
blem for
ction and
functions
nes in his
rinciple

ec le
ondes de
démontre
la surface

ère simple
nnel pour

lle

by a
plitude,
r these
C. R. Mecanique 331 (2003) 489–494

On two-dimensional water waves in a canal

Vladimir Kozlova, Nikolay Kuznetsovb

a Department of Mathematics, Linköping University, 581 83 Linköping, Sweden
b Laboratory for Mathematical Modelling of Wave Phenomena, Institute for Problems in Mechanical Engineering,

Russian Academy of Sciences, V.O., Bol’shoy pr. 61, St. Petersburg 199178, Russia

Received 29 April 2003; accepted 12 May 2003

Presented by Évariste Sanchez-Palencia

Abstract

This Note deals with an eigenvalue problem that contains a spectral parameter in a boundary condition. The pro
the two-dimensional Laplace equation describes free, time-harmonic water waves in a canal having uniform cross-se
bounded from above by a horizontal free surface. It is shown that there exists a domain for which at least one of eigen
has a nodal line with both ends on the free surface. Since Kuttler essentially used the non-existence of such nodal li
proof of simplicity of the fundamental sloshing eigenvalue in the two-dimensional case, we propose a new variational p
for demonstrating this latter fact.To cite this article: V. Kozlov, N. Kuznetsov, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur les ondes de surface bidimensionnelles dans un canal. Cette Note porte sur un problème aux valeurs propres av
paramètre spectral dans la condition aux limites. Le problème pour l’équation de Laplace bidimensionnelle décrit les
surface libres, harmoniques dans le temps, dans un canal limité supérieurement par une surface libre horizontale. On
l’existence d’un domaine tel que au moins une des fonctions propres a une ligne nodale avec les deux extrémités sur
libre. Kuttler avait utilisé essentiellement la non - existence de telles lignes nodales dans sa démonstration du caract
de la valeur propre de ballottement dans le cas bidimensionnel. Nous proposons donc un nouveau principe variatio
prouver ce fait.Pour citer cet article : V. Kozlov, N. Kuznetsov, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction: statement of the problem

Let an inviscid, incompressible, heavy fluid (water) occupy an infinitely long canal bounded above
free surface of finite width. Let the surface tension be negligible and let the water motion be small-am
irrotational, and two-dimensional in the planes normal to the generators of the canal bottom B. Unde
assumptions the following spectral problem describes the free time-harmonic oscillations of water:
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reserved.
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uxx + uyy = 0 inW, uy = νu onF,
∂u

∂n
= 0 onB (1)

Hereu(x, y) is the velocity potential of the flow and rectangular Cartesian coordinates(x, y) are taken in the plan
of the motion, with the origin and thex-axis in the mean free surface, whereas they-axis is directed upwards
The canal cross-sectionW is a bounded, simply connected domain whose piecewise smooth boundary∂W has no
cusps. One of the open arcs forming∂W is an intervalF of thex-axis (the free surface of water), and the bott
B = ∂W \ �F is the union of open arcs, lying in the half-planey < 0, complemented by the corner points (if the
are any) connecting these arcs. We complement (1) by the following orthogonality condition∫

F

udx = 0 (2)

thus excluding the zero eigenvalue. The spectral parameterν in (1) is equal toω2/g, whereω is the radian frequenc
of water oscillations andg is the acceleration due to gravity.

This problem – it is usually referred to as the sloshing problem – has been the subject of a great
of studies over more than two centuries (a historical review is given by Fox and Kuttler [1]). It is well k
since the 1950s that problem (1), (2) has a discrete spectrum; that is, there exists a sequence of eig
0 < ν1 � ν2 � · · · � νn � · · ·, each having a finite multiplicity equal to the number of repetitions; moreo
νn → ∞ as n → ∞, and the corresponding eigenfunctions{un}∞1 ⊂ H 1(W) form a complete system in a
appropriate Hilbert space.

In his note [2], Kuttler tried to investigate the behaviour of nodal lines of the eigensolutionun. (In the spectra
theory of boundary value problems, studies of the patterns of nodal lines ascends to the classical w
Courant [3].) The approach in [2] is based on the following key lemma:

Lemma. Nodal lines of an eigenfunction of problem(1), (2)have one end on the free surface and the other on
the bottom.

