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Abstract

For a strip footing under axial loading, the bearing capacity is influenced by the presence of rigid walls confin
foundation soil. This problem is investigated within the framework of the theory of yield design, considering both a p
rough and a frictionless contact condition at the interfaces with the walls in the case of a purely cohesive soil. Uppe
for the correction factor to be applied to the classical value of the bearing capacity are determined, as functions of
dimensional geometric parameter of the problem, through the kinematic approach, implementing virtual velocity fields
from the solution to the problem of inverted extrusion. In the perfectly rough case, it appears that the new upper bo
significant improvement of those already available. A very simple relationship is established, which derives the uppe
for the frictionless walls from the upper bound for the rough walls. A general conclusion of the analysis is that, for the
of the geometric parameter that are likely to be encountered in practice, the increase in the bearing capacity due to th
of the rigid walls remains very small.To cite this article: J. Salençon, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

La capacité portante des fondations superficielles en présence de parois rigides.La présence de parois rigides
voisinage d’une fondation superficielle influe sur la capacité portante de cette fondation. On étudie ce problème
cas d’un sol cohérent sans frottement interne en supposant que le contact avec les parois est soit parfaitement ru
sans frottement. En mettant en œuvre l’approche cinématique du calcul à la rupture avec des champs de vites
inspirés de l’étude de l’extrusion inverse, on détermine des bornes supérieures pour le facteur de correction à ap
coefficient classique de capacité portante, en fonction du paramètre géométrique adimensionnel du problème. Dans
parois rugueuses, la nouvelle borne supérieure se révèle significativement meilleure que celles disponibles jusqu’a
relation simple est établie qui permet d’obtenir la borne supérieure pour les parois lisses à partir de celle valable
parois rugueuses. En conclusion de l’analyse, il apparaît que, pour les valeurs du paramètre géométrique réaliste
de vue de la pratique, l’accroissement de capacité portante dû à la présence des parois rigides demeure faible.Pour citer cet
article : J. Salençon, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. The problem under investigation

In [1] we presented the results of a theoretical determination of the bearing capacity of strip footings su
to axial loading, when the soil foundation, with infinite thickness, is limited in the horizontal directions by
vertical walls. The soil foundation was either purely cohesive or frictional assuming a perfectly rough c
condition at the interfaces with the footing and with the rigid walls. The major part of the analysis was d
to obtaining upper bound estimates within the framework of the yield design theory [2] by revisiting the so
to the problem of the bearing capacity of a surface footing on a soil layer with limited thickness. The
velocity fields, which were implemented in the upper bound approach, took place in a soil layer whose th
was strictly proportional to the gap between the edge of the foundation and the adjacent wall. The same
will be investigated again, in the case of a purely cohesive soil, in both cases of a perfectly rough or a fric
(smooth) contact condition (with no tensile strength) at the rigid walls, through a kinematic approach using
velocity fields inspired from the analysis of inverted extrusion [3]. The notations are kept as in [1]. The w
the footing is denotedB = 2b. The distance between the edge of the footing and the corresponding rigid cont
wall is denotedL. The cohesion of the foundation soil iscu with the Tresca strength criterion.

The axial force acting on the footing is denotedF (more precisely,F is the axial force per unit transvers
length acting on the footing). The problem is treated as a 2-dimensional one. The theoretical bearing ca
defined aspult = F/B whenF reaches its maximum value from the yield design point of view.

In consideration of the parameters of the problem, the non-dimensional expression ofpult can be written as:

pult = cuKc

(
L

b

)
Nc with Nc = π + 2 andKc(∞) = 1 (1)

whereKc(L/b) is the correction factor which takes the confining effect into account. In order to distin
the “rough” and the “smooth” case a superscript “r” or “s” will be introduced in Eq. (1), namely:K r

c(L/b) and
Ks

c(L/b).

