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Direct numerical simulation of transition to turbulence
in an oscillatory channel flow
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Abstract

In this Note, we present results of the numerical simulation of transition to turbulence for a purely oscillatory channel flow.
These simulations were performed for various values of the Reynolds number, the so-called Stokes parameter being equal
to 4. The methodology used for the flow simulation relies on a combination of finite element space approximations with time-
discretization by operator splitting; it has shown to be very effective, even when it is applied to relatively complex domains with
strong expansions at the inlet and outlet of the channel. The numerical results obtained agree qualitatively well with previous
experiments by other investigators.To cite this article: L.H. Juárez, E. Ramos, C. R. Mecanique 331 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Dans cette Note, on présente les résultats de la simulation numérique de la transition vers la turbulence d’un écoulement
oscillant dans une conduite bi-dimensionnelle. Ces simulations ont été effectuées pour diverses valeurs du nombre de Reynolds,
la valeur du paramètre de Stokes restant fixée à 4. La méthodologie utilisée pour ces calculs combine approximation en espace
par éléments finis et discrétisation en temps par décomposition d’opérateurs ; au vu des résultats obtenus, elle semble très
efficace, en particulier pour le cas où la conduite présente de forts expansions, en entrée et en sortie. Les résultats numériques
obtenus sont qualitativement en bon accord avec ceux d’autres auteurs.Pour citer cet article : L.H. Juárez, E. Ramos, C. R.
Mecanique 331 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
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1. Introduction

Oscillatory flows arise in a variety of applications in many important fields such as offshore engineering,
industrial processes, biomedical sciences, pulmonary, circulatory and auditive flows. Although in most practical
cases of interest the geometry of the ducts is very complex, most studies have been concentrated in oscillatory flows
in straight ducts, with rigid walls. These flows are described by two non-dimensional parameters: the oscillatory
Reynolds numberRδ , and the Stokes parameterΛ, defined in Section 3. Experimental observations for oscillatory
flows with zero mean indicate that three distinct qualitative behaviors can be identified in theRδ–Λ parameter
space: (a) laminar flow; (b) laminar flow with a superimposed turbulent perturbation of small amplitude; and
(c) laminar flow with turbulent bursts starting at the end of the acceleration phase of the cycle and relaminarization
in the deceleration phase (see [1–3]). The portion of the cycle where the flow is turbulent increases with the
Reynolds number but a pure turbulent flow in the whole cycle has not been observed. It is now generally agreed
that the transition to type (c) flows occurs atRδ ≈ 550 as long asΛ> 2.

Several theories have appeared in the literature aiming to predict the laminar to turbulent transition. Several
authors (e.g., [4,5]) have developed a quasi-steady linear stability and also have used a Floquet theory to calculate
the critical Reynolds number, but their results do not agree with observations. Akhavan et al. [6] present a numerical
calculation based on spectral methods. They assume periodic boundary conditions and parallel walls along the
whole length of the duct. This means that no entrance or exit effects are considered in the model. The laminar and
turbulent results obtained are in agreement with experimental results.

Here we present the numerical solution for Navier–Stokes equations for oscillatory flows with zero mean in 2D
ducts with expansions at the ends (see Fig. 1). The qualitative features obtained for laminar and turbulent flows are
similar than those of straight tubes, but in our study, due to the non-parallel walls at the ends of the duct, we can
analyze the end effects of the oscillatory flow. In particular, we display the spatio-temporal distribution of vortices
inside the duct as a function of the oscillatory Reynolds number.

2. Formulation and discretization of the problem

The flow regionΩ chosen for the numerical simulations is a two-dimensional channel with expansions at both
ends, as shown in Fig. 1. The conservation equations that describe the oscillatory flow in this region are:

∂u
∂t

+ u · ∇u = − 1

ρ
∇p+ ν∇2u + f inΩ (1)

∇ · u = 0 inΩ (2)

Hereu = (u, v) is the velocity vector whereu andv are the axial and transversal velocity components respectively;
ν andρ are the kinematic viscosity and density respectively. If we denote byU the characteristic velocity of the
flow, and byω the frequency of oscillations, then the external forcef = Uω sin(ωt)/ρ in Eq. (1) represents the
mean pressure gradient. Thus,∇p in Eq. (1) denotes only the departure from the mean pressure gradient. Eqs. (1)

Fig. 1. Two dimensional duct with expansions at the ends. L= 28.125, H= 3, E= 6, A = 11.25, B= 5.625.

Fig. 1. Conduite bi-dimensionnelle avec expansions aux extrèmes. L= 28.125, H= 3, E= 6, A = 11.25, B= 5.625.
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and (2) are complemented by the initial conditionu(x, y,0)= 0. The boundary conditions areu = 0 on channel
walls, andu periodic at channel ends.

