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Abstract

In this survey paper we re-examine the theoretical formulation of structural mechanics, introducing no restrictio
respect to the size of displacements, rotations or deformations, which is commonly referred to as geometrically exact.
attention is given to clarifying the computational aspects of finite rotations as the key ingredient of any such formulat
briefly discuss several novel applications of the geometrically exact formulation to dynamics, control and optimizationTo cite
this article: A. Ibrahimbegovic, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur la formulation géométriquement exacte de la mécanique des structures et ses applications en dynamique, contrôle
et optimisation. Dans cet article nous réexaminons la formulation théorique de la mécanique des structures n’imposan
restriction sur la grandeur des déplacements, des rotations ou des déformations, qui est alors dite géométriquement e
attention pariculière est portée aux aspects du calcul pertinents aux rotations finies, dont la maîtrise représente un é
pour toute formulation de ce type. Nous présentons brièvement quelques applications nouvelles de le théorie géomé
exacte en dynamique, en contrôle et en optimisation.Pour citer cet article : A. Ibrahimbegovic, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The model which was long considered the ‘bread-and-butter’ of a structural engineer – the Euler–B
beam theory – is even nowadays (e.g., [1]) introduced within the framework of geometrically linear theory,
to small or rather infinitesimal displacements, rotations and deformations. It seems it is long forgotten
mechanics community that the original developments of beam model of ‘Euler elastica’ were indeed pres

E-mail address:ai@lmt.ens-cachan.fr.
1631-0721/03/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
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384 A. Ibrahimbegovic / C. R. Mecanique 331 (2003) 383–394

tension
nlinear

ere one in
h either
a frame.
large
etrically

s was
how to
solids
model

n space.
ility to

oretical
ly with
recent

tational

tivated
ents of
can now
which
r yet the
tentially

oblems
ld and
xamined

sented in

choose
ss of

eader to
ntation

ore the
e spare

ations of

either
geometrically nonlinear setting with no restriction on the size of deformation, other than suppressing ex
and shear. The same kind of impression on a very limited capabilities of developing the geometrically no
structural mechanics theories is confirmed for other commonly used models, such as plates and shells, wh
general uses either an updated Lagrangian formulation (e.g., [2]) or co-rotational formulation (e.g., [3]), wit
one limited to moderate rotations of a moving reference frame and only small strains with respect to such

It is only with a more recent work of Reissner [4], on beam theory capable of dealing with arbitrary
displacements and deformations and moderate rotations, that interest was spurred again in truly geom
nonlinear models. First, a finite rotation extension of the model of this kind for initially straight beam
presented by Simo [5], who also coined the label ‘geometrically exact theory’. Subsequently, it was shown
generalize a geometrically exact theory to space-curved beam [6], shells with drilling rotations [7] and 3D
with independent rotation field [8], thus providing a unified basis for constructing the structural mechanics
for a structure of arbitrary complexity by using the model components which all share the same configuratio

An essential ingredient of any such theoretical formulation in structural mechanics pertains to our ab
account for 3D finite (unrestricted-in-size) rotations. In this respect, although a number of pertinent the
results have been available ever since the pioneering works of Euler, Hamilton and Rodrigues, it is on
a seminal work of Argyris [9] that the computational aspects have been re-examined. Some of the
developments of this kind, focusing on the optimal choice of rotation parameters and the related compu
procedure, are given in [10–17], among others.

Current developments in geometrically exact formulations in structural mechanics are very much mo
by potential industrial applications. Some of the fields which benefitted considerably from developm
geometrically exact structural mechanics theories are: multibody system dynamics (e.g., [18]), where one
easily account for flexible multibody systems or their components, control of motion stability (e.g., [19]),
allows one to apply the qualitative methods of Poincaré and Lyapunov to real engineering structures; o
shape optimization of structures undergoing finite rotations, which permits one to develop a novel and po
more efficient solution procedure for optimization problems [20].

The outline of this survey paper is as follows. In the next section we briefly present a couple of model pr
of developing the geometrically exact formulation, the first one for a 3D solid with independent rotation fie
the second one for a 3D beam. Several important computational aspects of 3D finite rotations are also e
in that section. Some new developments in geometrically exact structural mechanics theories are pre
Section 3 in application to dynamics, control and optimization. Closing remarks are stated in Section 4.