2. Perfectly rough contact condition with the rigid walls

2.1. L/b � 2

Referring to Prandtl solution and to the extension of its stress-field by Shield as in [1], it comes out that:

∀L

b
� 2, K r

c

(
L

b

)
= 1 (2)

2.2. 0 < L/b < 2

Investigating the range 0< L/b < 2, we now consider the virtual velocity field constructed, through the us
Geiringer’s equations [4] on the symmetrical slip-line field presented in Fig. 1, which is inspired from [3].
also shows the corresponding hodograph [5] when the footing is given a vertical virtual translation motio
velocity Û : zoneA′M ′SMA moves vertically as a rigid block with velocitŷU ; acrossA′M ′SG andG′R′Q′SMA

the velocity field is discontinuous, with a tangential jump equal toÛ
√

2/2; beneathG′R′Q′SG the soil is
motionless;G′A′C′ has a translation rigid body motion; since the hodograph and the slip-line field happ
be geometrically similar and orthogonal to each other, the velocityOa′ of G′A′C′ is normal to the straight line
AS with ÛL/b as vertical component (symmetrically forGAC); the velocity field in the rest of the soil layer
described in the hodograph.

Applying the upper bound approach of the theory of Yield design would require the explicit computation
maximum resisting rate of work in that virtual velocity field, which should then be compared with the work
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Fig. 1. Slip-line field and hodograph for perfectly rough walls whenL/b � 0.29.

external forces. As a matter of fact a short cut can be taken since Fig. 1 makes it possible to exhibit a s
“incomplete solution” as introduced by Bishop [6]. Starting from the stress-free surface boundary conditio
A′G′ andAG and assuming the vertical direction to be the direction of maximum pressure there, a stress
constructed, which is in equilibrium with zero body forces and which saturates the Tresca strength criteri
network ofα andβ lines in Fig. 1 is the network of characteristics of this stress-field and the Hencky equatio
which are satisfied along these lines, determine the stress-field in the region under concern. PointS, where the two
symmetric parts of the network meet each other, is situated on the symmetry axis of the footing and is det
from the condition that the vertical and horizontal directions be the principal axes for the stress-field: hen
C′R′ andM ′N ′ are equal to each other. Only a partial stress-field being constructed does not make it pos
refer to the static approach of the theory of yield design. But, in consideration of Ewing and Hill’s theorem [7]
the orientations of theα, β network and of its image in the hodograph are interchanged, the corresponding
and velocity fields can be combined to produce an incomplete solution [6] with the benefit that the bearing c
computed by means of the partial stress-field is just the upper bound estimate given by the virtual velocity

Fig. 2. Slip-line field for perfectly rough walls when 0< L/b < 0.29.

The network in Fig. 1 remains valid untilR′ meets the rigid wall, which corresponds toM ′ meeting the footing
With reference to the geometric parameters of the problem this amounts to:L/b � 0.29. For lower values ofL/b

the network is extended, as shown in Fig. 2, withβ lines tangent to the wall andα lines tangent to the footing o
the left-hand side and symmetrically on the right-hand side. The entire reasoning remains valid.

After constructing the network numerically through classical procedures, the stress-field is determined e
at each node of the mesh and integration alongA′M ′S (or, more conveniently, alongA′N ′S), in order to obtain the
corresponding upper bound for the bearing capacity, is straightforward. Referring to Eq. (1), we write:

pult = cuK
r
c

(
L

b

)
Nc � cu

[
K r

c

(
L

b

)]′
Nc (3)

where[K r
c(L/b)]′ is the upper bound for the correction factorK r

c(L/b).
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The results are presented in Fig. 3 together with the upper bound proposed previously [1] and with the
form upper bound recently obtained by Puzrin and Randolph [8] through an innovative method. This one b
rapidly greater than the others whenL/b decreases and, in a comparison with [1], we observe that a signi
reduction of the upper bound for the correction factor has been gained from the approach presented her
same value ofL/b, the increase in the bearing capacity due to horizontal confinement is now reduced by som
This strengthens the conclusion that, for practically relevant values ofL/b, the increase in the bearing capacity d
to confinement remains very small: smaller than 10% forL/b > 0.72 and smaller than 20% forL/b > 0.45.

It may also be recalled that in the solution proposed in [1], the thickness of the layer where the virtual v
field took place was kept equal tod = L

√
2/2 for any value ofL/b � 2, so thatd/b decreased to 0 in proportio

with L/b. In the present case it is observed in Fig. 3 that the decrement ofd/b with L/b due to the presence of th
rigid walls is limited.

Fig. 3. Influence of confinement on the bearing capacity: perfectly rough walls[Kr
c(L/b)]′ , frictionless walls[Ks

c(L/b)]′, previous upper bound
(dashed line), Puzrin and Randolph [8] upper bound (dotted line).

