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Abstract

In this paper we discuss the influence of Gram–Schmidt orthonormalization for the computation of the rational repres
in the asymptotic numerical method. Classical, modified and iterated Gram–Schmidt algorithms are compared u
ordinary and the mass scalar products. The accuracy of the proposed algorithms are tested on elastic shells.To cite this article:
R. Jamai, N. Damil, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Influence de l’orthonormalisation itérative de Gram–Schmidt dans la méthode asymptotique numérique.Dans ce
travail, on discute l’influence de l’orthonormalisation de Gram–Schmidt sur le calcul de la représentation rationnelle
méthode asymptotique numérique. Les algorithmes classique, modifié et itératif de Gram–Schmidt sont comparés e
les produits scalaires ordinaire et masse. Les précisions des algorithmes proposés sont illustrées sur des exemple
élastiques.Pour citer cet article : R. Jamai, N. Damil, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Within the asymptotic numerical method (ANM), the basic idea is to search a parametric representa
the solution pathU of a nonlinear problem in the form of integro-power series [1]. For instance, the unkno
represented as follows:

U(a) = U0 + aU1 + a2U2 + · · · + apUp (1)
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wherep is the order of truncature. The vectors fields(Ui )1�i�p are the solutions of a recurrent sequence of lin
problems, with a single tangent operator to be inverted. These linear problems are solved by the finite
method. Of course the domain of validity of the representation (1) is limited by the radius of convergence
series. In order to extend the domain of validity of the representation (1), we have used in [1] and [2] a
representation called Padé approximant [3].

As the representation (1) is not a scalar series, we have first, used the Gram–Schmidt procedure, wh
most known method in linear algebra, to compute an orthonormal basisU∗

1, . . . ,U∗
p for the space spanned by th

vectorsU1, . . . ,Up in the following manner:

α1,1U∗
1 = U1

αi,iU∗
i = Ui −

i−1∑
j=1

αi,j U∗
j (2)

〈
U∗

i ,U∗
j

〉= δi,j (i, j = 1, . . . , p)

The coefficientsαi,j of the Gram–Schmidt procedure are then used to compute a set ofp − 1 coefficients
d1, d2, . . . , dp−1 andp − 1 polynomialsDi defined by:

di = − 1

αp−i,p−i

(
αp,p−i +

i−1∑
k=1

dkαp−k,p−i

)
(3)

Di(a) = 1+ d1a + d2a
2 + · · · + dia

i (4)

After some rearrangement, we obtain the following rational representation [2] of the solution:

U(a) = U0 + a
Dp−2(a)

Dp−1(a)
U1 + · · · + ap−2 D1(a)

Dp−1(a)
Up−2 + ap−1 1

Dp−1(a)
Up−1 (5)

In the ANM, we must be able to compute accurately the coefficientsαi,j . Let’s recall that a process o
orthonormalization is a numerical instability source [4]. These instabilities observed in the ANM for the calc
of αi,j change all the coefficientsdi . This point have been discussed in [2] and [5] in the case of an elastic
subjected to a bending force. The comparison between the exact coefficients of Gram–Schmidt procedur
symbolic software (MAPLE) and those obtained by finite elements shows that numerical errors are accu
and that the new vectorsU∗

i are completely false beyond a certain order. Results in [5] clearly show the influ
of the orthonormalization without establishing if instabilities are due to the orthonormalization or somethin
as the calculation of the vectors themselves. One can also note that these instabilities don’t prevent
solution quality than the series nor a good evalutation of the smallest pole, that is assimilated to the r
convergence [6]. But one has also observed, especially in iterative algorithm, that the curves residual-ord
bizarre behavior at large orders, that let suppose a harmful numerical instability effect. What practical dra
do these instabilities drag? Is one able to reduce them while only changing the technique of orthonormaliz
the scalar product? Does that improve the ANM?