2. Geometrically exact structural mechanics theory

In order to present the main features of the geometrically exact formulation in structural mechanics, we
two model problems: a 3D solid with independent rotation field [8] and the 3D beam of [5,6]. Without lo
generality we can place the developments to follow in the framework of the Euclidean space, referring the r
works of Marsden and Hughes [21] for a more general framework of manifolds, or a more traditional prese
of the same approach in classical works in [22–24]. However, our choice does not imply that we will ign
difference between a tensor and its coordinate representation in terms of a matrix (as in [25]), nor shall w
any effort to elaborate upon the very important difference between the material and the spatial represent
structural mechanics tensor fields.

2.1. 3D solid with independent rotation field

If we consider a 3D solid as an assembly of particles with each one identified by its position vector in
initial B or deformed configurationS, we denote deformation as

x �→ ϕ(x) ∈ S; ∀x ∈ B (1)
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Remark 1. In the finite element incremental solution procedure, which is often the only one capable of s
a problem described by a geometrically exact formulation, one can choose so called isoparametric interp
(e.g., [26]) by using the same shape functions to describe the element geometry and the incremental disp
field, which allows one to construct very easily any deformed configuration with

x(ξ)=
nel∑
a=1

Na(ξ )xa

u(ξ )=
nel∑
a=1

Na(ξ)ua




⇒ ϕ(ξ)=
nel∑
a=1

Na(ξ )(xa + ua) (2)

The isoparametric coordinates are thus equivalent to convected coordinates used in the classical works
elasticity (e.g., [22–24]).

In a large overall motion any infinitesimal vector emanating fromx is taken by the deformation gradient tens
F into its new position according to

dx �→ F dx ∈ Tϕ(x)S; ∀dx ∈ TxB; F = ∇ϕ; det[F]> 0 (3)

whereT (·) denotes the tangent space. The deformation gradient is thus a two-point tensor operating on
(in the tangent space) in the initial configuration to produce its image in the current configuration. For th
when only deformation (the change of the magnitude of‖dx‖ in the deformed configuration) is of interest, one c
appeal to the polar decomposition of the deformation gradient separating rotation, expressed with an or
tensorR, from deformation, represented with either the right stretchU or the left stretch tensorΥ

F = RU = ΥR (4)

By considering that in each of two forms of the polar decomposition the rotation tensor is a two-point te
thus follows that the right stretch tensor is a material strain measure(U ∈ TxB), whereas the left stretch tensor
a spatial deformation measure (Υ ∈ Tϕ(x)S). By appealing to the orthogonality of the rotation tensor (R−1 = RT)
one can recover yet another strain measure in material representation in terms of the Biot strain [8] accord

H = RTF − I ∈ TxB (5)

The Boit strain measure provides the basis for constructing the geometrically exact formulation of a 3D so
independent rotation field which share the same configuration space with geometrically exact theories of s
(see [6–8]).

The second ingredient of the geometrically exact theory of 3D elasticity concerns the set of equi
equations. In that sense, the spatial description of the strong form of equilibrium equations, featuring
Cauchy stress tensorσ or its natural replacement the Kirchhoff stress tensorτ = (J ◦ ϕ−1)σ , is abandoned in
favor of more convenient, material description which is constructed by using either the first Piola–Kirchhof
tensorP or yet the Biot stress tensorT. Thus by comparing the spatial and the material description of the Ca
principle and by exploiting the Nanson formula on mapping an infinitesimal surface element into its de
configuration withn �→ JF−Tn, we can obtain that

τ ◦ ϕ = PFT = RTFT (6)

The last result allows us to write the material representation of the strong form of equilibrium equation ac
to

div[RT] + b = 0; skew
[
RTFT] = 0 (7)

whereb is the body force. In pursuing the finite element-based numerical solution procedure one replace
the weak form of the equilibrium equations by appealing to the virtual power principle (e.g., see [22]) to ob

Π̇ext = Π̇int ⇔
∫
B

Ḣ · sym[T]dV =
∫
B

ϕ̇ · b dV +
∫
∂Bt

ϕ̇ · t̄ dA (8)
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In a geometrically exact formulation of this kind all these equations are exact for any size of displacem
rotation. The approximations are introduced only at the later stage, either at the level of constitutive eq
(e.g., by connecting the Biot stress and strain tensors by Hook’s law for so-called semi-linear material
constructing a finite element discrete approximation.

