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Abstract

In this review we collect certain results obtained in the last decades on vibrating systems with concentrated m
particular, we show the connection of the eigenvalues and eigenfunctions of the local problem with the low and high fr
vibrations of the original problem.To cite this article: M. Lobo, E. Pérez, C. R. Mecanique 331 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur les problèmes locaux pour les systèmes vibratoires avec des masses concentrées. Ce rapport-ci contient quelque
resultats obtenus tout au long des denières décades sur les systèmes vibratoires avec masses concentrées. No
met en evidence la connexion entre les éléments propres du problème local et les vibrations de basses fréquences
fréquences du problème original.Pour citer cet article : M. Lobo, E. Pérez, C. R. Mecanique 331 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
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1. Introduction

The asymptotic behavior of the spectral problems associated with vibrating systems with concentrated
has been addressed by many authors in the last two decades: [1–21]. Many different techniques have b
in these papers and a great variety of results have been obtained depending on the dimension of the s
density of the concentrated masses and the number of concentrated masses. Nevertheless, it should be n
even though the first papers date from 1984 (cf. [1,2]), and the last papers are as recent as 2003 (cf. [20,1
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are still many open questions on the subject; we shall try to point out some of these questions through
paper.

We consider the vibrations of a body occupying a bounded domainΩ of R
n, n = 2,3, that contains one

several or very many small regions of high density near the boundary∂Ω , the so-calledconcentrated masses. Each
concentrated mass occupies a small domainBε ⊂Ω ; Bε has a diameter O(ε); the density takes the value O(ε−m)
in Bε and O(1) outside,m andε are positive parameters,ε → 0. LetN(ε) denote the number of concentrat
masses contained inΩ . We assume that the distance between two concentrated masses is of order of ma
greater thanε and thatN(ε) can be either a fixed number or aε dependent number as in boundary homogeniza
problems. Takingm > 2, we study the asymptotic behavior, whenε → 0, of the eigenelements(λε, uε) of the
corresponding spectral problem (cf. (1) and (5)).

Most of the above mentioned authors (cf. [1,3,5–9,16,18]) consider one single concentrated mass insidΩ , the
Laplace operator, and a Dirichlet condition on the boundary∂Ω : that is, the spectral problem{−�uε = λερε(x)uε in Ω

uε = 0 on∂Ω
(1)

whereρε(x) is the function defined by

ρε(x)= ε−m if x ∈ Bε and ρε(x)= 1 if x ∈Ω −Bε

Here, we assume thatm> 2,Bε = εB, whereB is a bounded open domain ofR
n, and bothΩ andB contain the

origin.
See [10] for a Neumann condition on the boundary∂Ω , [11] for the bi-harmonic operator, [2] for the elastici

operator, [20] for the operator associated with Reissner–Midlin plate model and [4] for the dimension 1
space. We refer to [12–14,17,21] for the case whereN(ε) → +∞, the concentrated masses being periodic
distributed on the boundary ofΩ (cf. (5)). Let us observe that in all these papers, the cases wherem� 2 have also
been considered. Besides, we also note that the results in papers considering one single concentrated m
Ω (cf. (1)) can be extended to the case where the concentrated mass is placed at the boundary∂Ω (cf. (5)) with
minor modifications. For this reason, throughout the paper, we state the results for the concentrated mass
at the boundary.

A common fact to all these problems is that form > 2, the so-calledlow frequencies, that is the eigenvalue
λε = O(εm−2), give rise tolocal vibrationsof the concentrated masses, each one asymptotically indepe
from the others. Roughly speaking, the corresponding eigenfunctions associated with these frequencies
significant in a small neighborhood of the concentrated masses and almost vanish at distance of order O(1) from
the concentrated masses. Therefore, in general, in order to obtain vibrations affecting the whole struct
necessary to consider the eigenfunctions associated with the so-calledhigh frequencies. These frequencies are
order of magnitudeλε = O(1) and the corresponding vibrations are referred to as theglobal vibrations. Of course,
other kinds of vibrations associated with other different orders of magnitude of the frequencies could exis
problem is to locate them (cf. [18]).

Let us note that the definition of local vibrations has been stated since the very beginning (cf. [1] whenn= 3 and
[5] whenn = 2). The eigenvalues causing these vibrations, suitably re-scaled, are approached by the eig
of the so-calledlocal problem(see (8) and (10)). We also observe that among all the techniques, the cla
asymptotic expansions are essential in order to describe this local behavior. Namely, the asymptotic expan
useful for dimensionn= 2 of the space, as a consequence of the behavior at infinity of the harmonic funct
outer domains as we outline here below (see also formulas (12) and (13)).

Indeed, considering(λ0,U0) an eigenelement of the local problem (10), forλε = εm−2λ0 + · · · in (1), and for a
suitable normalization of the corresponding eigenfunctionsuε (see Section 3),uε are approached inΩ by

uε ≈U0
(
x

ε

)
− c+ c

ln ε

(
ln |x| − f (x)

)
, whenn= 2 (2)
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wheref is a harmonic function inΩ , f (x)= ln |x| on ∂Ω , andc is the constant in (10), and,

uε ≈U0
(
x

ε

)
, whenn= 3 (3)

Formulas (2) and (3) show the local character of the corresponding vibrations (see [5] and Sections VII.10
the eigenfunctionsuε are of order O(1) only in a region near the concentrated mass (i.e.,|x| = O(ε)) and of order
o(1) for |x| = O(1).

Asymptotic expansions are also useful for describing the asymptotic behavior of the eigenfunctions as
with the high frequencies of (1) ((5), resp.), inside each concentrated mass (cf. formulas (24)–(26)). The
also to be essential when describing the behavior of the eigenfunctions that concentrate their support i
other small regions, for instance, boundary layers near∂Ω or near the interface of the concentrated masses
[18] in connection with the so-calledwhispering gallery eigenmodes.

