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Abstract

The nonlinear problem for propagation of wave-packets along the interface of two semi-infinite fluids is solved on the basis
of multiple scale asymptotic expansions. Unlike all previous investigations dealing only with third-order approximations, here
fourth-order approximation is developed. The corresponding solvability condition is obtained and the evolution equation in the
case away from the cut-off wave number is derived. As a result, the nonlinear higher-order Schrédinger equation is obtained
which contains the nonlinear part in a compact form. This equation is valid for a wide range of wave numbers. The stability
diagram shows regions of stability and instability of capillary-gravity wave-pacKetsite thisarticle: |. Selezovet al., C. R.
Mecanique 331 (2003).
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Résumé

Le probléeme non linéaire de la propagation de groupes d'ondes a l'interface de deux liquides semi-infinis est résolu en
utilisant une méthode multi-échelles. Contrairement aux études antérieures développées qu'au troisieme ordre, cet article
consiére une approximation au quatriéme ordre. La condition de solvabilité correspondante est obtenue et I'équation d'évolution
est formulée loin du nombre d’onde de coupure. Comme résultat on obtient une équation non linéaire de Schrodinger d’ordre
élevé, dont la partie non linéaire est mise sous une forme compacte. Cette équation est utilisable pour un large intervalle de
nombres d'onde. Le diagramme de stabilité met en évidence des domaines stables et instables de paquets d’ondes de gravité-
capillarité.Pour citer cet article: |. Selezov et al., C. R. Mecanique 331 (2003).
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1. Introduction

Recent investigations show that the occurence of wave train instabilities can be produced, among others, by even
very small disturbances generated by capillary-gravity waves due to surface tension effect. Publication of more and
more studies devoted to the water wave propagation taking into account the surface tension, is not accidental (see,
for example, [1-3]).

At the same time, one can observe that there is a difference between the free surface which is precisely traced
and the thermocline which is a rather spreading thin layer and surface tension can be considered not so strong.
However, in laboratory experiments and industrial applications the interface can be clearly traced.

It should be noted that the stability of the system essentially depends on the ratio of demsities/ o1
(p2 corresponds to upper fluigy to lower), as well as on the surface tensibnHence,p = 0 corresponds to
surface gravity waves whilg # 0 corresponds to internal (interfacial) waves. We recover the Dysthe equation in
the case ofp — 0 [4] and the Hogan equation [5] wheéh= 0. In some cases surface tension effect can be not
necessarily important in oceanic situations but it can be important for experiments conducted in laboratories when
lengthscales are shorter. The role of internal breaking waves in mixing processes in the upper layer of the ocean is
also of great importance.

In this paper asymptotic expansions of fourth order are developed unlike most previous investigations restricted
to third order expansions. As a result, an extended nonlinear Schrédinger equation is derived and the stability
analysis of solutions is carried out.

2. Statement, asymptotic solutions and evolution equation for complex envelope

The mathematical statement of the problem includes the Laplace equations, kinematic and dynamic boundary
conditions at the interface and regularity conditions
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whereg; (j = 1,2) are the velocity potentials) is the interface elevation2; = {(x, y,z): —00 < x < o0,
—00<y<00,z<0}and22={(x,y,2): —c0<x <00, —00 <y <00, 7> 0}, p=p2/p1. Dimensionless
values are introduced using the characteristic ledgtbharacteristic tim&L/g)/2 (g is the acceleration of the
gravity) and density of the lower fluid js;. The characteristic length can be the wavelength, for example. The
dimensionless surface tension in this casEfis= T/(L%p1g), the asterisk is then dropped.

The approximate solutions of the nonlinear problem (1)—(4) are developed by using the method of multiple scale
expansions, so that desired functions are presented by the following expansions

4
n(x, 1) =Y &"in(x0, X1, X2, X3, 10, 11, 12, 13) + O(c°) (5)
n=1
4
@j(x,z,1) = ZSnfﬂjn(XO, X1,X2,X3,2,10, 11, 12, 13) + O(e®)  (j=1,2) (6)

n=1



|. Sdezov et al. / C. R. Mecanique 331 (2003) 197-201 199

wheres is a small dimensionless parameter characterizing the wave steepness'x, ¢, = ¢"t.