Concerning thespace approximation of the problem, we introduce a triangulationTh of the flow regionΩ ,
and a triangulation twice finerTh/2, whereh is the space discretization step. We denote byP1 the space of
polynomials of degree less or equal to one. The functional spaces for velocity and pressure are approximated by the
following finite dimensional spaces:Vh = {v ∈ (C0(Ω))2: v|T ∈ P1 ×P1, ∀T ∈ Th/2, v = 0 on channel walls, and
v periodic at channel ends}, andLh = {q ∈ C0(Ω): q|T ∈ P1, ∀T ∈ Th,

∫
Ω q dx = 0, q periodic at channel ends},

respectively. The discrete version of thevariational formulation of problem (1), (2) is: fort > 0 find uh(t) ∈ Vh,
andph(t) ∈ Lh, such that for allv ∈ Vh, and for allq ∈ L2

h∫
Ω

[
∂uh
∂t

+ (uh · ∇)uh
]

· v dx + ν
∫
Ω

∇uh :∇v dx − 1

ρ

∫
Ω

ph∇ · v dx =
∫
Ω

fh · v dx (3)

∫
Ω

q∇ · uh(t)dx = 0 (4)

This problem is aninitial value problem which contain three numerical difficulties each of which can be associated
a specific operator: (i) the incompressibility condition and the related unknown pressure; (ii) an advection problem;
and (iii) a diffusion term. Given a time discretization step�t , the following fractional step schemeà la Marchuk–
Yanenko [7] was used to solve the problem (3), (4): givenu0

h = 0, for n� 0, knowingunh, computeun+1/3
h ∈ Vh,

andpn+1
h ∈ Lh via the solution of


∫
Ω

un+1/3
h − unh
�t

· v dx − 1

ρ

∫
Ω

pn+1
h ∇ · v dx =

∫
Ω

fn+1
h · v dx, ∀v ∈ Vh

∫
Ω

q∇ · un+1/3
h dx = 0, ∀q ∈L2

h

(5)

Then, computeun+2/3
h = uh(tn+1) ∈ Vh, whereuh(t) is the discrete solution of the following pure advection

problem on(tn, tn+1)


∫
Ω

∂uh
∂t

· v dx +
∫
Ω

(
un+1/3
h · ∇)

uh · v dx = 0, ∀v ∈ Vh

uh
(
tn

) = un+1/3
h

(6)

Next, findun+1 ∈ Vh by solving the diffusion problem.∫
Ω

un+1
h − un+2/3

h

�t
· v dx + ν

∫
Ω

∇un+1
h : ∇v dx = 0, ∀v ∈ Vh (7)

Problem (5) is a finite dimensional linear saddle-point problems which is solved by anUzawa/conjugate
gradient algorithm [8]. The pure advection problem (6) is solved by the wave-like equation method discussed in [9]
and [10]. Problem (7) is a discrete elliptic system whose iterative or direct solution is a quite classical problem. In
this work all the linear systems are solved by a sparse matrix algorithm based on Markowitz’ method [11].

3. Numerical experiments and conclusions

The results are be given in terms of the Reynolds numberRδ = Uδ/ν, whereU is a characteristic velocity,
δ = √

2ν/ω is the Stokes layer thickness, andν is the kinematic viscosity. We have calculated the oscillatory
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Fig. 2. Time history of the axial and transversal velocities at point(x, y)= (−28,−1.47) for Rδ = 25,302 and 537.

Fig. 2. Comportement au temps des vitesses transversales et axiales au point(x, y)= (−28,−1,47) pourRδ = 25,302 et 537.

flow in a duct considering 25� Rδ � 1521 and Stokes parameterΛ = H/2
δ

= 4. The discretization values are
h= 1/320 for velocity, and�t = 0.00025. Fig. 2 shows the time history of the axial and transversal velocities at
point (x, y)= (−28,−1.47) for Rδ = 25, 302, and 537. In all cases, there is a transient at the beginning where the
influence of the initial conditions is important. Typically this time is of the order of three cycles. AtRδ = 25 the
flow is laminar, with the motion of the fluid synchronized with the pressure oscillation. AtRδ = 302, bursts of small
amplitude and high frequency oscillations appear at the end of the acceleration phase. AtRδ = 537, a turbulent-like
flow appears in almost the total duration of the cycle, except when the velocity is nearly zero. In order to give a
more global picture of the flow, Fig. 3 shows the velocity field for two times in the cycle,φ = 0 andφ = 2π/5 for
Rδ = 25, 302, and 537.φ = 0 corresponds to zero pressure gradient, whileφ = π/4,3π/4 correspond to maximum
and minimum axial pressure gradient respectively. Vortices develop near the expansions at the ends of the duct,
and atRδ = 25, the dissipate inside the expansions. ForRδ = 302, the vortices penetrate up to the middle of the
channel. Finally, forRδ = 537 at certain parts of the cycle the whole of the duct is filled with vortical structures.

In conclusion, we have analyzed the oscillatory flow in a duct with expansions at the ends. In contrast with the
studies of oscillatory flow stability that have appeared in the literature, this geometry allows us to study the end
effects which include the generation and spatio-temporal distribution of vortices. In agreement with information
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Fig. 3. Velocity flow field for two times in the cycle,φ = 0 andφ = 2π/5 for Rδ = 25, 302 and 537.

Fig. 3. Champ de vitesse pour deux temps dans le cycle,φ = 0 etφ = 2π/5 pourRδ = 25, 302 et 537.

available in the literature, three qualitatively different regimes have been observed: (a) laminar flow; (b) flow with
the duct partly filled with vortices; and (c) flow where the vortices fully fill the duct at the decelerating phase of the
cycle. The critical Reynolds number at which vortices fully fill the duct is approximately 537, which coincides with
experimental observations reported in [1] and [2]. It may be possible to have a geometry and dynamical conditions
such that the vortices generated at the ends dissipate at a certain distance from the ends, but a spontaneous instability
manifests itself in the central region of the duct. We consider this an important question to be answered in a future
investigation.
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