In Section 2 we introduce the eigenvalue problem (5), the eigenvalue local problem (8), and some bac
on the subject. In Sections 3 and 4 we state the main results for the asymptotic behavior of the low freq
λε = O(εm−2), asε → 0, depending on the dimension of the space, on the multiplicity of the low freque
of the local problem (8) and on the number of concentrated masses. We also provide results on the
of the eigenfunctions associated with these frequencies. As regards the high frequencies, in Sectio
introduce thehomogenized problems(23) and we make clear that the computation of certain correcting t
for certain eigenfunctionsuε is deeply involved with the study of the high frequencies of the local problem. T
eigenfunctionsuε are associated with the high frequencies,λε = λεi(ε) = O(1), and, under certain restrictions o
the geometry, the correcting terms improve the convergence ofuε towards the eigenfunctions of (23) or towar
zero (see [12–15,17] for convergence results).

The aim of this review can be summarized as follows: to describe different kinds of techniques to bro
asymptotic behavior of the eigenelements of theε dependent spectral problem (5) ((1), resp.) and, at the same
to show how this behavior strongly depends on the number of concentrated masses and the dimension of
Besides, we make it clear that the eigenelements of the local problem (8) ((10), resp.) are involved in the
the low and high-frequency vibrations of (5) ((1), resp.), rather than being involved only with the low frequ
as one might think at a first stage (see [16,18]).

Finally, for further recent studies on vibrating systems with concentrated masses and for very d
qualitative results let us mention: [19] for a non-periodical distribution of the concentrated masses whenm < 2
andN(ε)→ ∞, [20] for a problem where the thicknessh of the domain is a new small parameter which giv
different limit behaviors of the spectrum, and [22,23] for very different geometries and spatial distribution
regions of high density.

2. Setting of the problems

Let Ω be any bounded domain ofR
n, n= 2,3, with a Lipschitz boundary∂Ω andΩ ⊂ {xn < 0}. LetΣ and

ΓΩ be non-empty parts of the boundary, such that∂Ω = Σ ∪ ΓΩ , andΣ is assumed to be in contact with{xn = 0}.
Let ε andη be two small parameters such thatε� η andη= η(ε)→ 0 asε→ 0.

Forn= 2, letB be the half-circleB = {(y1, y2) | y2
1 +y2

2 < 1, y2< 0} in the auxiliary spaceR2 with coordinates
y1, y2. For n = 3, letB be the half-ballB = {(y1, y2, y3) | y2

1 + y2
2 + y2

3 < 1, y3 < 0} in the auxiliary spaceR3

with coordinatesy1, y2, y3. Let ∂B be the boundary ofB, ∂B = T ∪ Γ , whereT is the part lying on{yn = 0}. Let
Bε (and similarlyT ε, Γ ε) denote its homotheticεB (εT , εΓ ). LetBεk (and similarlyT εk , Γ ε

k ) denote the domain
obtained by translation of the previousBε (T ε, Γ ε) centered at the point̃xk of Σ ; x̃k are at distanceη between



306 M. Lobo, E. Pérez / C. R. Mecanique 331 (2003) 303–317

,
s

at a fixed

se where

chosen
, it can be
ted
at

es
it has

g

5,21] for
with the

ertheless,
ting
oundary
lem
ich we

ibed, in a
them.k is a parameter ranging from 1 toN(ε), k ∈ N. N(ε) denotes the number ofBεk contained inΩ ; N(ε) is of
order O( 1

η
) whenn= 2 and O(1/η2) whenn= 3. The parameterα denotes the value

α = lim
ε→0

−1

η ln ε
whenn= 2 and α = lim

ε→0

ε

η2 whenn= 3 (4)

We consider the eigenvalue problem:


−�uε = ρελεuε in Ω
uε = 0 onΓΩ ∪ ⋃

T ε

∂uε

∂n
= 0 onΣ − ⋃

T ε
(5)

whereρε = ρε(x) is the function defined by

ρε(x)=



1

εm
if x ∈ ⋃

Bε

1 if x ∈Ω − ⋃
Bε

(6)

The symbol
⋃

is extended, for fixedε, to all the regionsBεk contained inΩ . The parameterm is a real number
m > 2 (see [12–14], for different values of the parameterm, boundary conditions and shapes of the domainΩ
andB).

We also consider problem (5) in the case where there is a fixed number of concentrated masses placed
distance: that isN(ε)= 1 orN(ε)=N withN independent ofε. In this case,

⋃
Bε (similarly,

⋃
T ε) denote either

Bε (T ε) or the union of theN regionsBε (T ε) contained inΩ (∂Ω).
As a matter of fact, let us note that here, and in previous papers [12–15,17], we have considered the ca

the concentrated masses are placed on a partΣ of ∂Ω , Σ lying on {xn = 0}. In addition, rapidly alternating
mixed boundary condition have been imposed on this part of the boundary. In order to fix ideas, we have
problem (5) as a model to state techniques and results throughout the paper. Nevertheless, sometimes
more adequated to consider a Neumann boundary condition on the wholeΣ or the case where the concentra
masses are insideΩ . In the case of one single concentrated mass insideΩ , problem (5) reads (1). We observe th
the techniques in this paper apply to the study of the above problems with some minor modifications.

