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Abstract

A generalization of the Woodward’s theorem is applied to the case of random signals jointly modulated in amplitu
frequency. This yields the signal spectrum and a rather robust estimate of the bispectrum. Furthermore, higher orde
that quantify the amount of energy in the signal due to nonlinearities, e.g., wave–wave interaction in the case of wate
can be inferred. Considering laboratory wind generated water waves, comparisons between the presented general
more standard techniques allow to extract the spectral energy due to nonlinear wave–wave interactions. It is show
analysis extends the domain of standard spectral estimation techniques from narrow-band to broad-band processes.To cite this
article: T. Elfouhaily et al., C. R. Mecanique 331 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Une généralisation du théorème de Woodward est appliquée au cas d’un signal aléatoire modulé en amplitude et en
Le spectre du signal ainsi qu’une estimation robuste du bispectre sont obtenues grace à cette nouvelle technique. E
moments statistiques d’ordre supérieur quantifiant l’énergie due aux non linéarités, i.e., aux interactions entre vague
cas des ondes de surface, sont évalués. L’énergie spectrale d’interaction non linéaire est extraite grâce à la compar
présente méthode, à des méthodes plus classiques lors de l’analyse de signaux de vagues de vent fort générées e
Il est finalement montré que notre technique étend le domaine des méthodes d’estimation spectrale aux processus la
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La complexité des vagues de vent a amené de nombreux auteurs à les modéliser par une superpositio
aléatoires d’amplitudes et de fréquences fortement modulées. Lors de la simulation d’ondes de sur
linéaires, Elfouhaily et al. [2] ont montré qu’il était nécessaire d’injecter en entrée de la simulation, un
débarrassé des interactions non linéaires, sous peine de voir le spectre de sortie différer considérabl
spectre réel. Afin d’obtenir ce spectre dit « spectre nu » d’un signal réel large bande, nous avons dé
une généralisation du théorème de Woodward [11] pour un signal aléatoire modulé en fréquence mais
amplitude. Ainsi, un tel signal a un spectre de la forme (2). Pour évaluer le spectre de ce signal, il faut
la probabilité conjointe de quatre variables aléatoires. Afin de simplifier le problème nous avons exprim
généralisation sous deux formes : dans le cas d’indices de modulation infinis de l’amplitude et de la fré
nous obtenons comme limite de (2), la forme (3), qui est le spectre d’un signal dont l’amplitude, la fré
et la phase sont aléatoires mais indépendantes du temps. C’est donc le « spectre nu » où les échange
entre ses différentes composantes spectrales du signal n’ont pas lieu. Dans un deuxième temps, l’a
et la phase du signal sont toujours supposées aléatoires mais elles comprennent une dépendance e
temps (5). Un développement de Stokes du signal est ainsi obtenu (7) et son spectre s’exprime (9)
forme du spectre nu augmenté de deux intégrales comprenant les probabilités conjointes des dissymétri
fréquence instantannée. L’évaluation de ce spectre dit « spectre habillé » ne nécessite plus que trois histo
bidimensionnels, ceux de l’amplitude et des dissymétries horizontales et verticales en fonction de la fréqu
même l’équation (10) montre qu’il suffit d’évaluer deux histogrammes tridimensionnels pour évaluer le bis
Enfin, les histogrammes précédemment cités sont estimés à partir du signal de hauteur d’eau dans une
en présence de vagues de vent. Les valeurs de la féquence instantannée sont évaluées par la métho
crossing [17]. Pour une période donnée, les valeurs dea, α, β sont calculées comme illustré Fig. 3. La Fig
présente le spectre du signal réel (courbe tremblante), le spectre nu (continu, bas), le spectre de Woodward
haut), le spectre habillé (tirés-points), le spectre habillé diminué de l’intégrale sur la dissymétrie horisontale
Le spectre de Woodward sur-estime l’énergie aux fréquences supérieures au pic, car par hypothèse, l’a
(constante) ne dépend pas de la fréquence, alors que l’énergie des hautes fréquences du champ réel est
Le spectre nu sous-estime l’énergie à ces mêmes fréquences car les interactions non linéaires sont abse
le « spectre habillé » reproduit fidèlement le spectre obtenu par transformée de Fourrier. De même pour le b
la Fig. 5 montre le bon accord entre le « bispectre habillé » et le bispectre mesuré (section unidimentionne
transformée de Fourrier bidimentionnelle de la fonction d’autocorrelation de troisième ordre 10). Cela dém
capacité de la méthode de Stokes–Woodward à différencier le spectre nu du spectre habillé et met en
l’étroite corrélation entre les caractéristiques géométriques de la surface libre (dissymétries) et les ef
linéaires de couplage de modes.

