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Abstract

Nearly repetitive structures can present at least two kinds of vibration modes: localized modes and modulated ones. In this
Note, the multiple scale method is applied to characterize a packet of modulated modes. In this respect, only small size problems
are to be solved: periodic problems posed on a few basic cells and amplitude equations, which define a sort of homogenized
model for this type of modes. It is established that the influence of the non-repetitive part of the structure is accounted by a
boundary conditionTo citethisarticle: E.M. Daya et al., C. R. Mecanique 331 (2003).

0O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Une méthode asymptotique a deux échelles pour les modes de vibrations modulés des longues structures presque
répétitives. Les structures a forme presque répétitive peuvent avoir au moins deux types de modes, localisés ou modulés. Dans
cette Note, la méthode des échelles multiples est appliquée pour caractériser un paguet de modes modulés. Pour cela, on n'a
a résoudre que des problémes de petite taille : des problemes périodiques posés sur quelques cellules de base et des équations
d’amplitudes, qui définissent une sorte de modéle homogénéisé pour ce type de modes. On montre que l'influence de la partie
non répétitive de la structure est prise en compte par une condition aux liFotesciter cet article: E.M. Daya et al., C. R.

Mecanique 331 (2003).
0 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Large structures exhibiting a nearly periodic form are used in many domains, as aerospace industry. Such
structures, such as the one depicted in Fig. 1, present localized modes and modulated modes. The existence of
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Fig. 2. The 65 first eigenvalues obtained by direct simulation_fer 200,d = ¢ = 10, K = 100000, clamped beam.

the localized modes is well known as the vibration localization phenomenon [1,2]. Two main techniques have been
considered to study vibrations of nearly periodic systems: the wave propagation method and the transfer matrix
technique. Using the Lyapunov exponents of the transfer matrix, one measures the degree of wave localization in
multi-coupled nearly periodic systems [2]. Concerning nearly periodic structures, previous work was devoted to
understanding the vibration localization phenomenon. A literature review can be found in [1].

In this Note, one considers the modulated modes. Generally, these modes are closely located in well separated
bands, see Fig. 2. They appear as slow modulations of periodic ones, see Fig. 3. Because of the latter property, the
multiple scale asymptotic method [3] can be applied to describe this class of modes as established recently in the
case of large periodic structures [4,5]. In these works, an equivalent continuum model for the modulated modes
has been obtained. This model involves differential equations, whose coefficients can be obtained by solving some
problems posed on a few basic cells. It is not a simple matter to deduce the boundary conditions to be associated
with these differential equations. Here this question is revisited in the case of a repetitive structure coupled with a
non-repetitive one.

2. Two-scaleanalysis
2.1. Basic expansions

Consider the bending motions of the elastic beam of Fig. 1, as a representative of nearly repetitive structures.
It is the assembly of a periodic beam of lendtland a supplementary one, of lengthThe periodic part had/
identical cells, whose length 5= L/N. The equations for the vibration modes can be split in three parts, one for
the supplementary beam, one for the repetitive part and the matching between these two parts:

d*v;
dx4

— AV, =0, xe[—d,0] 1)
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Fig. 3. Some eigenmodes.
d*v, dv,
r ro,. . .
F—AVrZO, xe[o, L], dx3 (le) Z—KVr(le), l=1,...,N—1 (2)
X

Vs(0)=V,(0), V{(0)=V/0), V/0)=V"0), V"0 =V"0) 3)

wherei = pSw?/EI, K = % k is the spring stiffness an@? is the square of the natural frequendy(x)
(respectivelyV, (x)) is the deflection in the supplementary beam (respectively periodic beam). Obviously, Egs. (1)—

(3) have to be completed by boundary conditions.