Substituting (5) and (6) into (1)—(4) and equating coefficients of like powessrefluce the original nonlinear
problem to four linear problems. The first-, second- and third-order problems were formulated, and the solutions
of the first- and second-order problems and solvability conditions of the second- and third-order problems were
derived in [6] for other dimensionless parameters, so that the dimensionless surface tendios lvas

As a result, we obtain the dispersion relationship

0~ 1+ H1-p+TkH)k=0 ()

and the solvability conditions for the first-, second- and third-order problems
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where
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I andJ are connected by a simple relationship
al

J=—i— 13
% (13)

wherel (T, k, p) andJ (T, k, p) are given by the forms (11) and (12), respectively.
Multiplying Egs. (8)—(10) by, £2 ande®, respectively, adding all equations and taking into account formulae
for derivativesA ;, A , A xx andA .. and relationship (13), the following evolution equation can be derived
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where I’ = 31/dk. The left-hand side of Eq. (14) for the complex envelopeorresponds to the Shrodinger
equation of third order. It contains one temporal derivative and three spatial derivatives. The nonlinear right part of
the evolution equation (14) is of fourth-order approximation and it is expressed in a compact form using coefficients
of the third-order approximatiohand its derivativd’ only.

3. Stability analysis

Changingr andr for new independent variables
E=x—0't, {=t
transforms Eq. (14) into the form
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The solution of Eq. (15) that varies withonly is written as follows
.2
I k
A= aexp(— £ . —Ia2§> (16)
1+p o

whereuq is constant. Following Hasimoto and Ono [7], investigation of stability analysis gives the stability condition
for wave-packets on the fluid interface in the form

lo' <0 (17)

In the case of gravity waveg (~ 0)

k(1= p)(1+p?) (1—p)t/?
I—2 , A 18
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so that gravity waves are stable whenr: 1.
In the case of capillary waves (- oco) the following conditions take place
~Tk*1-6 2 371/?
I— ( '0+p), o= — (19)
41+ p)? 4kY2(1 4 p)1/2

The capillary waves are stable only(i¥/2 — 1)2 < p < (v/2+ 1)2.

Fig. 1 shows the stability diagram obtained on the basis of numerical analysis of the stability condition (17) for
uniform travelling wave trains. Regions of stability and instability are separated by five curves marked by indices 0
to 5. Index O corresponds to the cuwe= 1+ Tk2 which separates the region of linear instability, along curves
1 and 5 the second derivative of the frequency of the wave-packet center is equal t9”zer®; for curves 2 and
3 the valuel changes its sign antl= 0; along the curve 4 changes its sign too, but— oco.

Thus, three regions of nonlinear stability, V4, and V> and three regions of nonlinear instability, V3, V1 are
discovered.

02 04 06 08 1 12 14

Fig. 1. Stability diagram.
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The regionVg (kK — 0) corresponds to long gravity waves, so that the conclusion about stability of gravity
waves forp < 1 is verified. Also, the regiois of instability of capillary-gravity waves due to the action of forces
of different nature (gravity and surface tension), exists.

The stability of capillary waves fop < 1 in the regionV, takes place whep < (v/2 — 1)2 or for sufficiently
small density of the upper fluid. Increasing the density ratio leads to destabilization of small wavelengths. The next
instability regionVs is unbounded from above and it is located between two vertical asymptetes/2 + 1)2
andp = (+/2 — 1), as it follows from asymptotic analysis of (19).

Increasing surface tensidnextends the regions of instability of capillary waves and, accordingly, narrows the
regions of nonlinear stability of gravity waves.

4. Conclusion

The nonlinear propagation of wave packets at the interface between two semi-infinite fluids is investigated
taking into account surface tension effect. The method of multiple scale expansions of fourth-order approximation
is developed to derive the nonlinear third-order partial differential equation describing the evolution of two-
dimensional wave-packets propagating along the interface.

The evolution equation obtained in the case away from cut-off wave number is the nonlinear Schrodinger
equation. The evolution equation is valid for a wide range of wave humbers. It contains only a first derivative in time
and three derivatives in space coordinate of the envelope with coefficients involving the first three derivatives of
the frequency of the wave-packet center with respect to the wave number. All the coefficients of the nonlinear right
part of evolution equation in the fourth-order approximation are expressed in a compact form using coefficients of
third-order approximation and its derivative with respect to the wave number only.

Three regions of nonlinear stability and three regions of nonlinear instability are discovered. One of the stable
regions corresponds to long gravity waves and one of the unstable regions of capillary-gravity waves is due to force
actions of different nature (gravity and surface tension).

It is shown that increasing the intensity of surface tension extends regions of instability of capillary waves and
narrows regions of nonlinear stability of gravity waves.
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