1. Introduction and issues

According to common observations, a recent study [1] has demonstrated that wind waves cannot be c
ized by a deterministic system dynamically affected by nonlinearities.This leads to a description of water w
a superposition of random waves characterized by highly irregular amplitudes and frequencies.

When simulating nonlinear water waves, [2] demonstrated that a common inconsistency was to use a
ically determined spectrum as input, despite the fact that, due to the short wave energy increase by wa
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interaction, the output spectrum will deviate considerably from the measurements. Examples of such mis
already been identified in [2,3] which are concerned with understanding the electromagnetic bias observed
altimeters over the ocean surface. The contribution by [2] suggests the need for an input spectrum, termed t
spectrum, devoid of any nonlinear interaction. The output spectrum is then obtained from nonlinear interac
all the modes present at the input to form the so-called “dressed” spectrum. Unfortunately, the “bare” spectr
not itself yield easily to measurement since nonlinear wave–wave interactions cannot be turned off during t
surement of the surface wave spectrum. Higher order hydrodynamic interactions [4] will distort the input sp
even further hampering the study of its effect on, among other things, several remote sensing parameters

In the narrow-banded spectrum case, according to [6–9], the weak modulations that characterises surfa
are time independent or slowly varying random variables. However, this narrow-band formulation is insuffic
explain the complexity of water waves when higher-order statistics must be included due to the asymmetri
ior caused by nonlinear wave–wave interactions. In this case, large deviations from a narrow-band appro
can be observed especially under conditions of wind generated waves, and the random variables are no lo
independent [10]. Under these conditions, the processes become broad band in nature.

Woodward’s theorem [11] shows that a frequency or phase modulated signal has a spectrum expr

S(f ) ≈ A2

2 Pφ̇(f − fc), Pφ̇ being the probability density function of the modulating instantaneous frequencyA a
constant amplitude,fc the central or carrier frequency. For simplicity negative frequencies have been folde
positive frequencies since the signal under study is real.

In this study, we model random nonlinear surface waves as broad-band processes with the objective of
characterizing the spectral content of these signals. A distinction will be made between spectral densit
nonlinearity as opposed to that when no wave–wave interactions are present. To achieve these goals, we
Woodward’s theorem [11] to include amplitude modulations under moderately large indices of modulations
context, the form of the signal to be studied is then

η(t) = a

(
t

µ

)
cos

[
ωct + 2π

t∫
0

D

(
τ

ν

)
dτ

]
(1)

wherea(t/µ) is a random process with an index of modulationµ andD(τ/ν) is the modulating random instant
neous frequency with indexν. As suggested by [12], assuming large enough modulation indicesµ andν, statistical
stationnarity fora andD, and following [13], we obtain the corresponding spectrum (whereω = 2πf ):

S(f ) ≈ 1

2

∫ [
a2 − ȧ2

4µ2

(
∂2

∂ω2

)]
P

(
a, ȧ,ω − ω̇t

ν
, ω̇

)
da dȧ dω̇ (2)

This generalization of Woodward’s theorem requires knowledge of the joint distribution of four ra
processes as opposed to that of one process in the original theorem. This generalization to a four dim
distribution in (2) is generally not useful since it is impractical to estimate such multidimensional distrib
from the time series of the signal itself. We shall now present in the following section, a more practical fo
tion of this generalization where a joint distribution with fewer dimensions is required. We will then compa
development with experimental data obtained from a wind-wave tank, where a clear difference between
and the dressed spectra is shown.

