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Uniqueness in the problem of an obstacle in oblique waves
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Abstract

A solution to the linearized water-wave problem involving a pair of surface-piercing cylinders in oblique waves and
water depth is proved to be unique for certain geometric arrangements and frequencies in some interval above t
frequency.To cite this article: N. Kuznetsov, C. R. Mecanique 331 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Nous considérons le problème du mouvement sur la houle. À partir des conditions géométriques pour deux cylindre
dans une mer de profondeur infinie et dans des ondes obliques, nous obtenons un intervalle de fréquences d’unicité.Pour citer
cet article : N. Kuznetsov, C. R. Mecanique 331 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
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1. Introduction: statement of the problem

In 1950, John [1] and Ursell [2] proved the first two results on uniqueness in the water-wave problem
for short, in what follows). Not so long before that, Rellich [3] and Kupradze [4] (his book summarizes r
obtained earlier and its Russian original was published in 1950 and English translation appeared in 1952
uniqueness theorems for boundary value problems describing acoustic fields outside a bounded obstacle.
there is a great difference between the results in [1] and [2], on the one side, and those in [3] and [4], on t
side. In the acoustic case, there are no restrictions on the shape of an obstacle, whereas [2] deals only w
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submerged circular cylinders, and in [1], uniqueness is proved for surface-piercing bodies subjected to the c
now usually referred to as John’s condition. It says that any vertical line through the horizontal free surface
has no common points with the contour of the cylinder’s cross-section. The subsequent developement of t
theory of water waves (see the book [5] for an updated account of this theory) demonstrates that the d
between water and acoustic waves is an essential one. The most clear evidence of this was obtained in 19
McIver [6] constructed the first nontrivial solution to the homogeneous two-dimensional WWP. Various exte
of this work can be found in [5]; in particular, Section 5.4 contains an example of a nontrivial solution f
problem of oblique waves (this result was originally published in [7]). Implications which arise for hydrodyn
characteristics of floating structures at the frequencies of non-uniqueness were considered by Newman [8

McIver’s result has increased interest in determining conditions under which a solution is unique. Even
that, the importance of this question was emphasized by Ursell, who placed it first in his list [9] of unsolv
unfinished problems in the theory of water waves. In the passed few years, some progress was achieved c
uniqueness in WWP in two and three dimensions, but still much less is known in the case of oblique wa
known results are reviewed in [5] and [7]). The aim of this Note is to fill in this gap, at least partially. We w
mainly concerned with the most difficult case of two surface-piercing cylinders in water of infinite depth, but
for other geometries of obstacles will be also mentioned. Our method combines investigation of nodal lines
to that in [10] with application of conformal mapping proposed by the author in 1988 (see [5], Subsection 4

Let W denote the cross-section of a domain occupied by an inviscid, incompressible, heavy fluid (wate
assumed thatW = R

2− \ (B+ ∪ B−), whereR
2− = {−∞ < x < +∞, y < 0} andB+, B− are simply connecte

domains inR
2− attached to∂R

2− and such that: (a)B+ ∩ B− = ∅; (b) for S± = ∂B± ∩ R
2− the closureS± is a

C2-curve (this condition may be weakened); (c)S± is not tangent to thex-axis at its endpoints. ThusB+ (B−) is
the cross-section of a right (left) infinitely long cylinder floating in the water surface. LetF0 denote the part of th
x-axis betweenB+ andB−, andF∞ = ∂R

2− \ (F0 ∪ B+ ∪ B−). Neglecting the surface tension and assum
the water motion to be irrotational, we consider small-amplitude oscillations having the radian frequeω.
Mathematically one has to find a complex-valued velocity potentialφ satisfying the following boundary valu
problem (it will be referred to as the oblique-wave problem, OWP for short, in what follows):

∇2φ =m2φ in W, φy = νφ onF0 ∪ F∞,
∂φ

∂n
= f onS+ ∪ S− (1)

φ|x| − i�φ = o(1) uniformly in y ∈ (−∞,0) as|x| → ∞ (2)

This problem must be complemented by the condition that the Dirichlet integral ofφ is locally finite. In (1),m
andf are a given nonnegative number and a given function onS+ ∪ S−, respectively, and they depend on the ty
of problem (radiation or scattering);ν is a spectral parameter equal toω2/g, whereg is the acceleration due t
gravity. In the radiation condition (2),�= (ν2 −m2)1/2 and we assume that� ∈ (0, ν]; that isν > m, and so�/ν
andm/ν are the sine and cosine, respectively, of the angle that the crests of the incident wave-train make
plane normal to the generators of the cylinders. Hence form= 0 OWP coincides with the two-dimensional WW
The caseν <m is more simple and was studied in [7] (see also Section 4 below).