2.2. 3D beam and finite rotations

For a 3D solid body of a beam-like shape with one dimension (beam length) being considerably larg
the other two (beam cross-section), we can develop essentially 1D parameterization of the geometrica
equilibrium equations. This kind of geometrically exact model is first proposed by Reissner [4], extended to
finite rotations by Simo [5] and arbitrary space curved beams by Ibrahimbegovic [6]. A number of later
rederived the same model; see for example [3,10,12,27–30], among others. When seeking a beam-like
one can further specialize the previously presented geometrically exact formulation by appealing to the hy
of non-deformable cross-sections. This allows us to express the motion of any point in the cross-sect
respect to the moving frame which remains attached to the reference point on the beam axis, which pr
one-dimensional model of the beam (see Fig. 1).

By taking into account that the placement of a local Cartesian frame is governed by the orthogonal tens

ai =Λgi ⇒ Λ= ai ⊗ gi; ‖ai‖ = ‖gi‖ = 1 ⇒ ΛTΛ=ΛΛT = I (9)

we can conclude that the configuration space is a set of position vectors and orthogonal tensors, paramete
1D domain

ξ �→ {
ϕ(ξ),Λ(ξ)

}
(10)

The major difficulty in dealing with the finite element implementation of this kind of geometrically e
formulation pertains to the discrete approximation of the orthogonal tensor of finite rotations. Namely, by
interpolating the nodal values of rotation tensor with finite element shape functions, it is not possible to pres
orthogonality property of the rotation tensor everywhere along the beam, which is very important for assu
frame-invariance requirements (e.g., see [28]). One can therefore choose either to satisfy the frame-invaria
at the Gauss quadrature points which are used for computing the finite element arrays (e.g., see [31]) or alte
to appeal to a vector-like representation of finite rotations [14,15]; the latter implies first using the finite e
interpolation or rotation vectorθ(ξ) and computing subsequently the corresponding orthogonal tensor at any
where it is needed by the applying the exponential mapping or Rodrigues formula (e.g., see [9]) to obtain

Λ= cosθI + sinθ

θ
Θ + 1− cosθ

θ2 θ ⊗ θ =: exp[Θ]; Θv = θ × v; ∀v ∈ R
3 (11)

Fig. 1. Initial and deformed configuration of 3D beam.
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Fig. 2. Representation of SO(3) manifold and its tangent spaces in initial and current configurations.

Another use of the exponential mapping, as illustrated in Fig. 2, pertains to constructing a kinematically adm
variation of the finite rotation tensorΛt , featuring in the virtual power principle, where an infinitesimal virt
rotation, represented by a skew-symmetric tensort W, should be superposed on the existing finite rotation te
Λ resulting with

Λt = exp[tδW]Λ ⇒ W = d

dt
[Λt ]

∣∣
t=0Λ

T; Wv = w × v; ∀v ∈ R
3 (12)

We note in passing that the finite rotationΛ is a two-point tensor, taking a vector from (the tangent space
the initial configuration to (the tangent space in) the current configuration. One can thus also provide the
representation of the kinematically admissible variation of the finite rotation tensor in terms of the skew-sym
tensorΨ according to

Ψ =ΛTWΛ ⇔ W =ΛΨΛT ⇒ Λt =Λexp[tΨ ]
(13)

ψ =ΛTw ⇔ w =Λψ; Ψ v =ψ × v; ∀v ∈ R
3

Yet another form of the kinematically admissible finite rotation tensor can be obtained by making use
admissible variation of rotation vectorθ̇ leading to the following result

w = Tθ̇; T = sinθ

θ
I + 1− cosθ

θ2
Θ + θ − sinθ

θ3
θ ⊗ θ (14)

The geometrically exact formulation of 3D beam model makes use of the exact equilibrium equations (e.g

n′ + f = 0; m′ + ϕ′ × n = 0; (·)′ = ∂

∂s
(·) (15)

wheref are external forces whereasn andm are internal forces and couples. The latter can be represented in
of integrals of the Biot stress over the cross-section (see [7]). For starting point of the discrete approxima
will rather choose the weak form of exact equilibrium equations or virtual power principle, which can be exp
as

G(ϕ,Λ; v,w) :=
∫
L

(
Lw(ε) · n +Lw(κ) · m

)
ds −Gext(v,w)= 0 (16)

whereLw(·) denotes the Lie derivative formalism (e.g., see [21]), with pull-back and push-forward carried
the operator which controls the motion of the cross-section, namely the rotation tensorΛ. For the exact finite strain
measures of the geometrically exact beam theory one thus obtains