2. The Stokes–Woodward technique

2.1. Statistical modulation

As mentioned above, a brute force generalization of Woodward’s theorem as in (2) is inefficient and m
be unstable if the time series under study is not long or stationary enough. It is easy to notice that (2) reach
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practical limit if both indices of amplitude and frequency modulations,µ andν respectively, are nearly infinite. I
this limit, (2) reduces to what we call the bare spectrum

Sbare(f ) ≈ 1

2

∫
a2P(a,f )da (3)

This approximation is very practical and requires only the estimation of a two-dimensional histogram. Ho
this practicality is gained at the expense of neglecting the temporal modulations of the amplitude and fre
within the scale of the dominant time period. In other words, the slow modulations are modeled by r
processes that vary from one period to the next. More simply, the high index approximation in (3) is a
an exact formulation for a random process of this form

η(t) = a cos(ωt + θ) (4)

wherea, ω, andθ are three time-independent random variables. The amplitudea and the pulsationω = 2πf

can be statistically dependent, whileθ is a uniformly distributed phase and independent of these other varia
This requirement on the uniformity of the phase guarantees that the signal is stationary and therefore
autocorrelation and the spectral functions are univariate. The “bare” subscript in (3) refers to the fact
process in (4) has lost all nonlinearity or phase coupling of harmonics.

2.2. Temporal and statistical modulation

The high index limit in (3) is very illustrative and permits the reformulation of our newly generalized the
into a simpler form. The time modulation present in (1) can now be replaced by a random modulation as in
us reformulate the modulation as

η(t) = [
a + �a(t)

]
cos

[
ωt + �φ(t) + θ

]
(5)

where the time dependence is explicitly shown in addition to the implicit random dependence of all the par
except the time variable. The key representation of our simplified expression is in the time dependenc
modulation that can be expanded in Fourier series about the random frequencyω as

�a(t) = αc cos(ωt + θ) + αs sin(ωt + θ) + · · · (6a)

�φ(t) = βc cos(ωt + θ) + βs sin(ωt + θ) + · · · (6b)

The signal in (5) can be further expanded keeping only terms of linear order in the parametersαc, αs , βc, andβs

to find a more poignant form given by

η(t) = λ + a cos[ωt + θ ] + α cos
[
2(ωt + θ)

] + β sin
[
2(ωt + θ)

] + · · · (7)

where the coefficientsα andβ of the second harmonic terms in (7) are related to the coefficients in (6) by

λ = aβs + αs

2
, α = aβs + αc

2
, β = αs − aβc

2
(8)

We remind the reader that all parameters in (7) are random variables except the time variable. Finally, not
in our analysis is the constant termλ. We save discussions of the significance of this term for a future publica
There is no influence of the presence or the absence of the constant term in the dataset selected for illus
the current paper.

Eq. (7) represents a generalization to the Stokes wave in two regards. First, all parameters are random a
to the Stokes wave where all parameters must stay constant. Second, the sin( ) term generates asymmetries in t
profile that are not included in a standard Stokes waveform. Its resemblance with the Stokes wave, how
influence our choice for naming our analysis method, which uses Woodward’s theorem and Stokes-like wav
the “Stokes–Woodward” technique. The random variablesα andβ explain the asymmetries of the waveform w
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respect to a horizontal and vertical axes, respectively. These asymmetries appear in a random manner on
of the period of the wave as depicted by the random amplitudea and random frequencyω.

Similar to Eq. (4), the random Stokes-like waveforms in (7) yields a spectrum of the Woodward type b
more accessible form than in (2). This form is given by

Sdressed(f ) ≈ Sbare(f ) + 1

2

∫
α2P

(
α,

f

2

)
dα + 1

2

∫
β2P

(
β,

f

2

)
dβ (9)