As is well known, problem (5) has a discrete spectrum. For fixedε, let {λεi }∞i=1 be the sequence of eigenvalu
of (5), converging to∞, with the classical convention of repeated eigenvalues. Using the minimax principle,
been proved (cf. [12–14]) that for each fixedi = 1,2, . . . , the eigenvalues satisfy the estimates

Cεm−2 � λεi �Ciε
m−2 (7)

whereC is a constant independent ofε andi andCi is a constant independent ofε. Let {uεi }∞i=1 be the correspondin
sequence of eigenfunctions which are assumed to be an orthonormal basis of the spaceVε , whereVε is the
completion of{u ∈ C1(Ω) | u= 0 onΓΩ ∪ ⋃

T ε} in H 1(Ω).
Because of (7), the low frequencies are the eigenvaluesλεi = O(εm−2) for fixed i, i = 1,2, . . . . Convergence

results for the low frequencies can be found in [1–3,5,7–9] for one single concentrated mass and in [12–1
many concentrated masses. As already noted in Section 1, in general, the low frequencies are associated
local vibrations of the concentrated masses, each one asymptotically independent from the others. Nev
we have found an exception: forn = 3 andα > 0 these frequencies also give rise to global vibrations affec
the whole body. That is, only for a 3-dimensional body containing many concentrated masses near the b
at mutual distancesη≈ √

ε can the eigenvalues of order O(εm−2) be approached by means of those for a prob
obtained from the homogenization of the concentrated masses (cf. (21)). Apart from this exception, wh
consider in Section 4, the low frequencies and the corresponding eigenfunctions are asymptotically descr
certain way, by the local problem (8).
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The local problem is an eigenvalue problem posed in an unbounded domain:


−�yU = λU in B

−�yU = 0 in R
n− − B

[U ] =
[
∂U

∂ny

]
= 0 onΓ

U = 0 onT
∂U

∂yn
= 0 on{yn = 0} − T

U(y)→ c, as|y| → ∞, yn < 0 whenn= 2

U(y)→ 0, as|y| → ∞, yn < 0 whenn= 3

(8)

where the brackets denote the jump acrossΓ , n̄y the unit outward normal toΓ andc some unknown but wel
determined constant.Rn− is the half-plane{(y1, y2) | y2 < 0} for n = 2 and the half-space{(y1, y2, y3) | y3 < 0}
for n= 3. The variabley is thelocal variable:

y = x − x̃k

ε
(9)

which dilates the neighborhood of each pointx̃k and transformsBεk intoB.
As it is known (cf. [12,14]), (8) can be written as a standard eigenvalue problem with a discrete spectrum

spacẽV , whereṼ is the completion of{U ∈ D(Rn−) |U = 0 onT } for the Dirichlet norm‖∇yU‖L2(Rn−). See [5,
12–14] and Section IV.8 in [7] for the weak formulation of (8) in the space completion of{U ∈ C1(B) |U = 0 onT }
for the norm ofH 1(B) and the definition of the so-calledNeumann–Dirichlet operatorfrom H−1/2(Γ ) to
H 1/2(Γ ).

Let {λ0
i }∞i=1 be the eigenvalues of (8), with the classical convention of repeated eigenvalues, and let{U0

i }∞i=1 be
the corresponding eigenfunctions of norm 1 inṼ .

In Section 3 we summarize results on the relationship of the low frequencies of (5) with those of (8).
same way, in Section 5 we show the connection of the high frequencies of (5) with the very large frequenci
obtained in previous papers (cf. [16,18]). From results in Sections 3 and 5 we can assert that the low frequ
theε dependent problem (5) are always closely associated to the low frequencies of the local problem (8) w
high frequency vibrations of (5) are associated to the homogenized problems (23) and the very large fre
of (8).

We emphasize that all the results and techniques in Section 3 and in the previously mentioned papers (c
17,24]) can be extended, with minor modifications, to the case of other geometries forΩ andΣ , or other boundary
conditions on∂Ω , or to the case where the masses are placed on a surface inside the domainΩ . For instance, when
a Neumann condition in imposed on the wholeΣ , the local problem is (8) where the Dirichlet condition onT is
replaced by a Neumann one,∂U/∂yn = 0 onT (cf. [12]). In the case where the concentrated masses are insiΩ

(cf. (1)), the local problem reads:


−�yU = λU in B

−�yU = 0 in R
n − B

[U ] =
[
∂U

∂ny

]
= 0 on∂B

U(y)→ c, as|y| → ∞, whenn= 2

U(y)→ 0, as|y| → ∞, whenn= 3

(10)

In order to obtain the results in Section 3 for all these problems, we observe that it is easier to handle t
problem (10) (instead of (8)) and that the solution of (8) can be extended by a harmonic function outside a
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that containsB. See [25–27,12,14] for local problems posed on the half-spaceR
n− with mixed boundary condition

on the plane{xn = 0}, n beingn= 2,3.
We refer to [12] for the results and techniques in Section 4 when a Neumann condition is imposed

wholeΣ andN(ε)→ ∞. As regards the case where the concentrated masses are placed on a surfaceΣ inside the
domainΩ , N(ε)→ ∞, the normal derivative appearing in the equation onΣ in the homogenized problems (2
and (23) is likely to become a transmission condition (cf. [28,29]): it seems clear that all the statements
rewritten with minor modifications.

Finally, let us also observe that, except for certain explicit computations in [16] and [18] (cf. Section 5), i
essential forB to be a ball or half-ball ofRn; B can be any other domain orR

n with a Lipschitz boundary.

3. Low frequencies and local vibrations

Let us change the variable in (5) by settingy = x/ε. We obtain the integral formulation:∫
Ωε

∇yUε · ∇yV ε dy = νε
∫
Ωε

βε(y)UεV ε dy, ∀V ε ∈ Ṽε (11)

whereΩε denotes the domain{y | εy ∈Ω}, νε = λε/εm−2, λε the eigenvalues of (5), andβε(y) is defined as:

βε(y)= 1 if y ∈
⋃
τyB

ε and βε(y)= εm if y ∈Ωε −
⋃
τyBε

whereτyBε denote the transformed domains of the regionsBε contained inΩ to they variable (see (6)).̃Vε is the
functional space{U =U(y) |U(εy) ∈ Vε}.