ε= ϕ′ − a ⇒ Lw(ε) :=Λ
∂

∂t

[
ΛT
t εt

]∣∣
t=0 = ϕ̇′ − w × ϕ′

(17)
κ = ω; Ωv = ω× v; ∀v ∈ R

3 ⇒ Lw(κ) :=Λ
∂

∂t

[
ΛT
t κ t

]∣∣
t=0 = ω̇− w × ω≡ w′
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3. Applications

In this section we briefly discuss several subsequent developments of geometrically exact formula
structural mechanics in application to problems in dynamics, control and optimization. In each of these dom
geometrically exact formulations requires a novel solution approach but in return it provides extended mo
capabilities beyond the reach of the traditional methods.

3.1. Dynamics

The geometrically exact formulation of structural mechanics can easily be extended to dynamics, to deal
cases when the rate of external loading is sufficiently important so that one is no longer allowed to ignore th
effects. In that respect, the main advantage of the geometrically exact formulation pertains to a simple, q
form one can retain for the kinetic energy even in a large overall motion when a fixed, inertia frame is chosen
purpose. The latter is in sharp contrast to traditional approaches to flexible body dynamics (e.g., [32] or [33]
are set in a moving frame resulting with the Coriolis acceleration term and elaborate expressions for the
energy. This advantage comes at no expense regarding additional complexities in internal force computatio
the geometrically exact formulation is capable of extracting the strain measures from an arbitrarily large
motion.

The weak form of the momentum balance can thus be written simply by extending the static equi
equations by linear inertia terms to obtain

Gdyn(ϕ,Λ; v,w) :=
∫
L

(v · ṗ + w · π̇)ds +Gstat(ϕ,Λ; v,w) (18)

whereGstat are the static equilibrium equations in (16), whereasp andr are linear and angular momenta, whi
can be written as

p =Aρv; π =ΛIρΛTw (19)

with Aρ andIρ as the section mass and inertia tensor. It can easily be shown from (18) above that any rig
translation (v = cst.) and rigid body rotation (w = cst.) under self-equilibriated system of forces will prese
the linear and angular momenta, respectively. Moreover, for the case where the external loading is cons
as for example the central force field which derives from a potential ensuring rotational invarianceΠext(Λ

Tϕ),
and the case where the constitutive behavior is hyper-elastic, which allows us to define the total potentia
functional,

Π(ϕ,Λ) :=Πint(ϕ,Λ)−Πext
(
ΛTϕ

); Πint =
∫
L

Wint(ϕ,Λ)ds (20)

one can easily show that the total energy remains conserved. The latter follows from (18) and the governin
tonian functional corresponding to the total energy with

H(ϕ,Λ,v,w) :=Π(ϕ,Λ)+ T
(
v,ΛTw︸︷︷︸

ψ

) = cst.; T (v,ψ)= 1

2

∫
L

(v ·Aρv +ψ · Iρψ)ds

⇒ Ḣ (ϕ,Λ,v,w) := Ṫ
(
v,ΛTw

) + Π̇(ϕ,Λ)≡Gdyn(ϕ,Λ; v,w)= 0 (21)

These findings can be exploited to design the time-integration schemes with enhanced performance ob
preserving the salient features of the continuum problem by the discrete approximation, and in particular th
and the angular momentum conserving schemes (e.g., see [30]). Another interesting development presen
pertains to an optimal time-integration scheme which conserves the energy in low frequency modes and d
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Fig. 3. Shear force time history for beam spin-up maneuver computed by energy conserving and energy decaying schemes

the high frequency mode contribution, the latter often considered undesirable since it is not represented in
manner by the finite element model. The challenge in that respect, which was successfully tackled in [34],
sign a scheme which dissipates the contribution of higher modes with no need to identify them explicitly or
possibility when they keep changing due to finite motion. Moreover, the latter is achieved at no expense of v
the geometrically exact equilibrium equations or kinematics, but with only modification of algorithmic const
equations. The energy decaying scheme has a very important advantage for providing an improved acc
stress computation with respect to the energy conserving scheme, which lead to comparable values of disp
but practically useless results for stress for any case where high frequency content is significant. This kind
ing is confirmed by the results obtained for a spin-up maneuver around a hinged end of flexible beam by a c
free-end forces applied in a form of a triangular pulse, which start at zero att = 0, peaks att = 0.025 and goes bac
to zero att = 0.05. Thereafter, the beam undergoes free vibrations. The numerical results shown in Fig. 3, o
by the finite element model which consists of eight 2-node beam elements, indicate that in the forced v
phase both energy conserving and energy decaying schemes yield practically the same result. However, i
vibration phase, the result computed by the energy conserving scheme clearly displays spurious high fr
noise, contrary to the one obtained by the energy decaying scheme which correctly wipes out those vibra