In this final form, two single integrals are needed in addition to the single integration over the amplitude
present in the “bare” spectrum of (3). We associate the spectrum in (9) with the “dressed” spectrum di
in the introduction, and interpret the terms added to the bare spectrum as contributing to the energy inc
higher frequencies due to the nonlinearities or mode coupling. This energy augmentation therefore prov
difference between the bare and the dressed spectra as discussed in [2]. The difference can also be a
with the bicoherence function of phase coupling as introduced by [14] and utilized by [15]. Indeed, ene
phase coupling to second order is another manifestation of the bispectrum defined as the Fourier transfo
skewness function using a third order cumulant. The bispectrum is defined as the 2D Fourier transform
bivariate skewness functionR(τ1, τ2) = 〈η(t)η(t + τ1)η(t + τ2)〉. The description of the vertical and horizon
asymmetries of the waveform opens the way for the definition of a very robust bispectral estimate derived f
Stokes–Woodward technique. The bispectrum takes the form

B(f ) = B

(
f,

f

2

)
≈ 1

4

∫ ∫
αa2P

(
α,a,

f

2

)
dαda + i

1

4

∫ ∫
βa2P

(
β,a,

f

2

)
dβ da (10)

where now two three-dimensional histograms are needed in order to evaluate the double integration
amplitude and the asymmetries. It is no surprise that the height (or vertical) asymmetryα yield the real part of
the bispectrum while the horizontal asymmetryβ yield the imaginary part. We shall show in the next sect
that the estimation of the “bare” and “dressed” spectra as well as the bispectrum is very robust and can
interesting interpretations of the surface wave physics.

3. Comparison with data

3.1. Experimental data

The Stokes–Woodward technique is now tested using a time series generated by measuring the
the water surface at a fixed point in a wind-wave tank. The signals were obtained from the Ocean-Atm
Interaction facility in Marseille with a capacitance wave gauge. The pool dimensions in the tank are 40× 3 × 1
meters for the length, width, and depth, respectively. The air tunnel’s ceiling is 1.5 m above the water surf
a detailed description of the flume-tank, the reader is referred to [16]. In order to generate highly nonlinea
where mode coupling should be significant, we chose to sample wind-generated waves under high wind co
with wind speeds higher than 10 m/s with a fetch of 25 m but without paddle waves. Long time series were acq
at high frequency sampling. Duration and sampling rate were of the order of 30 minutes and 100 Hz, resp
Fig. 1 shows a short sample of the time series of surface elevations. High modulations and group occ
are easily visible in this short segment. In order to estimate the instantaneous amplitudea, frequencyf , vertical
asymmetryα and horisontal asymmetryβ in (7), we implemented the zero-crossing algorithm as explained in
Ambiguities related to the definition of the instantaneous frequency [18] are not dealt with here, but will
for later contributions when more exact algorithms will be used. We mention that the zero-crossing algo
well defined as long as the broad-band signal has a unimodal spectrum with no low frequency component
noise contaminations. Practical estimators for the four random variables,a, ω = 2π/T , α, andβ are taken as Fig. 3
illustrates.
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Fig. 1. Time series of the surface elevation. Modulations
appears clearly.

Fig. 2. Normalized horizontal (dashed–dotted) and vertical
(dashed) asymmetries.

Fig. 3. Sketch plot to show the definitions of the paratemeters (M , m, T1, T2) used to estimate the instantaneous amplitudea = (M − m)/2,
periodT = T1 + T2, verticalα = (M + m)/2 and horizontalβ = aπ(T1 − T2)/(T1 + T2)/2 asymmetries.

3.2. Analysis results

Fig. 2 illustrates the stability of the estimators for the asymmetry parameters as shown in terms
normalized histograms.

The vertical asymmetry (dashed line)α is normalized by the amplitudea where the horizontal asymmet
(dased dotted line)β is normalized bya π

2 . A striking difference is easily noticeable between these histogram
the Gaussian distributions shown for reference by the solid lines in the figure. Indeed, the histograms se
highly peaked with some skewness. The kurtosis is very high and on the order of 4 and 6 for the verticalα) and
horisontal (β) asymmetries, respectively. The ragged line in Fig. 4 shows the Fourier spectrum of the time
Using a standard spectrum such as this, one is not able to differentiate between energies coming from
nonlinear waves.
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Fig. 4. Fourier spectrum of the experimental wave profile
(ragged line). Woodward spectrum (upper solid curve). “Bare”
spectrum (lower solid line). “Bare” augmented by the vertical
asymmetry (dashed curve). “Dressed” spectrum (dashed–dotted
curve).