In this paper, we show that the numerical stability of Gram–Schmidt procedures can be vastly impro
applying the procedure iteratively. This so-called iterated Gram–Schmidt procedure has been used in [7]. In
paper [4], LINGEN shows how this algorithm can be implemented on a parallel computer. In this paper w
compare the numerical accuracy and stability of the three versions of Gram–Schmidt algorithm in the AN
examples of cylindrical shells will be used to show that the ANM using iterated Gram–Schmidt orthonorma
leads to a stable algorithm with respect to the scalar product contrary to modified Gram–Schmidt algorithm
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Table 1
The classical (CGS), modified (MGS) and iterated (IGS) Gram–Schmidt algorithms

Tableau 1
Algorithmes classique (CGS), modifié (MGS) et itératif de Gram–Schmidt

CGS MGS IGS

for i = 1, . . . ,p do for i = 1, . . . ,p do for i = 1, . . . ,p do
for j = 1, . . . , i − 1 qi = Ui U∗0

i = Ui , α0
i,j = 0

αi,j = 〈Ui ,U∗
j 〉 for j = 1, . . . , i − 1 for k = 1,2, . . . do

enddo αi,j = 〈qi ,U∗
j
〉 for j = 1, . . . , i − 1 do

qi = Ui −∑i−1
j=1 αi,j U∗

j
qi = qi − αi,j U∗

j
γ k
i,j

= 〈U∗k−1
i

,U∗
j
〉

U∗
i

= qi /‖qi‖ enddo αk
i,j

= αk−1
i,j

+ γ k
i,j

enddo U∗
i

= qi/‖qi‖ enddo

enddo U∗k
i

= U∗k−1
i

−∑i−1
j=1 γ k

i,j
U∗

j

if (‖U∗k
i

‖ > β‖U∗k−1
i

‖) then
stop

endif
enddo
U∗

i = U∗k
i /‖U∗k

i ‖
for j = 1, . . . , i − 1 do

αi,j = αi,j
k

enddo
enddo

2. Gram–Schmidt orthonormalization procedures

The classical Gram–Schmidt algorithm (CGS) is summarized in the first row of the Table 1. We have ob
in many tests that using this algorithm, the new vectorsU∗

i are completely false beyond a small order [2]. It
known that the modified Gram–Schmidt algorithm (MGS), which is summarized in the second row of the T
has a better stability.

The accuracy of classical Gram–Schmidt algorithm can be vastly improved by applying it iteratively [4,7
algorithm (IGS), which is an iterative version of the classical one, is presented in the third row of the Table
us notice that with one iteration of IGS, for each vector, we get back the CGS algorithm. The most import
of the algorithm is the stopping criterion‖U∗k

i ‖ > β‖U∗k−1
i ‖ which depends on an arbitrary parameterβ . In [7] it

has been shown that the IGS algorithm converges within two iterations withβ ≈ 0.5. Let us note that the CPU tim
of two iterations is negligible compared to the CPU time to get one vector of the series (1) and that the vec
coefficients generated by Gram–Schmidt procedure depends on the choice of the scalar product.

3. Comparison of the three Gram–Schmidt orthonormalizations

To compare the three Gram–Schmidt orthonormalizations, we test two nonlinear elastic problems
problems depend on a load parameterλ. In the ANM, we replace also this parameterλ by a rational representatio
analogous to (5) (see [1,2]).

The first example is a cylindrical roof hinged along two opposite sides submitted to a concentrated
the central point (Fig. 1(a)). Assuming symmetry conditions, only one quarter of the shell is discretized w
triangular DKT18 elements for a total number of degrees of freedom 726. The analysis is carried out w
differents values of the thickness:h1 = 12.7 mm, h2 = 6.35 mm. The second example is a cylinder with t
diametrically opposite cut out loaded by a uniform compression (Fig. 1(b)). For symmetry reasons, one
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Fig. 1. (a) Cylindrical roof loaded in its center, (b) cut out cylinder with a compressive load.

Fig. 1. (a) Toit cylindrique chargé au centre, (b) cylindre troué avec un chargement en compression.

Fig. 2. Precisionep versus the orderp.

Fig. 2. Précisionep en fonction de l’ordrep.

the structure is discretized with 1608 triangular DKT18 elements. The total number of degrees of freedom
In all this section, we chooseβ = 0.5 for the iterated Gram–Schmidt (IGS) algorithm.