We assume that the eigenfunctions of (11) satisfy‖Uε‖Ṽε = 1. Thus, we can take (cf. (5))Uε = uε whenn= 2
andUε = uε/

√
ε whenn= 3. In addition, we observe that the elements ofṼε extended by zero inRn− −Ωε are

elements of̃V . The first convergence result for the eigenelements of (11) in both casesN(ε)=N orN(ε)→ +∞
can be stated as follows:

Theorem 1. If (λεi(ε)/ε
β)

ε→0−→ λ∗ and the corresponding eigenfunctionsUεi(ε)
ε→0−→ U∗ weakly inṼ with U∗ �= 0

andλ∗ �= 0, thenβ = m− 2 and (λ∗,U∗) is an eigenelement of(8). In addition, each eigenvalueλ0 of the local
problem(8) is an accumulation point of valuesλεi(ε)/ε

m−2; the indexi(ε) can be fixed or dependent onε.

The first assertion in Theorem 1 is easily proved by taking limits in the variational formulation (11
suitableV ε . This technique, along with asymptotic expansions, proves to be very useful when identifying p
limits of the eigenelements of theε dependent problem. Let us observe that in order to obtain this kind of re
the normalization selected for the eigenfunctions is essential (see Theorem 7 in Section 5 to compare). M
in the case whereβ =m− 2 andN(ε)= 1 orN(ε) =N , theU∗ in the statement of Theorem 1 is different fro
zero, which proves useful to obtain stronger results of convergence.

The second assertion in Theorem 1 has been proved in [12–14] using Spectral Families and Fourier Tr
This technique is very general and can be used for very many spectral perturbation problems in which sel
operators are involved: all ends up as a weak convergence of the corresponding spectral families ope
certain test functions. This allows us to obtain spectral convergence results when the limit spectral family
constant one. The Fourier Transform method provides information on the spectrum of theε dependent problem
when properties of the time dependent problems are known. We refer to [30,31,7] for an extensive the
[24,32,7,31] for its application to different spectral perturbation problems. We also observe that, in gene
Fourier Transform does not provide information on other possible accumulation points of the spectrum o
associated eigenfunctions.
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A more precise structure of the eigenfunctionsuε associated with the eigenvaluesλε such thatλε/εm−2 ≈ λ0,
whereλ0 is an eigenvalue of the local problem (8), is obtained by using asymptotic expansions. The techn
matched asymptotic expansions (cf. [5,15], and Section VII.10 in [7]) leads us to the composite expansio
eigenfunctionsUε in Ω :

Uε ≈
∑
k

ak

(
U0

(
x − x̃k

ε

)
− c+ c

ln ε

(
ln |x − x̃k| − f (x − x̃k)

))
, whenn= 2, (12)

and

Uε ≈
∑
k

akU
0
(
x − x̃k

ε

)
, whenn= 3 (13)

where the summation is extended, for fixedε, to all the centres̃xk contained inΣ andak are constants. Moreove
when n = 2, we have assumed that limε→0 (lnη/ln ε) = 0, and,f is a harmonic function inΩ , satisfying
homogeneous Neumann conditions onΣ andf (x) = ln |x| on ΓΩ . c in (12) is the constant which appears
(8) for λ= λ0 andU =U0.

On the basis of (12) and (13), and since the constantsak can take the value 0, we can assert that there
N(ε) eigenfunctions associated withλε = λεi ≈ εm−2λ0, {Uεik }

N(ε)
k=1 (see (2) and (3) to compare). EachUεik is

approximately an eigenfunction associated withλ0 in a small neighbourhood of the concentrated massBεk and
it takes small values in points far from this mass. That is to say, ifl0 denotes the multiplicity of the eigenvalueλ0

of (8), the multiplicity ofλε is likely to be equal to or greater than the productl0N(ε). Obviously, in the case whe
λε also originates global vibrations (n= 3, η ≈ √

ε) other eigenfunctions can be associated withλε (cf. Theorem
7 in Section 4).

In Sections 3.1 and 3.2 we provide some results that justify (12) and (13) and, at the same time, com
Theorem 1. In Section 3.1 we consider the case of one single concentrated mass or a fixed number of thN ,
while in Section 3.2 we consider the case of very many concentrated masses, i.e.,N(ε)→ ∞.

3.1. The case of a fixed number of concentrated masses

On account of (7), for each fixedi we can extract converging subsequencesλ
εn
i /ε

m−2
n asεn → 0. We note that in

the best case we can prove the convergence of the spectrum with conservation of the multiplicity (cf. Section
and VIII.2 in [30] and Sections XI.1–XI.3 in [31]). If so, because of Theorem 1, one may think that it is po
to prove the convergence of the whole spectrum,{λεi /εm−2}∞i=1, towards the eigenvalues of (8),{λ0

i }∞i=1, as well as
the convergence of corresponding eigenfunctions in a certain topology to be stated. This is the case for o
concentrated mass as the following theorem states.

Theorem 2. LetN(ε) beN(ε)= 1 and letm bem> 2. Letλεi be the eigenvalues of(5) andUεi the corresponding
eigenfunctions with norm1 in Ṽε . Besides, for fixedi, the valuesλεi /ε

m−2 converge, whenε → 0, towards the
eigenvalues of(8), {λ0

i }∞i=1, with conservation of the multiplicity. For each sequence it is possible to extra
subsequence, still denoted byε, such that the corresponding eigenfunctions,Uεi , converge towardsUi in L2(B)

(and weakly iñV), ε → 0, whereUi is an eigenfunction associated with thei-th eigenvalue of(8), and {Ui}∞i=1
form an orthonormal basis of̃V .

The proof of Theorem 2 is quite classical nowadays. It can be performed by using very different techniq
the one hand, let us mention the spectral perturbation theory for implicit nonholomorphic eigenvalue proble
[5] whenn= 2 and Section VII.11 in [7] whenn= 3 for the proof of Theorem 2, and, see Section V.10 in [7]
the general theory and references.
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On the other hand, Theorem 2 can be proved by using the results on spectral convergence in Sectio
[9], namely, Theorems 1.4 and 1.7. These results state the convergence of the spectrum for a sequence
operators acting on different Hilbert spaces, under certain restrictions for this sequence. Their proofs are
Lemma 1 (cf. Section 3.2) and on particular properties of the sequence of operators. Let us refer to [8] f
proof of Theorem 2 whenn = 2 and to Section III.5 of [9] whenn= 3. Theorems 1.4 and 1.7 in Section III.1
[9] also provide certain estimates for the difference between the eigenvalues and eigenfunctions of theε dependen
problem and the limit problem.