Examining the proof of this lemma shows that there is a gap in Kuttler’s reasoning. Our attempt to
the gap resulted in constructing an example of sloshing eigenfunction that has a nodal line with both
the free surface (see Proposition 2.6). The construction involves one of the velocity potentials defined inR

2− and
having singularities on∂R2−; earlier these potentials were used for demonstrating the existence of point eigen
embedded in the continuous spectrum of the water-wave problem (see [4], Chapter 4).

Since all results formulated in [2] are proved by using the above fallacious lemma, it is necessary to
whether they are true. It occurs that one of the main results in [2], the simplicity of the fundamental eige
is valid (see Proposition 3.1), but the proof of this fact is far from being obvious. It involves a new varia
principle for an equivalent spectral problem in which stream function appears instead of the velocity poten

2. Nodal lines and domains of the velocity potential

In this section, we construct an example of the sloshing problem, possessing an eigenfunction that
one nodal line whose both ends are onF (Section 2.1), and consider some simple properties of nodal doma
Section 2.2.

2.1. Example

Our example involves a particular pair velocity potential/stream function introduced in [4], Section 4.1.
simplest example of this kind was proposed by McIver [5], but for our purpose we need another one that h
nodal lines. Here we investigate nodal lines ofu andv simultaneously in order to obtain the required exam
whereas in [4] properties of the level lines were studied only forv.
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For ν = 3/2 we consider the following two functions:

u(x, y)=
∞∫

0

cosk(x − π)+ cosk(x + π)
k − ν eky dk (3)

v(x, y)=
∞∫

0

sink(x − π)+ sink(x + π)
ν − k eky dk (4)

where both numerators vanish atk = ν = 3/2, and so the integrals are usual infinite integrals. It is easy to v
that u and v are conjugate harmonic functions inR2− such thatu(−x, y) = u(x, y) andv(−x, y) = −v(x, y).
Moreover,u andv are infinitely smooth up to∂R2− \ {x = ±π, y = 0} and well-known facts from the theory o
distributions imply that[uy − νu]y=0 is equal to a linear combination of Dirac’s measures atx = π andx = −π .
Therefore,

uy = νu on∂R2− \ {x = ±π,y = 0} (5)

The calculated nodal lines ofu andv are shown in Fig. 1 (bottom) and we proceed with formulations of sev
assertions proving that the location of the lines is as plotted. It is clear that the negativey-axis is a nodal line ofv
and another nodal line is described by

Proposition 2.1. Apart from {x = 0, y < 0}, there is only one nodal line ofv(x, y) in R
2−, which is smooth

symmetric about they-axis, and has both ends on thex-axis so that the right one, say(x0,0), lies between the
origin and the point(π,0).

The latter nodal line serves as the bottomB in our example; the right half of this line is shown by the das
line in Fig. 1 (bottom), where the bullet marks the position of(π,0) and the solid lines are nodal lines ofu. Since
(5) holds foru and the Cauchy–Riemann equations yield that the Neumann condition in (1) is fulfilled on
defined bottomB, we see thatu satisfies the sloshing problem in the domainW between thisB and thex-axis.

Fig. 1. Nodal lines ofu (solid lines) andv (dashed line) given by (3) and (4), respectively, withν = 3/2.
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Moreover, Fig. 1 (bottom) shows that there is only one nodal line ofu in this water domainW and this property
will be stated in Proposition 2.6 below.

Our proof of Proposition 2.1 is based on the next lemma illustrated in Fig. 1 (top), whereu(x,0) (solid line)
andv(x,0) (dashed line) are plotted.

Lemma 2.2. Functionv(x,0) has the following properties on the half-axisx � 0:

(i) v(x,0) is continuous on[0,π] and on[π,+∞), but

v(x,0)→ Si(3π)+ π

2
∓ π

2
asx→ π ± 0 (6)

(ii) there are exactly two zeroes ofv(x,0) on [0,π), at x = 0 and at some pointx0 ∈ (2π/3,π);
(iii) v(x,0) < 0 for x ∈ (0, x0) and there is only one pointxm ∈ (0, x0), wherev(x,0) attains minimum;
(iv) v(x,0) > 0 for x > x0;
(v) v(x,0) is a monotonically decreasing convex function forx > π and it tends to zero asx→ +∞.