Since we are interested in the question of uniqueness, we putf = 0 in which case (cf. [5], Section 2.2):

φ(x, y)= O
([
x2 + y2]−1/2) and |∇φ| = O

([
x2 + y2]−1) asx2 + y2 → ∞ (3)

Therefore, the following conditions hold:∫
W

(|∇φ|2 +m2φ2)dxdy <∞,

∫
F0∪F∞

φ2 dx <∞ (4)

which mean that the kinetic and potential energy of waves per unit length of cylinder’s generators is finite.
homogeneous problem, conditions (4) can be imposed instead of (2), and soφ can be assumed to be real beca
if it were complex, then both the real and imaginary parts would separately satisfy the problem.
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2. Existence of nodal lines

Let (d,0) ∈ F
(+)∞ , whereF (+)∞ is the part ofF∞ on the right ofS+. The functionψ = eνy sin�(x − d) satisfies

the same boundary condition onF (+)∞ asφ and the same modified Helmholtz equation holds forψ in R
2−. LetW

satisfy John’s condition, then taking into account (3) and the behaviour ofψ at infinity, one can apply the secon
Green’s identity toφ andψ in the domainW ∩ {x > d}, thus obtaining

0∫
−∞

φ(d, y)eνy dy = 0 for every(d,0) ∈ F (+)∞ .

Since eνy is strictly positive andφ(d, y) is a continuous function ofy, we get thatφ(d, y0) = 0 for some

y0 ∈ (−∞,0), and a value ofy0 may be found for every(d,0) ∈ F
(+)∞ . Then there exists at least one nodal l

on whichφ = 0 in the quadrant that lies strictly belowF (+)∞ . Similar considerations show that there exists at le
one nodal line in the quadrant that lies strictly belowF (−)∞ , which is the part ofF∞ on the left ofS−. It is known
(see, for example, [5], Section 4.1) that the nodal line cannot terminate inW . Finally, it follows from [11] that
φ(x,0) �= 0 for sufficiently large values of|x|, and so there exists a nodal line going to infinity. Hence we arriv

Proposition 1. Let the contoursS+ andS− satisfy John’s condition and letφ be a solution to the homogeneo
OWP. Then at least one of the following two configurations is present in the set of nodal lines ofφ:

(i) a nodal line whose both ends go to infinity, thus separating a subdomainW∞ ⊂W fromF0 ∪ F∞;
(ii) a pair of non-intersecting nodal lines emanating fromF0 ∪ S+ ∪ S− and such that one goes to infinity in th

positivex-direction, whereas the other one goes to infinity in the negativex-direction.

If there exists a subdomainW∞ separated fromF0 ∪F∞ by a nodal line or by nodal lines and a part ofS+ ∪S−,
then properties (3) allow us to write the first Green’s identity forφ in W∞. Since∂W∞ consists of curves on whic
eitherφ = 0 or∂φ/∂n= 0, this identity immediately proves the following

Corollary 1. Let φ be a solution to the homogeneousOWP in W . If φ has a nodal line such that it separates
subdomainW∞ ⊂W fromF0 ∪F∞, thenφ vanishes identically. The same is true if nodal lines ofφ separateW∞
fromF0 ∪ F∞ together with a part ofS+ ∪ S−.

It is observed in [10] on the basis of numerical computations that for both symmetric and antisym
nontrivial solutions of the homogeneous WWP, which are constructed with the help of procedure propose
there exists a pair nodal lines emanating fromS+ and S− and going to the positive and negativex-infinity,
respectively. Therefore, one can hardly expect that Corollary 1 is applicable in the general case. However, i
a single floating body that satisfies John’s condition, then Corollary 1 gives one more proof of the John’s uni
theorem for OWP (one more proof based on Maz’ya’s identity can be found in [5], Subsection 3.2.3).

