generalized
N -phase ‘thermoelastic’ composites, from which estimates may be generated for the corresponding effective
stored-energy functions̃W0, and, in turn, for the fluctuations using the relationC(r)

F = (2/c(r)) ∂W̃0/∂L (r)0 . The
relevant general expressions will not be repeated here for brevity, and only the appropriate specialized versions of
the results will be quoted in the applications section for the special case of rigidly reinforced systems.
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3. Application to particle- and fiber-reinforced elastomers

3.1. Results for general matrix behavior and loading conditions

The second-order estimates (10) for the effective stored-energy function of hyperelastic composites apply for
generalN -phase systems. In this section, the special case of isotropic rigidly reinforced rubbers is considered. This
case has already been considered using the earlier version of the second-order method [10] and it is considered here
again using the earlier results as a reference. Thus, the focus will be on two-phase composites consisting of rigid,
spherical inclusions distributed isotropically with volume fractionc(2) = c in a hyperelastic matrix with energy
functionW(1) =W , such that the composite is statistically isotropic in the undeformed configuration.

Because of the objectivity of̃W , it suffices to consider macroscopic stretch loading histories, such that�F = �U,
�R = I , where�U and�R are the stretch and rotation tensors in the polar decomposition�F = �R�U. Because of the
spherical (isotropic) symmetry of the reinforcement and its distribution, it is expected [10] that the average rotation
tensor of the rigid phase is the identity, so that the average deformation gradient in the inclusion phase is also equal
to the identity (i.e.,�F(2) = I ). It then follows trivially that the average deformation gradient in the hyperelastic
phase is given by

�F(1) = 1

1− c
(�U − c I) (11)

Note that�F(1) = �U(1), so it is convenient to define the principal stretches associated with�F(1) via λ̄
(1)
i =

(λ̄i − c)/(1− c) (i = 1,2,3), whereλ̄i (i = 1,2,3) are the principal stretches associated with�F.
For the above-defined class of rigidly reinforced elastomers, the second-order estimate (10) reduces to

W̃ (�U)= (1− c)

[
W

(
F̂(1)

) − ∂W

∂F

(�F(1)) · ( F̂(1) −�F(1))] (12)

where�F(1) has already been specified in (11). It remains to determine the variablesF̂(1), as well as the modulus
tensorL0 of the matrix phase in the linear comparison composite, which can be achieved from the relation

∂W

∂F

(
F̂(1)

) − ∂W

∂F

(�F(1)) = L0
(
F̂(1) −�F(1)) (13)

together with suitably chosen traces of the relation

(
F̂(1) −�F(1)) ⊗ (

F̂(1) −�F(1)) = C(1)
F = 2

1− c

∂W̃0

∂L0
(14)

In this last relation,C(1)
F is the covariance of the fluctuations in the matrix phase, and

W̃0(�U)= (1− c)W
(�F(1)) + 1

2
(�U − I) ·

(
L̃0 − 1

1− c
L0

)
(�U − I) (15)

is the effective energy of the rigidly reinforced linear comparison composite, which has been generated by making
use of a suitable generalization [10] of Levin’s relation [18] for two-phasethermoelastic composites, letting phase 2
take the energy functionW(2)(F)= (µ

(2)
0 /2)(F− I) · (F− I), and taking the limit of the resulting energy expression

asµ(2)0 → ∞.

In expression (15),̃L0 denotes the effective modulus tensor of a two-phase,linear-elastic comparison composite
consisting of a distribution of rigid inclusions with volume fractionc in a matrix with elastic modulusL0 and the
same microstructure as the nonlinear elastic composite (in its undeformed configuration). This means that any
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estimate for̃L0 can be used to generate a corresponding estimate forW̃ . For example, use can be made of the
following Hashin–Shtrikman estimates [17] for theL̃0 of linear composites withisotropic microstructures:

L̃0 = L0 + c

1− c
P−1, whereP= 1

4π

∫
|ξ |=1

H(ξ )dS (16)

with Kik = L0ijkhξj ξh, N = K−1, Hijkh(ξ)=Nikξj ξh.
While fairly explicit, the above results require, in general, the computation of the tensorP, which depends on

the anisotropy ofL0. In turn, the anisotropy of these tensors depends on the functional form ofW and on the
loading configuration, as determined by�F = �U. In addition, the derivatives of the tensorP with respect toL0 are
needed in the characterization of the fluctuationsC(1)

F , which requires further computations. In this work, which
presents the first application of the (improved version of the) second-order method to finite elasticity, a simple,
yet illustrative example, where the computation of theP tensor and its derivatives is simple, will be worked out in
detail. Thus, estimates of the Hashin–Shtrikman type will be derived forplane strain loading of atwo-dimensional
fiber-reinforced composite.

