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Abstract

Nearly repetitive structures can present at least two kinds of vibration modes: localized modes and modulated one
Note, the multiple scale method is applied to characterize a packet of modulated modes. In this respect, only small size
are to be solved: periodic problems posed on a few basic cells and amplitude equations, which define a sort of hom
model for this type of modes. It is established that the influence of the non-repetitive part of the structure is accoun
boundary condition.To cite this article: E.M. Daya et al., C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Une méthode asymptotique à deux échelles pour les modes de vibrations modulés des longues structures presque
répétitives. Les structures à forme presque répétitive peuvent avoir au moins deux types de modes, localisés ou modu
cette Note, la méthode des échelles multiples est appliquée pour caractériser un paquet de modes modulés. Pour c
à résoudre que des problèmes de petite taille : des problèmes périodiques posés sur quelques cellules de base et d
d’amplitudes, qui définissent une sorte de modèle homogénéisé pour ce type de modes. On montre que l’influence d
non répétitive de la structure est prise en compte par une condition aux limites.Pour citer cet article : E.M. Daya et al., C. R.
Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Large structures exhibiting a nearly periodic form are used in many domains, as aerospace indust
structures, such as the one depicted in Fig. 1, present localized modes and modulated modes. The ex
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Fig. 1. The considered nearly repetitive structure.

Fig. 2. The 65 first eigenvalues obtained by direct simulation forL= 200,d = �= 10,K = 100000, clamped beam.

the localized modes is well known as the vibration localization phenomenon [1,2]. Two main techniques ha
considered to study vibrations of nearly periodic systems: the wave propagation method and the transfe
technique. Using the Lyapunov exponents of the transfer matrix, one measures the degree of wave local
multi-coupled nearly periodic systems [2]. Concerning nearly periodic structures, previous work was dev
understanding the vibration localization phenomenon. A literature review can be found in [1].

In this Note, one considers the modulated modes. Generally, these modes are closely located in well s
bands, see Fig. 2. They appear as slow modulations of periodic ones, see Fig. 3. Because of the latter pro
multiple scale asymptotic method [3] can be applied to describe this class of modes as established recen
case of large periodic structures [4,5]. In these works, an equivalent continuum model for the modulated
has been obtained. This model involves differential equations, whose coefficients can be obtained by solv
problems posed on a few basic cells. It is not a simple matter to deduce the boundary conditions to be a
with these differential equations. Here this question is revisited in the case of a repetitive structure couple
non-repetitive one.

2. Two-scale analysis

2.1. Basic expansions

Consider the bending motions of the elastic beam of Fig. 1, as a representative of nearly repetitive st
It is the assembly of a periodic beam of lengthL and a supplementary one, of lengthd . The periodic part hasN
identical cells, whose length is�= L/N . The equations for the vibration modes can be split in three parts, on
the supplementary beam, one for the repetitive part and the matching between these two parts:

d4Vs

dx4 − λVs = 0, x ∈ [−d,0] (1)
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Fig. 3. Some eigenmodes.

d4Vr

dx4
− λVr = 0, x ∈ [0,L],

[[
d3Vr

dx3
(i�)

]]
= −KVr(i�), i = 1, . . . ,N − 1 (2)

Vs(0)= Vr(0), V ′
s (0)= V ′

r (0), V ′′
s (0)= V ′′

r (0), V ′′′
s (0)= V ′′′

r (0) (3)

whereλ = ρSω2/EI , K = k
EI

, k is the spring stiffness andω2 is the square of the natural frequency.Vs(x)

(respectivelyVr(x)) is the deflection in the supplementary beam (respectively periodic beam). Obviously, Eq
(3) have to be completed by boundary conditions.

As explained in [4,5], the multiple scale analysis can be used to describe the modulated modes. The
of this method can be described as follows. A small parameterη is introduced, for instance as the ratio betwe
the length of the basic cell and the length of the whole structure. The starting point{λ0,w0(x)} of the perturbation
technique is solution of the eigenvalue problem (2) posed on few basic cells and with periodicity condition
is classical [3],Vr(x) andλ are sought as an integer-power series with respect toη:

Vr(x)=
∞∑
i=0

ηiVri(x,X), λ=
∞∑
i=0

ηiλi (4)

wherex is a local variable andX = ηx is a global variable that can describe the slow variation of the eigenm
(Fig. 3). The modeVr is assumed to be locally periodic, i.e., periodic with respect to the local variablex. Inserting
the asymptotic expansions (4) into (2) and using the classical rules of the two-scale expansion method
finds an asymptotic expansion in the form:

Vr(x,X)= A0(X)w0(x)+ η
(
A1(X)w0(x)+A′

0(X)w1(x)
) + θ

(
η2) (5)

wherew1(x) is solution of a periodic problem.A0(X) andA1(X) are amplitude functions that can account
slow spatial modulations of the modes. These amplitude functions satisfy the following equations:

CA′′
0 + λ2A0 = 0 (6)

CA′′
1 + λ2A1 =DA′′′

0 − λ3A0 (7)
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where the constantsC andD are determined from the periodic modesw0(x) andw1(x). The detailed definition o
periodic problems satisfied by the modeswi(x) and the constantsC, D can found in [1,4].