Uniform estimates for bounds of the convergence rate of the eigenelements of (5) towards those
depending onε and the eigenvalue number interest from many viewpoints, and some improvements of the
in Theorem 2 should be performed in this direction. For the time being, we refer to [33] for the techniqu
to get these bounds for other parameter dependent problems. This technique is based on Lemma 1 and
almost orthogonalityof the eigenfunctions (cf. Section 3.2).

Finally, let us also mention the technique of theG-convergence theory of elliptic operators in Section II
of [34], as an effective fast method to check the convergence of the eigenelements as stated in Theorem
technique is based on the minimax principle along with orthonormalization processes.

It is worth observing that the proof of the first assertion in Theorem 2 can be extended with minor modifi
to the case ofN concentrated masses. Indeed, for simplicity let us takeN = 2 and the two masses centered at
fixed points (independent ofε) x̃1 andx̃2. Then, by denoting̃V1 (Ṽ2, resp.) the spacẽV with the variabley in (9)
for k = 1 (k = 2, resp.), we consider the space productW = Ṽ1 × Ṽ2 whose elements are pairs of functions(U,V ),
U ∈ Ṽ1, V ∈ Ṽ2; the scalar product inW is the sum of the scalar products iñV1 and Ṽ2. In the same way, we
consider an eigenvalue problem with the same eigenvalues of (8) and the double multiplicity of each eig
To findλ and(U,V ) ∈ W , (U,V ) �= 0,U andV satisfying Eqs. (8).

Then, the extension of the results in Theorems 2 allow us to assert that for each eigenvalueλ0 of the local
problem (8) with multiplicity l0, the total multiplicity of the eigenvalues of (5) converging towardsλ0 is l0N ,
N being the number of concentrated masses. Therefore, we observe that the limit eigenvalues of the s
λε/εm−2 are not influenced by the number of concentrated masses. The main difference in the limit beh
the eigenelements of (5) lies in the approach for the eigenfunctions. See [10] for other very different resul
a Neumann condition is imposed on the boundary ofΩ .

As a matter of fact, we observe that the results on the structure of the eigenfunctions of (5) in Theorem
also apply to the case here considered,N(ε)=N , but we cannot extend the results in Theorem 2 to the case w
N(ε)→ ∞ as we shall show in Section 3.2.

3.2. The case of many concentrated masses:N(ε)→ +∞

Let N(ε) beN(ε) → ∞ as stated in Section 2. For brevity we considerα � 0 in (4). Let us point out tha
there is an important difference between the dimensionsn= 2 andn= 3 of the space. More precisely, forn= 2,
Theorem 5 states that all the sequencesλεi /ε

m−2 converge towards the first eigenvalueλ0
1 of the local problem (8)

i = 1,2, . . . . Instead, forn= 3, there are other different limit accumulations points of sequencesλεi /ε
m−2 for which

the corresponding eigenfunctions are associated with global vibrations of the whole structure (cf. Theorem
in Section 4).

Theorem 3 justifies (12) and (13) since it shows that, for any fixedK, K < N(ε), there are at leastl0K
valuesλε/εm−2 converging towards each eigenvalueλ0 of (8), l0 being the multiplicity ofλ0. More specifically,
it is proved that, for sufficiently smallε, the sum of the multiplicities of the eigenvaluesλεi(ε) of (5), such that

λε
i(ε)
/εm−2 approachesλ0, increases as the number of the concentrated massesN(ε) does, and converges to∞

asε→ 0. Besides, the corresponding eigenfunctions are approached in the spaceṼε by the eigenfunctions of (8
associated withλ0, concentrating their support asymptotically in neighborhoods of the concentrated mas
stated in Theorem 3.



M. Lobo, E. Pérez / C. R. Mecanique 331 (2003) 303–317 311

nd the
Let us consider an eigenvalueλ0 of (8) with multiplicity l0 and U0
1 ,U

0
2 , . . . ,U

0
l0

the corresponding

eigenfunctions, orthogonal iñV , satisfying‖∇yU0
i ‖L2(Rn−) = 1. Let us introduce certain cut-off functionsϕ̃ε such

thatU0
pϕ̃

ε ∈ Ṽε, and,U0
pϕ̃

ε → U0
p in Ṽ asε→ 0 (cf. [12,14]).

We defineϕ̃ε(y) as a function defined depending on the value ofn. Forn= 2, we considerRε = √
(ε+ η/4)/ε

and we define:

ϕ̃ε(y)= 1 if |y| �Rε, ϕ̃ε(y)= 1− ln |y| − lnRε
lnRε

if Rε � |y| �R2
ε

(14)
ϕ̃ε(y)= 0 if |y| �R2

ε

For n = 3, we consider̃ϕε as a smooth function which takes the value 1 in the half-ball of radius(ε + η/8)/ε,
B((ε + η/8)/ε), and zero outside the half-ball of radius(ε+ η/4)/ε, B((ε + η/4)/ε):

ϕ̃ε(y)= ϕ

(
2
|εy| − ε

η

)
(15)

whereϕ ∈C∞[0,1], 0� ϕ � 1, ϕ = 1 in [0,1/4] and Supp(ϕ)⊂ [0,1/2].
For eachk = 1,2, . . . ,N(ε), p = 1,2, . . . , l0, we introduce the functionZεk,p,

Zεk,p(y)=
U0
p(y − x̃k/ε)ϕ̃

ε(y − x̃k/ε)

‖∇y(U0
pϕ̃

ε)‖L2(Rn−)
(16)

wherey = x/ε. They satisfy thealmost orthogonalitycodition:〈
Zεk1,p

,Zεk2,q

〉
Ṽε = 0 for k1 �= k2,

∣∣〈Zεk,p,Zεk,q 〉Ṽε − δp,q
∣∣ = o1,ε ∀k,p, q (17)

where o1,ε = C(ln (1+ η/4ε))−1/2 whenn= 2, and o1,ε = Cε/η whenn= 3, with constantC independent ofε.