As explained in [4,5], the multiple scale analysis can be used to describe the modulated modes. The principle
of this method can be described as follows. A small paramgteiintroduced, for instance as the ratio between
the length of the basic cell and the length of the whole structure. The starting{ pginto(x)} of the perturbation
technique is solution of the eigenvalue problem (2) posed on few basic cells and with periodicity conditions. As it

is classical [3],V, (x) andA are sought as an integer-power series with respegt to

o0 o0
Vi) =) 0V, X), A=) n'n 4)
i=0 =0

wherex is a local variable and = nx is a global variable that can describe the slow variation of the eigenmodes

(Fig. 3). The modé/, is assumed to be locally periodic, i.e., periodic with respect to the local vaniahiserting
the asymptotic expansions (4) into (2) and using the classical rules of the two-scale expansion method [3], one

finds an asymptotic expansion in the form:
V,(x, X) = Ao(X)wo(x) + n(A1(X)wo(x) + AG(X)w1(x)) +6(n?) (5)

wherew1(x) is solution of a periodic problemio(X) and A1(X) are amplitude functions that can account for
slow spatial modulations of the modes. These amplitude functions satisfy the following equations:

(6)

CAS + A2A0=0
(7)

CAE{ + AoA1 = DAS/ — A3Ap
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where the constants and D are determined from the periodic modeg(x) andwi(x). The detailed definition of
periodic problems satisfied by the modegx) and the constants, D can found in [1,4].

2.2. How to get boundary conditionsfor the amplitudes?

Because of the reduction of the 4th order equation (2) to the 2nd order one (6), it is not possible to satisfy
all the boundary conditions and there exist boundary layers. Some local corrections have to be introduced in the
expansions. As explained in [4], this correctio. can be defined by Floquet theory [6] and (4a) can be modified
as:

o
Vo) =Y 0" (Vii(x, X) + etiwioc(x)) (8)

i=0
So, two asymptotic expansions have to be considered. The first one is valid-aeéawherew)qc is the decreasing
Floquet function and the second is valid neat L wherew)qc is the increasing Floguet function. These functions
correspond to the non periodic eigensolutions of the fundamental transfer matrix [1,6].

Let us consider, for example, a clamped beam at L. The deduced boundary conditions for the amplitudes

Ap and A1 depend on the properties of the periodic meagthat satisfiesvg(L) = w6(L) =0 (case 2) or not
(case 1) [4]:

Ao(Ln)=0 and Aj(Ln)=CoAp(Ln) incasel (9)
Ap(Ln)=0 and A’(Ln) = CsAy(Ln) incase?2 (10)

The constant€’; and C3 are obtained from the periodic solutions and from the Floquet functiomqc, in the
same manner as the boundary conditions &at0, see (12)—(14) below.

Now, we discuss the similar treatment for the continuity conditions &t0 (3). These relations have to be
satisfied at each order of the previous asymptotic development. By solving Eq. (2) and boundary conditions at
x =—d, Vg(x) is as follows:

Vs(x) =ad1(r, x) + bg2(2, x) 11)

whereg1 (2, x), ¢2(A, x) are known functions, depending arandd, anda, b are arbitrary constants determined

from the continuity conditions (3). The latter constants a and b are also expanded into sgri€swidering (8),

(11) and using the derivative rules of the multiple scale method, one establishes that the continuity conditions (3)
leads to:

[ wo(0)  wioc(0)  —¢1(2, 00 —h2(2,0) T I Ao(0) 7 0

WO w0 —¢l0.0 —@)n0) o =0 at the first order (12)
L0 wige©® —¢{/(+,0 —¢5(, 015 bo 4 LO

[ wo(0)  wioc(0)  —¢1(A, 0 —¢2(2,0) 7 - 4,(0)7 w1(0)

w0 w0 —¢1(4, 0 =51, 0 o1 =—AH(0 w1 (0) at the second order (13
wi©0 w0 —¢{(h,0 —¢5(x,0) ap | =4O w/ (0) S (13)
Lwg' () wige® —¢{'(1.0) —¢5' (01 L b1 - w{'(0)

One assumes that this matrix is invertible. By condensatien af;, b;, one deduces the boundary conditions for
the amplitudes at = 0:

Ao(0) =0, A1(0) = C145(0) 14)

where( is a constant defined from the known functiang w1, wiec, ¢1, ¢2.
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2.3. Second and third order estimates of the spectrum

The amplitude equation (6) can be solved analytically on account of the boundary conditions (9), (10) and (14a).
This leads to an approximation of the spectrum closeto

Ao(X) = sin(nz X/Ln)
forcase 1 15
{A(n)=k0+Cn2n2/L2+9(n3), n=123..., S (15)
Ao(X) = sin(n X /2Ln)
for case 2 16
{)\(n)=A0+cn2n2/4L2+9(n3), n=1305... S (16)

At this stage in the asymptotic two-scale analysis, one can note that the method permits to generate an infinite
number of eigenvalues of the initial structure from a periodic mode. Formula (15) is identical to that obtained in
reference [4] for a clamped periodic beam. To get the effect of the supplementary beam, one has to consider the
analysis at the next order. The analysis is detailed for case 1 in what follows.