3.2. Results for in-plane loading of fiber-reinforced composites with a neo-Hookean matrix

In this section, plane strain deformations of a fiber-reinforced composite are considered where the rigid fibers,
which are perpendicular to the plane of the deformation, are aligned in thex3 direction. The distribution of the
reinforcement in the plane is isotropic, so that the hypotheses that were made in the derivation of relation (12)
for W̃ carry over to this special case, with an appropriate (two-dimensional) modification of the relevantP tensor
in expressions (16) for the Hashin–Shtrikman estimates forL̃0. The applied deformation�F = �U in this case is
entirely characterized by the two in-plane principal stretchesλ̄1 andλ̄2, the out-of-plane principal stretch̄λ3 being
identically 1.

Because of the transverse isotropy of the microstructure and the orthogonal symmetry of the loading condition, it
is reasonable to assume that the linear comparison problem of relevance here will also exhibit orthotropic symmetry,
with the symmetry axes aligned with the applied loading�F = �U. For plane strain conditions, it suffices to consider
the in-plane components of a general deformation tensorF relative to the symmetry axes, which are not expected
to be symmetric in general. The same is true of the modulus tensorL0, which is expected to also exhibit orthotropic
symmetry, as well as major symmetry (i.e.,Lijkl = Lklij ), but not minor symmetry.

Now, given the above assumptions, the tensorF̂(1) is seen to have at most 4 independent components (F̂
(1)
11 ,

F̂
(1)
22 , F̂ (1)

12 , F̂ (1)
21 ), which must be extracted from relation (14). This suggests that the tensorL0 should have at

most 4 independent components, with respect to whichW̃0 should be differentiated to generate 4 relations for the
4 components of̂F(1) using relation (14). At the present time, it is not clear what the best choice of the components
of L0 should be. Here, use of the prescriptions

L1212= L2121 and L1221+L1122= √
(L1111−L1212)(L2222−L1212) (17)

will be made to reduce the components of theL0 to only 4 independent ones (L1111,L2222,L1122,L1212). These
choices, which specify the relevant traces of relation (14) are motivated for consistency with the tangent modulus
of a neo-Hookean material, and for simplicity of the resulting expressions for the tensorP.

With these additional hypotheses, relations (14) to (15), together with Eqs. (16)1 for the Hashin–Shtrikman
estimate for̃L0, can be used to generate 4 equations for the 4 components ofF̂(1), which depend on the components
of L0, as well as on the deformation�F. These equations can be shown to have only two distinct solutions forF̂

(1)
11

andF̂ (1)
22 , in terms of whichF̂ (1)

12 andF̂ (1)
21 may be computed. Then, for each of the two essentially distinct roots

for the components of̂F(1) in terms of the 4 independent components ofL0, two sets of 4 additional equations
are generated forL1111, L2222, L1122, andL1212 from the generalized secant conditions (13), which must be
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solved numerically. Having computed the values of the components ofL0 for a given particle volume fractionc,
given material parameters (µ andµ′), and given loading (̄λ1 andλ̄2), the values of the components ofF̂(1) can be
computed. These results are used together with the expression (11) for�F(1) to compute the effective stored-energy
functionW̃ for the rigidly reinforced composite using relation (12).

In this Note, results will be given only in theincompressible limit (µ′ → ∞), where the equations simplify
considerably, leading to explicit results. In this context, it is important to note that the above two distinct roots
have very different asymptotic behaviors in the limit asµ′ increases. The main distinguishing feature of the
solutions associated with the two roots of the equations is that for one root, which is labeled the ‘positive’ (+)
root, det̂F(1) � det�F(1), while for the other, labeled the ‘negative’ (−) root, the opposite is true. For the negative-
root solution, it can be shown that consideration of the incompressible limit of the energy forW̃ leads to the same
‘approximate’ incompressibility constraint (det�F(1) = 1) arising in the context of the earlier version [10] of the
‘second-order’ theory (not incorporating field fluctuations). Because of this negative feature, this solution will not
be detailed further here.