Theorem 3. Let us consider an eigenvalueλ0 of (8) with multiplicity l0 and let U0
1 ,U

0
2 , . . . ,U

0
l0

be the
corresponding eigenfunctions which are assumed to be orthonormal inV . For anyK > 0 there isε∗(K) such
that, for ε < ε∗(K), K < l0N(ε) and the interval[λ0 − dε, λ0 + dε] contains eigenvalues of(11) λεi(ε)/ε

m−2

with total multiplicity greater than or equal to K; dε is a certain sequence,dε → 0 as ε → 0 and the interval
[λ0 − dε, λ0 + dε] does not contain other eigenvalues of(8) different fromλ0.

In addition, there arel0N(ε) functions,{Uεk,p}p=1,l0
k=1,N(ε), U

ε
k,p ∈ Ṽε , such that‖Uεk,p‖Ṽε = 1, Uεk,p belongs to the

eigenspace associated with all the eigenvalues in[λ0 − dε, λ0 + dε], and∥∥Uεk,p −Zεk,p

∥∥
Ṽε � 2(o2,ε)

1−β (18)

In (18), β is a constant0 < β < 1, o2,ε
ε→0−→ 0, o2,ε is given byo2,ε = o1,ε in (17) when n = 2 and by

o2,ε = Cmax{(ε/η)1/2, εm−2} whenn = 3, Zεk,p is defined by(16) and ϕ̃ε(y) is defined by(14) whenn = 2

and by(15) whenn = 3. These functions,{Uεk,p}p=1,l0
k=1,N(ε), are such that for any extracted subset ofK functions

{Uεj1,Uεj2, . . . ,UεjK }, they are linearly independent.

We refer to [15,21] for the the proof of Theorem 3, as well as for certain restrictions onε and η when
α = +∞. Here, we just outline that the proof of Theorem 3 is based on the application of Lemma 1 below a
orthogonality conditions (17) for the eigenfunctions.
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It is worth stating the following basic result in spectral perturbation theory (cf. [35] and Section III.1 in [9
almost eigenfunctions:

Lemma 1. LetA : H → H be a self-adjoint positive and compact operator in a Hilbert spaceH. Letu ∈ H, with
‖u‖H = 1 andλ, r > 0 such that‖Au− λu‖H < r. Then, there is an eigenvalueλi of A satisfying|λ− λi | < r.
Moreover, for anyr∗ > r there isu∗ ∈ H with ‖u∗‖H = 1 such that

‖u− u∗‖H <
2r

r∗

u∗ belonging to the eigenspace associated with all the eigenvalues of the operatorA lying on the segmen
[λ− r∗, λ+ r∗].

Let us observe that, in general, even though the quantitiesr and 2r/r∗ in the statement of Lemma 1 a
sufficiently small, we cannot assert that the functionu approaches a true eigenfunction of operatorA associated
with λ, but a linear combination of eigenfunctionsu∗ associated with all the eigenvalues in[λ− r∗, λ+ r∗]. The
functionu is the so-calledalmost eigenfunctionor quasimode(cf. [36,37]). In order to obtain more precise resu
on the approach of the eigenfunctions, other spectral properties for operatorA should be known (cf. [37,24]). Thi
is the reason why Lemma 1 is used as an intermediate step to prove the stronger spectral perturbation the
provide the convergence of the whole spectrum as mentioned in Section 3.1 (cf. Section III.1 of [9]). In general
Lemma 1 provides useful information on the spectrum ofε dependent operatorsAε and on the correspondin
eigenfunctions in the case where spectral theorems that guarantee the convergence of the whole spe
not work. Besides, the approach to the eigenfunctions is usually stronger than the approach provide
convergence of theε dependent corresponding spectral families (cf. [32,24,17]).

Let us also notice that the construction of almost eigenfunctions has been widely used in the literature
approach true eigenfunctions or to detect points of the essential spectrum of a self-adjoint operator: let us
Section IV in [38] and Section IV.3 in [7] as general references.

On the other hand, the result in Lemma 1 should also be completed with other results which provide info
on the total number of eigenvalues of operatorA in the interval[λ∗ − r, λ∗ + r]. We refer to Section IV.2.3 of [37
for general results onorthogonal families of quasimodes, as well as for references, and to Section VII.1 of [39]
certain useful algebraic results.

As a matter of fact, we observe that the assertion in Theorem 3 on the total multiplicity of the eigenva
the interval[λ0 − dε, λ0 + dε] cannot be improved by using the general results in [37,39]. Instead the min
principle and certain properties of the harmonic functions in a half-plane with a finite energy allow the res
be improved as stated in the following theorems (cf. [21] and Sections II.2 in [40]).

Theorem 4. Letn ben= 2 or n= 3. Letλε1 andλ0
1 be the first eigenvalues of(5) and(8) respectively. Then, ther

exist a constantλ∗ � λ0
1 and a sequenceo3,ε → 0, asε→ 0, such thatλ∗ � λε1/ε

m−2 � λ0
1 + o3,ε.

Theorem 5. Let n ben= 2. Then, for each fixedi = 1,2,3, . . . , the sequenceλεi /ε
m−2 converge towards the firs

eigenvalueλ0
1 of the local problem(8).