The operator in the left hand side of the amplitude equation (7) is singular, because of equation (6). Thus there
is a solvability condition:

Ly Ly
/(CA/l’ + A2A1)AgdX = /(DAg/ — A3A0)AodX (17)
0 0
Considering the amplitude equation (6) and boundary conditions (9), (10), (15), one finds ithat the form:
)»3=C(C1—C2)r1123—]:;, n=12... (18)
Thus, the asymptotic expansion of the eigenvaluasthird order is:
A=hxo+C*n®n?/L% n=12,..., whereC* = C(1+ (C1— C2)/L) (19)

The same analysis can be made for case 2 and one finds the approximation of the spectrum:
rA=ho+C*n®n?/4L% n=1,35,..., whereC* = C(1+ (2(C3— C1) — D)/L) (20)

3. Numerical results

Consider the structure depicted in Fig. 1. The material dat&ase.1 x 10, v = 0.3, p = 7800. The ends of
the whole beam are clamped. The whole structure and the basic cell have been discretised by cubic beam elements.
The whole structure has been split into 210 elements, which corresponds to 422 d.o.f. For the basic cell, only 22
d.o.f. are needed. The obtained eigenvalu@se reported in Fig. 2. For this example, the first and 22th modes
are localized modes. The modulated modes are closely located in well separated packets. Some modes for various
aspect ratiod /¢ are plotted on Fig. 3. The modulated modes appear as a slow modulation of a periodic one.

The following tables present some eigenvalues obtained from the present method at third order and those of
the direct computation. In Tables 1-3, we report the first eight eigenvalues corresponding to the modulated modes

Table 1
Smallest eigenvalues. Clamped bedm= 1, k = 100000,N = 21 cells,d/¢ = 1. Obtained values of the constantg; = 97.4, C = 59.19,
C*=5272

Mode number 2 3 4 5 6 7 8 9
Formula (19) 98.57 102.1 108.0 116.3 126.9 139.9 154.3 172.9
Direct computation 98.69 102.0 107.8 116.0 126.4 139.2 153.3 171.8
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Table 2

Smallest eigenvalues. Same data as in Table 1, eX¢ep60 cells. Modified constanC* = 57.25

Mode number 2 3 4 5 6 7 8 9
Formula (19) 97.6 98.3 99.4 101.0 103.0 105.5 108.4 111.8
Direct computation 97.6 98.3 99.4 101.0 103.1 105.5 108.5 111.9
Table 3

Smallest eigenvalues. Same data as in Table 1, exgépt 3. Modified constantC* = 54.51

Mode number 3 4 5 6 7 8 9 10
Formula (19) 98.6 102.2 108.3 116.8 127.7 141.1 156.8 175.0
Direct computation 98.6 102.5 108.6 116.5 1254 135.6 148.9 165.3
Table 4

Five eigenvalues at the end of the first packet structure. Same data as in Tabte 3003, C = —20994, C* = —196.96

Mode number 17 18 19 20 21
Formula (20) 411.0 446.3 472.7 490.3 499.3
Direct computation 417.5 446.4 471.2 489.5 499.3

of the first packet for different values of the aspect ratigé, N = L/¢. From these results, one can note that

the asymptotic two scale method at third order describes quite perfectly the eigenvalugs. r&iarilar results

have also been obtained (see Table 4) for the eigenvalues at the end of the first modulated modes packet using the
formula (20) [1]. By comparison of Tables 1 and 2, it appears that the accuracy of the estimate of the spectrum is
better when the number of cells is larger. The efficiency of the procedure does not seem to depend on the additional
structure: see Table 3. Moreover, the boundary condition (14) remains valid far, aeg Fig. 3(d).

4. Conclusions

In this Note, the existence of an equivalent continuous model for the modulated modes of a typical nearly
repetitive structure has been established. Especially, boundary conditions for the amplitude equations have been
deduced. This continuous model accounts for the beginning or the end of a mode packet. It is possible to extend the
model to describe a whole packet [1], but it is not easy to define the associated boundary conditions in any case.
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