Fig. 5. Comparison of bispectra’s modulus square. “Dressed”
bispectra (solid curve). Fourrier transform of the skewness func-
tion (dashed curve). Plots normalized by their corresponding to-
tal integral.

The Woodward spectrum as defined in Section 1, is the highest solid curve in Fig. 4. One can see that t
over-estimates the measured spectrum because of the underlying Woodward assumption that, on the c
the real signal, the amplitude is not modulated, and that only frequency modulation is present. The over-es
of the spectral tail is therefore due to the fact that the real amplitude is modulated and also correlated
frequency in such a manner that high frequency waves have less energy. The lowest solid line in Fig.
“bare” spectrum as defined by (3) where both amplitude and frequency modulations are accounted for
asymmetries or phase coupling. It is instructive to notice that the “bare” spectrum underestimates the ener
tail of the measured spectrum. This under estimation is due to the implicit assumption in (3) that the ind
modulations are very high and therefore any nonlinearity caused by time-dependent modulations is negle
“dressed” spectrum (9) is shown in Fig. 4 by the dashed–dotted curve. This curve accounts for most of th
present in the measured Fourier spectrum. Both vertical and horizontal asymmetries contribute to the e
high frequencies. This can be seen by the fact that the dashed curve shown in Fig. 4, which includes mo
of only the height (α) asymmetry, under estimates the high-energy content of the measured spectrum. It th
seems apparent that our Stokes–Woodward technique explains the energy due to mode coupling. A direc
of the coupling can also be achieved by calculating the bispectrum as defined in (10). The result of this com
is shown in Fig. 5 in terms of its modulus square. The high stability of the bispectral estimate up to a qu
frequency demonstrates the wide domain of applicability of our technique. The peak present in the bis
indicates that many frequencies or harmonics are coupled with their fundamental counterparts at lower freq
It is therefore important to treat the ensemble of frequencies as two correlated random sets. Based on th
of the comparisons presented in this section, we believe our technique can accurately interpret the occ
of instantaneous amplitudes, frequencies, vertical and horizontal asymmetries. This demonstrates the cap
detecting mode coupling in spectral domain of second statistical order without performing bispectral analy

4. Conclusion

A generalization of Woodward’s theorem is successfully obtained by including random amplitude modu
in addition to frequency modulations. The original theorem stated that a good approximation of the energy s
of a frequency modulated signal is the probability density function of the instantaneous frequencies when t
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of modulation is high. Our generalization starts by including the random amplitude modulation which y
simple spectrum expressed as a single integral over the instantaneous amplitudes and the joint distri
amplitude and frequency as shown in (3). It is noted that this spectrum is devoid of any nonlinearity o
coupling because over the scale of a characteristic period, the wave is considered as simply harmoni
wave). Asymmetries in the wave profile must be introduced in order to capture residual energy not expla
the “bare” spectrum. To account for this residual energy, we have proposed a second generalization of Wo
theorem that utilizes a Stokes-like waveform in which all the parameters are random except the time varia
procedure is termed the Stokes–Woodward technique since it combines a generalization of Woodward’s
with a Stokes-like random wave profile.

The second generalization provides a practical formulation for the “dressed” spectrum where nonlinea
to the second order are included (9). This second order coupling between modes initiates the existen
bispectrum which can be formulated as in (10). It is demonstrated that when the Stokes–Woodward te
is applied to a time series of water-wave surface elevations, it discriminates between the “bare” and “d
spectrum, and also provides a robust estimate of the bispectrum. We recommend that the bare spectrum
the input of nonlinear system simulators as originally cautioned in [2].

Applications of the Stokes–Woodward technique will have great benefit in the analysis of nonlinear r
processes present in several science fields. For example, it can readily be applied to remote sensing
already demonstrated by [19] even with the original formulation of Woodward’s theorem.
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