Theorem 4 shows that forn= 2,3 the limit of any converging subsequence ofλε1/ε
m−2 is bounded by the firs

eigenvalueλ0
1 of the local problem (8). Therefore, in the case whereλε1/ε

m−2 → λ0
1, asε→ 0, Theorem 2 ensure

the convergenceλεi /ε
m−2 → λ0

1, asε→ 0, for any fixedi = 1,2, . . . . But this result, stated in Theorem 5, can on
be proved for the dimensionn= 2. For the dimensionn= 3 there are other accumulation points of subseque
of λε1/ε

m−2 which are smaller thanλ0
1 as we outline in Section 4.
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4. The case of many concentrated masses: global vibrations

Throughout this section we considerN(ε)→ ∞, α in (4) strictly positive andn= 3 and we make it clear tha
the results for the local vibrations in Section 3.2 are sharp. Indeed, Theorems 6 and 7 in this section show
for the dimensionn = 3 other accumulation points ofλεi /ε

m−2 smaller thanλ0
1, the first eigenvalue of the loca

problem (8), can exist. In order to state this, we introduce both a new functionF and a Steklov eigenvalue problem
Whenλ is not an eigenvalue of the local problem (8), we define the functionF(λ) as

F(λ)= −
〈
∂V λ

∂ny

∣∣∣∣
Γ

,1

〉
H−1/2(Γ )×H1/2(Γ )

(19)

whereV λ − W is the solution of the nonhomogeneous problem associated with (8) when the equationB is
replaced by −�V = λV + λW in B, andW is the solution of the following local problem (cf. [25] for th
solution):



−�yW = 0 in R
3−

W = 0 onT
∂W

∂y3
= 0 on{y3 = 0} − T

W(y)→ 1, as|y| → ∞, y3< 0

(20)

Let us also consider the Steklov eigenvalue problem, obtained from the homogenization of the conc
masses:


−�u= 0 inΩ

u= 0 onΓΩ
∂u

∂n
= αµu onΣ

(21)

with eigenvalues{µk}∞k=1, 0<µk → ∞ ask→ ∞ (cf. [12]).

Theorem 6. The functionF(λ) defined by(19) is a meromorphic function with positive real poles{λ0
i }∞i=1, the

eigenvalues of(8). Moreover,F(λ) is negative for negativeλ; and for eachi = 1,2, . . . , and realλ, it satisfies:

lim
λ→λ0

i

+ F(λ)= −∞ and lim
λ→λ0

i

− F(λ)= +∞

Consequently, for each eigenvalueµk of the Steklov problem(21), the equation

F(λ)= µk (22)

has infinitely many positive roots. Besides, in the case where the solution of(20),W , is not orthogonal inL2(B) to
the eigenspace associated withλ0

1, there are infinitely many roots of(22)strictly smaller thanλ0
1.

Theorem 6 has been proved in [12] on account of the properties of the resolvent operator associated w

Theorem 7. Each rootλ∗ of (22), λ∗ such thatF ′(λ∗) �= 0, is an accumulation point of eigenvaluesλεi(ε)/ε
m−2.

Besides if(λε/εm−2)→ λ∗, asε → 0, and the corresponding eigenfunctionsuε converge towardsu∗ in H 1(Ω)

weakly, once assumed thatλ∗ is not an eigenvalue of(8) andu∗ �= 0, then(u∗,F (λ∗)) is an eigenelement of(21).

The proof of Theorem 7 is in [12]: this proof involves the Energy Method for stationary boun
homogenization problems, the Laplace Transform, the Fourier Transform and results on boundary v
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analytic functions to connect both transforms. We refer to [26,27] and [12–14] for the application of the E
Method to this kind of boundary homogenization problems; see [41] for useful results on boundary va
analytic functions, when applying convergence properties for the perturbed spectral families (cf. [24] for a d
problem).

Let us observe that forn = 2 or n = 3, if we consider the eigenfunctionsuε of (5) of norm 1 inH 1(Ω),
and assume that certain sequencesλε/εm−2 converge towards someλ∗ > 0 and the corresponding eigenfunctio
converge towards someu∗ weakly inH 1(Ω), asε → 0, thenu∗ ≡ 0 except for the case wheren = 3 andα > 0
(see (4)). In that case, some results on the approach to the eigenfunctionsu∗ of (21) that complement Theorem
should be obtained (see Theorems 1–3 to compare). As a matter of fact, we also notice that among all
considered, this case,n = 3 andα > 0, is the only where the total weight of the concentrated masses is of
O(ε2−m).

5. High frequencies and local problem

Global vibrations for the dimensionsn = 2 andn = 3 have been found associated with the eigenvaluesλε of
order O(1) of (5) (see [12–14] for theextreme casesα = 0 andα = ∞, and [17] forα > 0). On account of (7), the
frequenciesλεi(ε) = O(1), for i(ε)→ ∞ asε→ 0, are referred to as thehigh frequencies; they are related with th
homogenized problemswhich depend on the relation (4) betweenε andη:

• The Robin type problem, for thecritical sizeof the massesBε, α > 0,


−�u= λu in Ω

u= 0 onΓΩ
∂u

∂n
= −αCu onΣ

(23)

where constantC takes the valueC = Sn/2 with Sn the surface of the unit sphere inRn: C = π whenn= 2,
andC = 2π whenn= 3.

• The mixed problem (23) for the extreme caseα = 0; the condition onΣ reads:∂u/∂n= 0.
• The Dirichlet problem for the extreme caseα = ∞; the condition onΣ beingu= 0.

Also, forα = 0, problem (23) is associated with the global vibrations of a vibrating system with only one
concentrated mass or a fixed number, i.e.,N(ε) = N . For problem (1), with one single concentrated mass in
Ω , the boundary conditions in (23) readu= 0 on∂Ω (see Section VII.11 in [7], Section III.5 in [9], [8,16]). As
well known, problem (23) has a pure point spectrum.