The proof of this lemma is based on various representations forv(x,0) following from formulae 3.722.5 an
3.354.1 in Gradshteyn and Ryzhik [6] (see [4], Section 4.1.1 for details).

The behaviour ofu(x,0) is more complicated then that ofv(x,0) and the corresponding integral representa
following from 3.722.7 and 3.354.2 in [6] has the form:u(x,0) = 2πH(π − x)cosνx + ∫ ∞

0 [e−|x−π |kν +
e−(x+π)kν] k dk

1+k2 . It implies that there is a logarithmic singularity atx = π and that the function is positive
monotonically decreasing, and convex forx > π ; moreover, it tends to zero asx→ +∞. The existence of zeroe
is given by

Lemma 2.3. There are exactly two zeroes ofu(x,0) on (0,π) and the function changes sign at these zeroes.
first zero is atx = xm (see(iii ) in Lemma2.2) and the second one atx = xM , xm < xM < π .

An immediate consequence of this lemma is

Corollary 2.4. Two nodal lines ofu(x, y) emanate from(xm,0) and(xM,0).

More detailed behaviour of the nodal lines ofu (it is obvious that they are symmetric about they-axis) is
described by

Lemma 2.5. There are two nodal lines ofu in {x > 0, y < 0}; one of them emanates from(xm,0) and crosses the
negativey-axis and the other one emanates from(xM,0) and goes to infinity.

This lemma together with Proposition 2.1 allows us to prove

Proposition 2.6. Inside the domain bounded from below by the nodal line ofv that has endpoints at(±x0,0) the
sloshing eigenfunctionu given by(3) has a single nodal line with endpoints(±xm,0).
2.2. Properties of nodal domains

Let N(u) = {(x, y) ∈ �W : u(x, y) = 0} be the set of nodal lines of a sloshing eigenfunctionu. A connected
component ofW \N will be called a nodal domain. On account of (1), one concludes that each nodal doma
a piecewise smooth boundary without cusps. The following simple assertions from [2] is given here for the
completeness.

Lemma 2.7. If R is a nodal domain ofu, then�R ∩F contains an interval of thex-axis.
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Lemma 2.8. The number of nodal domains corresponding toun is less or equal ton+ 1.

Kuttler’s reasoning in [2], which is a version of the Courant’s original proof [3], turns out to be the proof
latter lemma when the unnecessary reference to the fallacious lemma is omitted.

An immediate consequence of Lemmas 2.7 and 2.8 is the following

Corollary 2.9. The sloshing eigenfunctionun cannot change sign more than2n times onF .

It should be noted that the number of nodal domains corresponding toun is less thenn + 1 in some cases
For instance, the eigenfunction constructed as the example in Section 2.1 has two nodal domains. How
corresponding eigenvalueν = 3/2 is not the fundamental one. (This follows from Proposition 3.1(ii), which s
that the fundamental eigenfunction has only one nodal line connectingF and�B.) Therefore, the number of nod
domains in the example which is equal to two is less than the maximal number permitted by Lemma 2.8 w
at least three. On the other hand, the eigenfunctions in a rectangle have the maximal number of nodal dom

3. The fundamental eigenvalue is simple

Proposition 3.1. (i) The fundamental eigenvalue of problem(1), (2) is simple.
(ii) The corresponding eigenfunction has only one nodal line connectingF and�B.

For proving this assertion we use a variational principle for a boundary value problem that is equivalen
(2) and involves the conjugate ofu harmonic functionv (stream function). The latter satisfies

vxx + vyy = 0 inW, −vxx = νvy onF, v = 0 onB (7)

Here the second condition is derived from the second condition in (1) by differentiation and application
Cauchy–Riemann equations; the last condition in (7) is obtained from the last condition in (1) by an app
choice of the additive constant inv. It is clear that the multiplicity ofν as an eigenvalue of (1), (2) is the same
its multiplicity as an eigenvalue of (7).