3. An upper bound of uniqueness interval

In this section we deal with configurations of nodal lines which are permitted by Proposition 1, bu
that Corollary 1 cannot be applied to these configurations. They consist of pairs of non-intersecting nod
emanating fromF0 ∪S+ ∪S−, but not from the same body’s contour. For studying this case we impose a rest
on S+ andS− that will be referred to as the circle condition. Namely, letS± be contained within a circle havin
its centre on thex-axis and going through the pointF0 ∩ S±. It is clear that there exists the smallest radiusr± for
which this property holds. Let us choose the origin of the(x, y)-coordinates so that the smallest circles contain
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S+ andS− are bounded by coordinate lines of the bipolar coordinates with poles at(+a,0) and(−a,0). For this
purpose one has to finda, b±, d± > 0 from the following system

a = r+ sinhd+ = r− sinhd−, b+ + b− = h, b+ + r+ = r+ coshd+, b− + r− = r− coshd−
whereh is the length ofF0. One can easily verify that this system has a unique solution such that

a2 = (b+ + r+)2 − r2+ = (b− + r−)2 − r2− (5)

Then placing the origin of the(x, y)-coordinates onF0 so that(b±,0) = F0 ∩ S±, one finds that the smalle
circles containingS+ and S− are bounded by the coordinate linesu = d+ and u = −d−, respectively, of the
bipolar coordinates(u, v) related to the above chosen Cartesian coordinates as follows (see, for exampl
Section 2.01):

x = a sinhu

coshu− cosv
, y = a sinv

coshu− cosv
(6)

The metric coefficients of this conformal mapping areg11 = g22 = a2/(coshu− cosv)2.

Let us describe for some subsets ofR
2− their images under the conformal mapping (6). It is clear that the im

of the domain outside the circles containingS+ andS− is the rectangleR = {−d− < u < d+, −π < v < 0}.
Moreover,F0 = {−d− < u < d+, v = −π} is the image ofF0 and(u, v) = (0,0) is the image of infinity on the
(x, y)-plane. LetW0 be an infinite subdomain ofW bounded from above by one of the following curves permit
by Proposition 1:

(I) a part ofF0 and a pair of nodal lines emanating fromF0 and going to infinity;
(II) F0, parts ofS+ andS−, and a pair of non-intersecting nodal lines such that one emanates fromS+ and the

other one fromS− and both go to infinity;
(III) a part ofF0, a part ofS+ (S−), and a pair of non-intersecting nodal lines such that one of them emanate

F0 and the other one emanates fromS+ (S−) and both go to infinity.

Then the image∂W0 that corresponds to∂W0 is a curvilinear triangle in the case (I). This triangle has one
onF0, the opposite vertex at(0,0), and nodal lines are the lateral sides. A curvilinar pentagon is the image of∂W0
in the case (II). This pentagon hasF0 as the side opposite to the vertex at(0,0) and two pairs of the lateral side
each formed by the images of a nodal line and of a part ofS±. In the case (III), one of two pairs of the lateral curv
in the case (II) must be replaced by a single nodal line thus producing a quadrangle. It is important that the
of S+ andS− lie outside ofR and this results from the circle condition.

Let ϕ(u, v)= φ(x(u, v), y(u, v)), wherex(u, v) andy(u, v) are given by (6) and(u, v) ∈ W0 because only this
domain will be used below. It follows from (1) that

∇2ϕ = (ma)2ϕ

(coshu− cosv)2
in W0, ϕv + νaϕ

1+ coshu
= 0 onF ′

0 (7)

whereF ′
0 is the part ofF0 belonging to∂W0. On the rest of∂W0 either the homogeneous Dirichlet or t

homogeneous Dirichlet and Neumann conditions are fulfilled. Moreover, conditions (4) imply that∫
W0

[
|∇ϕ|2 + (ma)2ϕ2

(coshu− cosv)2

]
dudv <∞,

∫
F0

ϕ2

1+ coshu
du <∞

and so the first Green’s identity can be applied inW0. In view of (7) and the homogeneous boundary condition
the rest of∂W0 we get:∫

W0

[
|∇ϕ|2 + (ma)2ϕ2

(coshu− cosv)2

]
dudv= νa

∫
F ′

0

ϕ2

1+ coshu
du (8)
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Now the last integral can be estimated as follows. Since the images ofS+ and S− lie outside ofR, for any
(u,−π) ∈ F ′

0 we have the obvious equality:

−ϕ(u,−π)=
v0(u)∫
−π

ϕv(u, v)dv (9)

where−v0(u) is the largest value of−v such that the point(u, v0(u)) lies on the nodal line ofϕ. Both sides of (9)
are squared and the Schwarz inequality gives