The application of the geometrically exact formulation of structural mechanics in dynamics are numero
example, one currently very active research domain of multibody dynamics, where either high operatin
or extreme slenderness of a particular component require that the system flexibility be taken into accou
also finds benefits of the geometrically exact theory in application to currently very active research in mic
and mezoscale models of dynamic fracture (e.g., see [35]). The geometrically exact beam of this kind is
modelling cohesive forces between two neighboring particles represented by Vornoi cells, which allows t
without difficulty the fragmentation phenomena where a group of connected cells splits form the main struc
illustrated in Fig. 4.

3.2. Control

Modern structures are often designed to withstand very large displacements and rotations and rem
operational. In that respect, the goal of a control problem pertains to bringing the structure directly into desir
φ̄d = (ϕ̄d , Λ̄d ). This can formally be presented as a minimization problem under constraint, with the con
assuring that the computed state which the closest to the desired state is also an equilibrium state

min
G(φ,υ;·)=0

j
(
φ̂(υ), λ

); j (·)= 1

2

[∥∥φ̄d − φ̂(F0λ)
∥∥2 + α‖υ‖2] (22)
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Fig. 4. Fragmentation for a beam-lattice model in a dynamics fracture test.

whereυ is the vector of load parameters multiplying the fixed load patterns ordered inF0. This problem can be
transformed into an unconstrained minimization problem by using the classical method of Lagrange mu
(e.g., see [36]), which allows thatφ andλ can thus be considered as independent variables,

max∀λ min∀φ L(φ,υ;λ); L(φ,υ;λ)= J (φ,υ)+G(φ,υ;λ); φ = (ϕ,Λ); λ= (ν,µ)

(23)
J (·)= 1

2

[∥∥φ̄d − φ
∥∥2 + α‖υ‖2]; G(φ,υ;λ) :=

∫
L

(ν̇ ′ −µ× ν′ · n +µ′ · m)ds −Gext(ν̇, µ̇)= 0

whereν andµ denote, respectively, the set of Lagrange multipliers for both displacements and rotations. F
particular choice of control one can eliminate (see [19]) the Lagrange multipliers from the discrete approx
of this problem, resulting with

0 = r(φ)− F0υ
(24)

0 = αυ + FT
0K−1(φ − φ̄d ); K := ∂r

∂φ

wherer(φ) is the internal force vector, andK−1 is the inverse of the tangent stiffness matrix. Written in t
form, the present control problem becomes fully equivalent to the well-known continuation problem com
encountered in studies of nonlinear bifurcation (e.g., see [37] and reference therein), with a particular c
the stabilization term. In that respect, it is important to note that the geometrically exact formulation of str
mechanics is capable of handling (e.g., see [29]) both the linear instability or so-called Euler buckling pr
and nonlinear instability problems, where displacements and rotations can become quite large before rea
critical point. The method of direct computation of the critical points can be placed [38] within the framew
continuation methods, where additional condition providing the critical point identification ought to be su
One has the choice between using the supplementary equation to (24) as

g(λ,φ) := det[K] = 0 (25)

which can directly identify only the value of load parameter corresponding to a critical point, or the supplem
equation which also provides the corresponding instability mode with

g(λ,φ,ψ) := Kψ = 0
(26)

l(ψ,λ) :=
{‖ψ‖ − 1

ψTF0λ

}
= 0

The last condition is of particular interest for identifying a bifurcation point, in which case the instability mod
serve to perform the branch-switching explorations. The current works have turned towards the control pro
dynamics, where the main difficulty would concern the chaos [39] in the presence of instabilities. The first
which is already made in that respect concerns the fact that a robust time-integration scheme, such as t
conserving or decaying scheme in [34], plays a very important role in order to separate the true chaotic, in
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(e.g., [40]).