3. Frictionless contact condition with the rigid walls

Since introducing a frictionless contact condition instead of the perfectly rough one results in reduc
resistance of the corresponding interfaces, it is clear from the definition of the bearing capacity that:

∀L

b
> 0, Ks

c

(
L

b

)
� K r

c

(
L

b

)
(4)

Therefore[K r
c(L/b)]′ remains an upper bound for the correction factor in the case of the frictionless c

condition. But we can also anticipate that new virtual velocity fields involving slipping of the soil along the
may now be considered, which would lead to better upper bound estimates forKs

c(L/b).

3.1. L/b � 1

Such a virtual velocity field can be produced from Prandtl classical solution, as shown in Fig. 4, for valuesL/b

within the range 1� L/b � 2. The footing being given a rigid body vertical translation motion with the velocityÛ ,
the classical virtual velocity field is maintained inA′BA, in A′BC′ and inABC; in A′C′E′F ′ (resp.ACEF )
we still encounter a virtual rigid body translation motion parallel toC′E′ (resp.CE) with velocity Û

√
2/2; E′F ′

(resp.EF ) is a velocity discontinuity line such thatE′F ′G′ (resp.EFG) receive the vertical velocitŷU .



J. Salençon / C. R. Mecanique 331 (2003) 319–324 323

d to
nd for

field
ion
ross

field
ith the
e

s to

he upper
Fig. 4. Slip-line field for frictionless walls when 1� L/b � 2.

This virtual velocity field can still be combined with the stress-field of Prandtl solution restricte
G′A′AGEBE′ in order to produce an incomplete solution. It follows that the corresponding upper bou
the correction factor is just:

1� L

b
� 2, Ks

c

(
L

b

)
= 1 (5)

3.2. 0 < L/b � 1

For 0< L/b � 1, Fig. 5 presents the virtual velocity field derived from Fig. 1 by truncating the slip-line
with the frictionless rigid walls passing through pointsC andC′. The hodograph gives the complete descript
of the virtual mechanism: inA′P ′R′SRCAA′ the velocity field is the same as in Fig. 1; it is discontinuous ac
R′P ′A′ (and symmetric) with a jump equal tôU

√
2/2; finally A′C′G′ andACG move vertically with velocity

Ûb/L. Looking for an incomplete solution with this virtual velocity field, it is clear that restricting the stress
constructed in the “rough” case to the zone limited by the rigid walls in the “smooth” case complies w
frictionless contact condition. Comparison of the orientations of theα, β networks in the hodograph and in th
slip-line field completes the proof of an incomplete solution.

The slip-line field in Fig. 5 is valid untilA′M ′S becomes tangent to the footing, which correspond
0.14� L/b � 1. For lower values ofL/b the slip-line field is extended, as shown in Fig. 6, withα lines tangent to
the footing on the left-hand side (β lines on the right-hand side): the entire reasoning remains valid.

Producing an incomplete solution in both cases makes it easier to apply the upper bound approach. T
bound estimate for the correction factor being denoted[Ks

c(L/b)]′, we have:

pult = cuK
s
c

(
L

b

)
Nc � cu

[
Ks

c

(
L

b

)]′
Nc (6)

Fig. 5. Slip-line field and hodograph for frictionless walls whenL/b � 0.14.
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Fig. 6. Slip-line field for frictionless walls when 0< L/b < 0.14.

It follows from the correspondence between the slip-line fields in Figs. 1 and 5 that the same uppe
estimate of the bearing capacity is obtained for a given value ofL/b � 0.14 in the “smooth” case and for twice th
value in the “rough” case. In other words:

∀L

b
> 0.14,

[
Ks

c

(
L

b

)]′
=

[
K r

c

(
2L

b

)]′
(7)

For smaller values ofL/b the correspondence is no more valid but may be retained, if necessary, as a good e
The corresponding results are presented in Fig. 3. The increase of the bearing capacity is not si

for practically relevant values ofL/b: it remains smaller than 10% forL/b � 0.36 and smaller than 20% fo
L/b � 0.22. This comes from the fact that, in a comparison with the unlimited soil foundation, the overall in
of the resistance of the constituent materials of the system introduced through the existence of the rigid
counterbalanced by the frictionless contact condition.
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