ϕ2(u,−π)� π

v0(u)∫
−π

∣∣ϕv(u, v)∣∣2 dv (10)

because|π + v0(u)| � π . Multiplying both sides of (10) byνa/(1+ coshu) and integrating overF ′
0, we obtain:

νa

∫
F ′

0

ϕ2

1+ coshu
du� νaπ

∫
F ′

0

du

1+ coshu

v0(u)∫
−π

∣∣ϕv(u, v)∣∣2 dv � νa
π

2

∫
W0

ϕ2
v dudv

Combining this and equality (8), one arrives at∫
W0

ϕ2
u dudv+

(
1− νa

π

2

) ∫
W0

ϕ2
v dudv+ (ma)2

∫
W0

ϕ2 dudv

(coshu− cosv)2
� 0

From Proposition 1, Corollary 1, and this inequality, it is easy to derive

Proposition 2. Let John’s condition and the circle condition hold forS+ andS−. If m� 0 andma < νa � 2/π ,
wherea is defined by(5), then the homogeneousOWPhas only a trivial solution.

4. Discussion

Uniqueness has been established in OWP at frequencies such thatνa ∈ (ma,2/π] whenma < 2/π , water
has infinite depth, and the cross-sections of two surface-piercing cylinders satisfy John’s condition and th
condition. This extends previous results in two directions. First, uniqueness is proved for OWP instead of t
dimensional WWP. Second, the upper bound in Proposition 2 is better than that in [5]. This can be demo
for the simple geometry when both cylinders have the semicircular cross-section of the same radiusr and the
distance between them is equal to 2b. In this casea = (b2 + 2br)1/2 and the inequality providing uniqueness in [
is as follows:νa � (r − b)/(2πr), thus being valid only ifr is larger thanb. In Proposition 2, upper bound of th
uniqueness interval is obtaind without any restriction onr andb and this bound is more than four times better th
in the latter inequality.

The method described in Section 3 allows us to replace (6) by a more general conformal mapping ofR
2− onto

a strip{−∞ < u < +∞, −s < v < 0} for formulating geometric restrictions onS± and for obtaining an uppe
bound of uniqueness interval. Instead of doing this we mention two more examples of conformal mappin
[12], Section 2.01, which can be used in he present context. They have the egg-shaped inverse Cassinian
the so-called sn curves as their level lines (see Figs. 2.08 and 2.16, respectively, in [12], where coordinate
the corresponding curvilinear coordinates are shown). The latter curves have their foci atx = ±a andx = ±a/k,
0< k < 1, and are theu level lines of the conformal mapping:

x = aΛ−1snudnv, y = aΛ−1cnudnusnv cnv, whereΛ= 1− dn2usn2v
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and sn, cn, and dn is the copolar trio of Jacobian elliptic functions (see, for example, Gradshteyn and Ryz
Chapter 8); the metric coefficients of this conformal mapping are

g11 = g22 = a2Ω2/Λ2, whereΩ2 = (
1− sn2udn2v

)(
dn2v − k2sn2u

)
Using John’s condition and the analogue of the circle condidion for sn curves, one arrives at the ineq
ma < νa � 1/K ′(k) for frequencies at which uniqueness holds. HereK ′ is complete elliptic integral of the firs
kind (see [13], Chapter 8). Note that 1/K ′(k)→ 2/π ask → 1 (cf. Proposition 2), but 1/K ′(k)→ 0 ask → 0.

It should be noted that the result obtained by McIver [10] for the two-dimensional WWP is valid for
as well. She proved uniqueness when water is of finite but non-uniform depth andνHmax � 1, whereHmax is
the maximum depth of the water layer. For OWP the last inequality must be complemented by the e
ν > m tanhmH , whereH is the constant depth of water at infinity andm tanhmH is the lower bound of the
continuous spectrum of OWP.

In conclusion we mention two results which complement Proposition 2. Firstly, until now the only geo
for which uniqueness in OWP is proved for allν belonging to the continuous spectrum, is a pair of vert
barriers as was proved in [14] (see also [5], Subsection 4.2.1). Secondly, ifν < m, then John’s condition provide
uniqueness in problem (1), (4) for any finite number of surface-piercing cylinders as is shown in [7] (see a
Subsection 5.4.1).
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