2.2. How to get boundary conditions for the amplitudes?

Because of the reduction of the 4th order equation (2) to the 2nd order one (6), it is not possible to
all the boundary conditions and there exist boundary layers. Some local corrections have to be introduc
expansions. As explained in [4], this correctionwloc can be defined by Floquet theory [6] and (4a) can be mod
as:

Vr(x)=
∞∑
i=0

ηi
(
Vri(x,X)+ αiwloc(x)

)
(8)

So, two asymptotic expansions have to be considered. The first one is valid nearx = 0 wherewloc is the decreasing
Floquet function and the second is valid nearx = L wherewloc is the increasing Floquet function. These functio
correspond to the non periodic eigensolutions of the fundamental transfer matrix [1,6].

Let us consider, for example, a clamped beam atx = L. The deduced boundary conditions for the amplitu
A0 andA1 depend on the properties of the periodic modew0 that satisfiesw0(L) = w′

0(L) = 0 (case 2) or no
(case 1) [4]:

A0(Lη)= 0 and A1(Lη)= C2A
′
0(Lη) in case 1 (9)

A′
0(Lη)= 0 and A′

1(Lη)= C3A
′′
0(Lη) in case 2 (10)

The constantsC2 andC3 are obtained from the periodic solutionswi and from the Floquet functionwloc, in the
same manner as the boundary conditions atx = 0, see (12)–(14) below.

Now, we discuss the similar treatment for the continuity conditions atx = 0 (3). These relations have to b
satisfied at each order of the previous asymptotic development. By solving Eq. (2) and boundary cond
x = −d , Vs(x) is as follows:

Vs(x)= aφ1(λ, x)+ bφ2(λ, x) (11)

whereφ1(λ, x), φ2(λ, x) are known functions, depending onλ andd , anda, b are arbitrary constants determin
from the continuity conditions (3). The latter constants a and b are also expanded into series ofη. Considering (8),
(11) and using the derivative rules of the multiple scale method, one establishes that the continuity condi
leads to:


w0(0) wloc(0) −φ1(λ,0) −φ2(λ,0)

w′
0(0) w′

loc(0) −φ′
1(λ,0) −φ′

2(λ,0)

w′′
0(0) w′′

loc(0) −φ′′
1(λ,0) −φ′′

2(λ,0)

w′′′
0 (0) w′′′

loc(0) −φ′′′
1 (λ,0) −φ′′′

2 (λ,0)






A0(0)
α0
a0
b0


 =




0
0
0
0


 at the first order (12



w0(0) wloc(0) −φ1(λ,0) −φ2(λ,0)

w′
0(0) w′

loc(0) −φ′
1(λ,0) −φ′

2(λ,0)

w′′
0(0) w′′

loc(0) −φ′′
1(λ,0) −φ′′

2(λ,0)

w′′′
0 (0) w′′′

loc(0) −φ′′′
1 (λ,0) −φ′′′

2 (λ,0)






A1(0)
α1
a1
b1


 = −A′

0(0)



w1(0)

w′
1(0)

w′′
1(0)

w′′′
1 (0)


 at the second order (13

One assumes that this matrix is invertible. By condensation ofαi , ai , bi , one deduces the boundary conditions
the amplitudes atx = 0:

A0(0)= 0, A1(0)= C1A
′
0(0) (14)

whereC1 is a constant defined from the known functionsw0, w1, wloc, φ1, φ2.
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2.3. Second and third order estimates of the spectrum

The amplitude equation (6) can be solved analytically on account of the boundary conditions (9), (10) an
This leads to an approximation of the spectrum close toλ0:{

A0(X)= sin(nπX/Lη)

λ(n)= λ0 +Cn2π2/L2 + θ(η3), n= 1,2,3 . . . ,
for case 1 (15)

{
A0(X)= sin(nπX/2Lη)

λ(n)= λ0 +Cn2π2/4L2 + θ(η3), n= 1,3,5 . . .
for case 2 (16)

At this stage in the asymptotic two-scale analysis, one can note that the method permits to generate a
number of eigenvalues of the initial structure from a periodic mode. Formula (15) is identical to that obta
reference [4] for a clamped periodic beam. To get the effect of the supplementary beam, one has to con
analysis at the next order. The analysis is detailed for case 1 in what follows.