It has been proved in [17] (cf. [16] forN = 1) that the high frequencies accumulate in(0,∞) and not only
at the points of the spectrum of the homogenized problem as one might think from the results in [1
Moreover, these values, the eigenvalues of the homogenized problem, are singled out from the others d
on the asymptotic behavior of the corresponding eigenfunctions. Roughly speaking, we can assert thatonly the
eigenfunctionsuε associated with eigenvaluesλε asymptotically near an eigenvalue of the homogenized prob
(23) are asymptotically different from zero; these eigenfunctionsuε are approached by the eigenfunctions of (2
Of course, the suitable normalization ofuε in H 1(Ω) has been chosen in order to prove these results
Theorems 1 and 7 to compare).

It is worth mentioning that the homogenized problem (23) is obtained from the boundary homogen
as if the concentrated masses do not exist. Indeed, the boundary condition onΣ in (23) is obtained from the
homogenization of a Dirichlet condition on

⋃
Γ ε, which would happen if the eigenfunctionsuε vanished insideBε.

Bearing this in mind, some correcting terms for the eigenfunctions associated with the high frequencies are
[17] (cf. [16] forN = 1 andBε insideΩ). These correcting terms,u0(wε − 1), are obtained by means of classic
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asymptotic expansions in boundary homogenization problems, and allow us to assert that the approach ouε by 0
inside the concentrated masses is better than the approach byu0:

‖uε − u0wε‖H1(Ω)

ε→0−→ 0

Hereu0 is the eigenfunction of (23) associated withλ0, λε → λ0 asε→ 0, andwε are the classical test function
appearing in boundary homogenization problems: they are positive smooth functions which take the valueBε

and the value 1 in|x| � η/2; they are extended by periodicity to to all the centers of the half-circlesx̃k. Let us refer
to [28,34,26,27,29] for the explicit construction ofwε whenB is a ball or half-ball ofRn, or it has another shap
as well as for the homogenized problems for other geometries ofB andΩ and for other references.

Nevertheless, instead of vanishing inBε , uε can be strongly oscillating functions insideBε (cf. Section VII.10
in [7] and [16]) or concentrate in a neighborhood of the interfaceΓ ε (cf. [18]). In fact, in [16,18], forB a circle and
n= 2, the concentrated mass being insideΩ (see (1) and (10)), we provide correcting terms for the eigenfunc
uε associated with the high frequencies which take into account the wavelength of the corresponding vib
The computations can also be performed with minor modifications forB a half-circle, the concentrated mass be
near the boundary. These correcting terms are constructed from the eigenfunctions of the local problem (
resp.) associated with the high frequencies of (8) ((10), resp.), as we outline here below.

We considerλε = λεi(ε) = O(1), λε converging towardsλ0 and the corresponding eigenfunctionsuε converging

towardsu0 weakly inH 1(Ω) asε→ 0. It is known (cf. [17]) thatλ0 can be any positive number and, in the ca
whereu0 �= 0, then,(λ0, u0) is an eigenelement of (23).

Using the asymptotic expansions in [16,18], we show that an alternative approach tou0wε for the eigenfunctions
uε inside each concentrated massBεk is given by:

uε ≈ V ε
(
x − x̃k

ε

)
u0(x) whenu0(x̃k) �= 0, uε ≈ V ε

(
x − x̃k

ε

)
whenu0(x̃k)= 0, u0 �≡ 0 (24)

and

uε ≈ V ε
(
x − x̃k

ε

)
whenu0 ≡ 0 (25)

whereu0 in (24) is an eigenfunction associated with the eigenvalueλ0 of problem (23) andV ε satisfies (8) for
λ= λ0/εm−2.

More precisely, in (24), (25),V ε is a solution of (8) ((10), resp.) where the equation inB is replaced by
−�yV ε = (λ0/εm−2)V ε in B, andV ε converging towards some constantc when|y| → ∞ which proves to be 0
or 1 depending on whetheru0(x̃k) be equal to zero or different from zero. Therefore, forλ = λ0/εm−2, we have
the eigenvalue problem (8) ((10), resp.) where we chose a certain normalization of the eigenfunctions in
wherec= 1. Besides, the sequenceε must be chosen such thatλ= λ0/εm−2 be an eigenvalue (8): that is,ε varies
in very particular subsequences.

That the approaches (24), whenu0(0) �= 0, and (25) improve the approaches through 0 inside the concen
masses has been proved for the case of problem (1), wherex̃k = 0, n = 2 andB is a circle (cf. [16,18]). This
shows the oscillatory behavior of the eigenfunctions insideBε . The proofs are performed by means of expl
computations and using Lemma 1. Explicit computations can also be extended to the case ofB a half-circle and
(25) can be justified in this way. Instead, it is still an open problem that (24), whenu0(0) = 0, provide a true
correcting term for the case of one single concentrated mass in (1). Also, forN = 1 andn = 3, they are open
problems justifying (24), (25).

Finally, let us observe that all must be done for the case wheren= 2,3 andN(ε)→ ∞. In this case, it seem
as if global correcting terms inΩ are obtained from (25); formally:

uε ≈ V ε
(
x

ε

)(
1−wε(x)

)
in Ω, whenu0 ≡ 0 (26)



316 M. Lobo, E. Pérez / C. R. Mecanique 331 (2003) 303–317

ted with

: Trend in
8.
niv. Politec.

.), Non-

J. 29 (5)

1) (1989)

II 309 (1989)

er-Verlag,

15 (1991)

, 1992.
s, Math.

Sci. 3 (2)

Sanchez-

Sci. 5 (5)

) 323–329.
s, J. Math.

–80.
ies, Math.

ian Math.

ds Appl.

arguillier,
r, 2003, to

y thing

–1027.
for λε ≈ λ0 andλ0 not an eigenvalue of (23).wε , V ε(y) andε as stated above, and(1−wε(x))V ε(x/ε) has been
extended by periodicity to all the centersx̃k of the half-circles.

Thus, we emphasize that an analysis of the structure of the eigenfunctions of (8) ((10), resp.) associa
very large eigenvaluesλmust be performed in order to obtain more information on the structure ofuε in (24)–(26).
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