Without loss of generality we assume thatF = {−1< x < 1, y = 0}. For formulating a variational principle fo
problem (7), we rewrite the boundary condition onF in the form:

v = νKvy onF (8)

Here (Kf )(x) = ∫ 1
−1K(x, ξ)f (ξ)dξ and the symmetric kernelK(x, ξ) = K(ξ, x) is equal toK(x, ξ) =

(1 − x)(ξ + 1)/2 for ξ < x. It is clear thatK is a symmetric, positive operator inL2(F ). Finally, by DN we
denote the so-called Dirichlet–Neumann operator that mapsφ given onF into DNφ = Φy

∣∣
F

, whereΦ must be
found from the following Dirichlet problem:∇2Φ = 0 inW , Φ = φ onF , Φ = 0 onB. It is well known thatDN
is a positive, self-adjoint operator inL2(F ). It follows from (7) and (8) that for finding the fundamental eigenva
ν1 one can use the following variational principle:

ν1 = min
w∈H1

B(W)

∫
W |∇w|2 dx dy∫

F DNw (KDN)wdx
(9)

whereH 1
B(W) is the subspace ofH 1(W) that consists of functions with vanishing traces onB. Since the operato

defined by the quadratic form in the denominator is compact inH 1
B(W), there exists a nontrivial functionw∗

for which the quotient (9) attains the minimum. Moreover, it is easy to verify that∇2w∗ = 0 in W . Therefore,
DNw∗ =w∗

y , and sow∗ is an eigenfunction of (7).
The first statement in Proposition 3.1 is an immediate consequence of the following

Lemma 3.2. The fundamental eigenvalue of problem(7) is simple and the corresponding eigenfunction may
chosen to be positive inW ∪ F .
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Our proof of the second statement in Proposition 3.1 is based on examining the critical points ofv(x,0).
Let us consider water domains satisfying the extra condition thatW is contained within the semistrip bound

by �F and two vertical rays going downwards from the endpoints of�F . This condition was first introduced in th
work [7] by John (now it is usually referred to as John’s condition), where the so-called water-wave proble
considered (see also [4], Chapters 3 and 4). It occurs, that ifW satisfies John’s condition, then the second statem
of Proposition 3.1 may be improved.

Proposition 3.3. Let v be the fundamental eigenfunction of problem(7), thenv ∈ C1(�F). Moreover, ifW satisfies
John’s condition, then∓vx(±1,0) > 0. We recall that without loss of generalityF is assumed to coincide wit
{−1< x < 1, y = 0}.

4. Discussion

Let us discuss a couple of open questions concerning the eigensolutions to problem (1), (2). The first o
related to the number of sign changes onF of the eigenfunctionun. Our Corollary 2.9 gives only a rough upp
bound 2n for this number and the question is whether one can replace 2n by n as stated in [2], where the proof
based on the fallocious lemma. Of course, it follows from the explicit expression that thenth sloshing eigenfunctio
hasn changes of sign whenW is a rectangle andF is its top side.

Another open question is whetherall eigenvalues of problem (1), (2) are simple. There is a number of parti
geometries for which all eigenvalues are proved to be simple. Of course, this is obvious for rectangular d
whose top side is the free surface (by separation of variables one obtains the explicit expressions
eigenvalues and eigenfunctions in this case). A less trivial result is given implicitly in §258 of Lamb’s boo
where Kirchhoff’s solution is presented for the case whenB is formed by two segments atπ/4 to the vertical (we
recall that it is assumed thatF = {−1< x < 1, y = 0}). For this triangle the eigenvalues areνn = µn(tanhµn)(−1)n ,
whereµn, n= 1,2, . . . , are positive roots of cos2µcosh2µ= 1. Since the roots of the last transcendental equa
are simple, the sloshing eigenvalues are also simple. Recently, Kuznetsov and Motygin [9] established
eigenvalues are simple forW = R

2− whenF consists either of one gap or of two equal gaps in the rigid d
coveringW . Finally, for the domains which intersect thex-axis at right angles all eigenvalues with sufficiently lar
numbers are simple. This follows from the asymptotic formulaν = πn/2 − (κ+ + κ−)/4π + o(n−1) asn→ ∞
that was proved by Davis [10]. Hereκ+ (κ−) is the curvature ofB at the right (left) intersection with thex-axis.
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