On the other hand, for the positive-root solution, it can be shown that the incompressible limit ofW̃ is consistent
with theexact overall incompressibility constraint (det�F = 1). The mathematical limit is a bit unusual in that some
of the components ofL (i.e.,L1111, L1122, L2222) become unbounded atfinite values ofµ′, depending on the
loading level and the particle concentration. Further details will be given elsewhere, but the final result for the
effective stored-energy function of a rigidly reinforced composite with a neo-Hookean matrix may be written as
follows: W̃ I

HS(
�U)= Φ̃I

HS(λ̄1, λ̄2), where

Φ̃I
HS(λ̄1, λ̄2) = (1− c)

µ

2

[(
λ̄
(1)
1

)2 + (
λ̄
(1)
2

)2 − 2
]

+ µ

2

c

(1− c)

[
λ̄
(1)
2

λ̄
(1)
1

(λ̄1 − 1)2 + λ̄
(1)
1

λ̄
(1)
2

(λ̄2 − 1)2 + (λ̄1 − λ̄2)
2
]

(18)

where again it is emphasized thatλ̄1λ̄2 = 1 (λ̄3 = 1). Results for the corresponding stress-strain relation (fixing the
pressure appropriately) are given in Fig. 1, for several values of the particle concentrationc. Note that the behavior
of the composite is quite different from that of the neo-Hookean matrix phase in that it becomes much stiffer as
the applied stretch̄λ tends to 1/c, where the composite is found to lock up. This is an interesting feature that was

Fig. 1. Plot of the average stressS = dΦ̃I
HS

/dλ versus the stretchλ for an incompressible neo-Hookean rubber reinforced with various
concentrationsc of aligned rigid fibers, and loaded in pure shearλ̄1 = λ andλ̄2 = 1/λ.
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already predicted by the earlier version of the theory [10] and is confirmed by the more accurate results arising
from the improved theory incorporating fluctuations. However, from the theoretical point of view, the main virtue
of the new second-order estimate is that – unlike the earlier version of the result [10] – it leads to a prediction that is
consistent with the overall incompressibility constraint, when the matrix phase is made incompressible. Simple as
this requirement may be from the physical point of view, it is a non-trivial mathematical result due to the significant
nonlinearities associated with the incompressibility of the matrix phase (detF = 1).

Acknowledgement

This work was supported by NSF grant DMS-0204617.

References

[1] R. Hill, On constitutive macro-variables for heterogeneous solids at finite strain, Proc. Roy. Soc. London Ser. A 326 (1972) 131–147.
[2] S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal. 99 (1987) 189–

212.
[3] G. Geymonat, S. Müller, N. Triantafyllidis, Homogenization of nonlinearly elastic materials, macroscopic bifurcation and macroscopic

loss of rank-one convexity, Arch. Rational Mech. Anal. 122 (1993) 231–290.
[4] R. Ogden, Extremun principles in non-linear elasticity and their application to composites – I, Theory, Int. J. Solids Structures 14 (1978)

265–282.
[5] P. Ponte Castañeda, The overall constitutive behaviour of nonlinearly elastic composites, Proc. Roy. Soc. London Ser. A 422 (1989)

147–171.
[6] L. Mullins, N.R. Tobin, Stress softening in rubber vulcanizates. Part I. Use of strain amplification factor to describe the elastic behavior of

filler-reinforced vulcanized rubber, J. Appl. Polymer Sci. 99 (1965) 189–212.
[7] L.R. Treolar, The Physics of Rubber Elasticity, Oxford University Press, Oxford, 1975.
[8] E.A. Meinecke, M.I. Taftaf, Effect of carbon-black on the mechanical properties of elastomers, Rubber Chem. Technol. 61 (1988) 534–547.
[9] S. Govindjee, J. Simo, A micromechanically based continuum damage model for carbon black-filled rubbers incoporating Mullins’ effect,

J. Mech. Phys. Solids 39 (1991) 87–112.
[10] P. Ponte Castañeda, E. Tiberio, A second-order homogenization procedure in finite elasticity and applications to black-filled elastomers,

J. Mech. Phys. Solids 48 (2000) 1389–1411.
[11] N. Lahellec, Estimates of the homogenized hyperelastic behavior of periodic fiber-reinforced composites using the second-order procedure,

C. R. Acad. Sci. Paris IIb 329 (2001) 67–73.
[12] P. Ponte Castañeda, Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys.

Solids 44 (1996) 827–862.
[13] P. Ponte Castañeda, Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. I. Theory, J. Mech.

Phys. Solids 50 (2002) 737–757.
[14] P. Ponte Castañeda, The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids 39 (1991) 45–71.
[15] N. Laws, On the thermostatics of composite materials, J. Mech. Phys. Solids 21 (1973) 9–17.
[16] P. Suquet, P. Ponte Castañeda, Small-contrast perturbation expansions for the effective properties of nonlinear composites, C. R. Acad.

Sci. Paris II 317 (1993) 1515–1522.
[17] Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids 11

(1963) 127–140.
[18] V.M. Levin, Thermal expansion coefficients of heterogeneous materials, Mekh. Tverd. Tela 2 (1967) 83–94.