3.3. Shape optimization

Shape optimization finds its place naturally in designing the structural systems. Ever increasing dem
achieve a more economical design of a structural system motivates the current trends to analyze and e
nonlinear behavior of such a system. The geometrically exact formulation of structural mechanics is thus
interest in optimization methods which are called upon to guide the optimal shape design of a structure
to undergo large displacement and rotations remaining fully operational. This task can formally be prese
constrained minimization of a chosen cost function, specifying the goal to achieve and the design variable to
to that end, with the constraint which concerns satisfying the equilibrium equations.

Traditionally (e.g., see [41] for a recent review), shape optimization and structural mechanics are
separately and then brought to bear on the same problem, by using a sequential approach where each
minimization of the cost function or solving the equilibrium equations, is carried out by a dedicated com
code. In this manner the communication requirements are reduced since each computer code gets only the
information from the other one, so-called design sensitivity (e.g., [42]) for optimization code, or design va
for the finite element code for structural mechanics. It is clear that the traditional approach to analysis an
will sacrifice the computational efficiency for the case of practical interest where both cost function and str
mechanics equilibrium problem are nonlinear and impose each an iterative solution procedure.

The main idea elaborated in [20] relates to an alternative method of analysis and design where those tw
are formulated and solved simultaneously. In that respect, the interdependence of analysis and design va
no longer assumed so that one iterate simultaneously on both of them, which provides a drastic reductio
computational cost. In particular, the design sensitivity analysis need not be performed separately, but is
as a part of the global solution procedure. An illustration of the proposed procedure is given for the chose
problem of geometrically exact 3D beam. The traditional approach for shape optimization for this kind of p
can be formulated as the constrained minimization of the cost functionj (·)

min
G(φ̂(λ);φ̇)=0

j
(
φ̂(x)

)
(27)

wherex are the chosen design variables, andG(·) = 0 is the given constraint in terms of the weak form
equilibrium equations. It is indicated in (27) by usingφ̂(x) that each new design can change the equilibr
state, and the state variables are considered as dependent variables. One can eliminate this depende
state variables on design variables by appealing to the method of Lagrange multipliers in order to
the constrained minimization problem in (27) by the unconstrained minimization by introducing the Lag
multipliersλ= (ν,µ) to obtain

L(φ,x,λ) := J (φ,x)+G(φ,x;λ); G(φ;λ) :=
ξ2∫

ξ1

[
(ν̇′ −µ× ν ′) · n +µ′ · m

]
j (ξ)dξ −Gext;

(28)

j (ξ)=
∥∥∥∥∂x
∂ξ

∥∥∥∥
We note that the weak form of equilibrium equations is now expressed in the reference configuration, whic
finite element setting can be chosen as the parent element of each isoparametric element. Although such
would allow a systematic development using the finite element assembly-like processing of design variab
in general rejected for the lack of efficiency and robustness. Increasing the latter is a very big challeng
concerns an adequate choice of the design variables and the corresponding geometry description.
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Fig. 5. Shape optimization of a cantilever in a large motion.

A simple examples is given to illustrate the type of results one can obtain. In Fig. 5 we present the sol
the shape optimization problem for a pure bending of a cantilever, where only a few iterations are nece
obtain the desired objective of a constant stress state and the deformed shape in the form of a semi-circle

4. Conclusions

The geometrically exact theoretical formulation in structural mechanics provides the two main ingre
kinematics and equilibrium (or momentum balance) in the exact form regardless of the size of displac
rotations and deformations. It is both intellectually pleasing and practically useful that the theory of this
capable of handling the fundamental equations exactly, with all approximations allowed only at a later sta
as for describing the constitutive behavior, constructing a discrete model, etc.

The geometrically exact formulations can be provided for basically all different models employed in str
mechanics. In particular, the developments presented herein, which concern geometrically exact 3D be
solids, can easily be extended to shells both in statics [43] and in dynamics [44].

The geometrically exact formulation of structural mechanics requires in general a fresh approach for sol
problems in dynamics, control of motion stability or shape optimization, but in exchange provides the solu
the problems which are beyond the reach of traditional methods. The cases in point discussed herein of
instability as opposed to (linear) buckling, simultaneous solution procedure of the optimization problem as o
to sequential approach or time-integration schemes for reliable stress computations in flexible multibody dy
are only several of a number of potential applications.
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