The operator in the left hand side of the amplitude equation (7) is singular, because of equation (6). Th
is a solvability condition:

Lη∫
0

(CA′′
1 + λ2A1)A0 dX =

Lη∫
0

(DA′′′
0 − λ3A0)A0 dX (17)

Considering the amplitude equation (6) and boundary conditions (9), (10), (15), one finds thatλ3 is in the form:

λ3 = C(C1 −C2)
n2π2

L3η3 , n= 1,2, . . . (18)

Thus, the asymptotic expansion of the eigenvaluesλ at third order is:

λ= λ0 +C∗n2π2/L2, n= 1,2, . . . , whereC∗ = C
(
1+ (C1 −C2)/L

)
(19)

The same analysis can be made for case 2 and one finds the approximation of the spectrum:

λ= λ0 +C∗n2π2/4L2, n= 1,3,5, . . . , whereC∗ = C
(
1+ (

2(C3 −C1)−D
)
/L

)
(20)

3. Numerical results

Consider the structure depicted in Fig. 1. The material data areE = 2.1× 1011, ν = 0.3,ρ = 7800. The ends o
the whole beam are clamped. The whole structure and the basic cell have been discretised by cubic beam
The whole structure has been split into 210 elements, which corresponds to 422 d.o.f. For the basic cell,
d.o.f. are needed. The obtained eigenvaluesλ are reported in Fig. 2. For this example, the first and 22th mo
are localized modes. The modulated modes are closely located in well separated packets. Some modes f
aspect ratiosd/� are plotted on Fig. 3. The modulated modes appear as a slow modulation of a periodic on

The following tables present some eigenvalues obtained from the present method at third order and
the direct computation. In Tables 1–3, we report the first eight eigenvalues corresponding to the modulate

Table 1
Smallest eigenvalues. Clamped beam.� = 1, k = 100000,N = 21 cells,d/� = 1. Obtained values of the constants:λ0 = 97.4, C = 59.19,
C∗ = 52.72

Mode number 2 3 4 5 6 7 8 9
Formula (19) 98.57 102.1 108.0 116.3 126.9 139.9 154.3 172
Direct computation 98.69 102.0 107.8 116.0 126.4 139.2 153.3 17
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Table 2
Smallest eigenvalues. Same data as in Table 1, exceptN = 50 cells. Modified constant:C∗ = 57.25

Mode number 2 3 4 5 6 7 8 9
Formula (19) 97.6 98.3 99.4 101.0 103.0 105.5 108.4 111
Direct computation 97.6 98.3 99.4 101.0 103.1 105.5 108.5 111

Table 3
Smallest eigenvalues. Same data as in Table 1, exceptd/�= 3. Modified constant:C∗ = 54.51

Mode number 3 4 5 6 7 8 9 10
Formula (19) 98.6 102.2 108.3 116.8 127.7 141.1 156.8 175
Direct computation 98.6 102.5 108.6 116.5 125.4 135.6 148.9 165

Table 4
Five eigenvalues at the end of the first packet structure. Same data as in Table 1.λ0 = 500.3,C = −209.94,C∗ = −196.96

Mode number 17 18 19 20 21
Formula (20) 411.0 446.3 472.7 490.3 499.3
Direct computation 417.5 446.4 471.2 489.5 499.

of the first packet for different values of the aspect ratiosd/�, N = L/�. From these results, one can note t
the asymptotic two scale method at third order describes quite perfectly the eigenvalues nearλ0. Similar results
have also been obtained (see Table 4) for the eigenvalues at the end of the first modulated modes packe
formula (20) [1]. By comparison of Tables 1 and 2, it appears that the accuracy of the estimate of the spe
better when the number of cells is larger. The efficiency of the procedure does not seem to depend on the a
structure: see Table 3. Moreover, the boundary condition (14) remains valid for anyd , see Fig. 3(d).

4. Conclusions

In this Note, the existence of an equivalent continuous model for the modulated modes of a typica
repetitive structure has been established. Especially, boundary conditions for the amplitude equations h
deduced. This continuous model accounts for the beginning or the end of a mode packet. It is possible to e
model to describe a whole packet [1], but it is not easy to define the associated boundary conditions in an
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