To analyse the quality of the Gram–Schmidt algorithms (CGS, MGS and IGS), we consider the criteep

defined by:

ep = ∥∥QT
pQp − Ip

∥∥
F

(6)

where the matrixQp is (U∗
1, . . . ,U∗

p−1), Ip is the identity matrix and the matrix[α] is a lower triangular one define
by the Gram–Schmidt coefficients[α] = [αi,j ]1�i,j�p . The notation‖ · ‖F is the Frobenius norm which is define

for a matrixA = [ai,j ] as‖A‖F =
√∑

i,j a2
i,j . The scalar product used, for the three Gram–Schmidt algorit

is the ordinary scalar product defined by〈U,V〉ORD =∑N
k=1 UkVk whereU = (Uk)

N
k=1 andV = (Vk)

N
k=1. Let us

recall that we must have theoretically(〈U∗
i ,U∗

j 〉)1�i,j�p = Ip and (〈Ui ,Uj 〉)1�i,j�p = [α][α]T. Therefore the
precisionep analyses the quality of the orthogonality of the basis.

In Fig. 2, we represent the decimal logarithm of the precisionep versus the order of truncaturep. The curves
(CGS1, MGS1, IGS1) and (CGS2, MGS2, IGS2) correspond to the cylindrical roof respectively with thic
h1 = 12.7 andh2 = 6.35 and (CGS3, MGS3, IGS3) correspond to the cut out cylinder. In Fig. 2, one can c
see that the better accuracy is obtained using the IGS algorithm and that the CGS algorithm is the least
The behavior of the curves IGS is stable (ep � 10−15 for IGS1, IGS2 andep � 10−14 for IGS3) until the order
p = 40 while the CGS and MGS algorithms loose the precision (ep = 10−4) from respectively the orderp � 14
for CGS2 and CGS3,p � 16 for CGS1,p � 25 for CGS2 and CGS3,p � 30 for MGS1.
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Fig. 3. Residual curve for the cylindrical roof withh1 = 12.7: (a) orderp = 30, (b) orderp = 60.

Fig. 3. Courbe résidu pour le toit cylindrique avech1 = 12.7 : (a) ordrep = 30, (b) ordrep = 60.

(a) (b)

Fig. 4. Residual curve for the cylindrical roof withh2 = 6.35: (a) orderp = 30, (b) orderp = 60.

Fig. 4. Courbe résidu pour le toit cylindrique avech2 = 6.35 : (a) ordrep = 30, (b) ordrep = 60.

Let us analyse the decimal logarithm of the residual of the rational representation (5). We used for this
two sorts of scalar product: the ordinary scalar product (noted〈·, ·〉ORD) and the mass scalar product defined
〈U,V〉MAS = UTMV whereM is the mass matrix. We compare the rational representation (5) for the exam
the cylindrical roof with a thicknessh1 = 12.7 (Fig. 3) and for the example of the cylindrical roof with a thickn
h2 = 6.35 (Fig. 4). The Figs. 3 and 4 give the influence of the choice of scalar product (ORD for ordinary
product and MAS for mass scalar product) and the choice of the orthonormalization algorithm (CGS, MGS
In Figs. 3 and 4 one can see that if we use the IGS algorithm, we obtain the same results for the two scalar
For the CGS algorithm, we obtain with the two scalar products the same results that are less accurate. Th
obtained by using the MGS algorithms (usually used in the ANM) depend on the choice of the scalar pro
can be seen in Figs. 3 and 4. The MGS algorithm using the ordinary scalar product give the same results a
algorithm and the MGS algorithm using the mass scalar product give the same results as the CGS algorith

We have tested the Gram–Schmidt algorithms in ANM continuation [6], in the case of the cylindrical roo
h1 = 12.7, by using the ordinary scalar product (Fig. 5(a)) and the mass scalar product (Fig. 5(b)). One
from these figures that using the ordinary scalar product, two ANM steps coupled with IGS are slightly
than two ANM steps coupled with MGS and using the mass scalar product two ANM steps coupled with I
slightly lower than three ANM steps coupled with MGS.
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Fig. 5. Load-displacement curves for the cylindrical roof withh1 = 12.7 at the orderp = 28.

Fig. 5. Courbes charge-déplacement pour le toit cylindrique avech1 = 12.7 à l’ordrep = 28.

4. Conclusion

In this Note, we have compared the classical, modified and iterated Gram–Schmidt orthonormalization b
the ordinary and mass scalar product. The domain of validity obtained using the iterated and modified algo
much larger than the domain of validity obtained when we use the classical Gram–Schmidt algorithm. Th
results are always obtained by the IGS algorithm and, morever, the efficiency of the IGS algorithm does no
on the scalar product. That is why it is recommanded to apply the orthogonalization iteratively.
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