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Abstract

Designing natural gas pipelines to safely and efficiently handle unsteady flows, requires knowledge of pressure drop
and temperature distribution throughout the system. The accurate prediction of these parameters is essential in order
optimum cumulative deliverability, and safe and reliable operation. An Adaptive Method of Lines algorithm is formula
the solution of Euler system of equations, which fully simulates slow and fast transients. Two test cases present the imp
of the numerical solution from grid adaptation. Good results are obtained both for slow and fast transients simulations
that the suggested numerical procedure is appropriate for such predictions.To cite this article: E. Tentis et al., C. R. Mecanique
331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Simulation d’écoulements dans un gazoduc par la méthode adaptative de lignes. La conception des gazoducs pour g
naturels permettant de maîtriser de manière sûre et efficace les écoulements non-uniformes nécessite une bonne c
de la chute de pression, du débit et de la distribution des températures à travers le système. Une prédiction corre
paramètres est essentielle pour obtenir une livraison optimale ainsi que sécurité et fiabilité maximales. L’algorithme
dans la Méthode Adaptative de Lignes est formulée ici pour la solution du système d’équations d’Euler, qui dé
bien les flux gazeux lents ou rapides. On présente deux cas particuliers illustrant l’amélioration considérable des
numériques grâce au choix de réseau adapté au problème. De bons résultats obtenus pour des simulations d’écoule
et rapides montrent que la procédure numérique suggérée est bien appropriée pour les prédictions de ce type.Pour citer cet
article : E. Tentis et al., C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

It is a well established fact that flow in gas pipelines is unsteady. Conditions are always changing wit
no matter how small the changes might be. Most times, transmission and distribution systems for the na
pipeline conveyance, are designed purely for constant supply and demand flow conditions. Neverthele
varying flow processes occur, due to the starting and stopping of compression stations, the use of ga
facilities and the fluctuating consumer demands. The investigation of such transient phenomena leads to
design methods and economic, online network control and monitoring.

The dynamic behavior of long pipelines is characterized by large time constants, sometimes of as m
several hours, due to the resistance to flow in pipes and the large storage capacity of the pipelines. Transien
complex and large scale systems can be satisfactorily described by the non-homogeneous, non-linear h
inviscid Euler system of conservation laws in one dimensional form. The appropriate method for the solu
that system must be accurate but also with low computational cost.

Traditional methods for the numerical analysis of that system are the Method of Characteristics (MO
and several finite difference schemes such as explicit finite differences [2] and fully implicit schemes, i.e.,
Nikolson method [3]. Recent relevant studies used higher resolution explicit TVD Methods for the solution o
discontinuities fronts [4]. An alternative computational approach is the Method of Lines (MOL) [5]. This tech
involves reducing an initial boundary value problem to a system of ordinary differential equations (ODE) i
through the use of a discretization in space. The resulting ODE system can be solved using variable step
order methods of numerical integration. The main advantage of the method is that by separating the pro
space and time discretization, it becomes easy to establish stability and convergence for a wide variety of p

According to previous studies [6,7] the MOL technique has been proved a reliable method for the s
of transients in gas pipeline systems. A common feature of these approaches is the use of a fixed spat
However, recent studies [8,9], which deal with the improvement of the Method of Lines, have reporte
adapting the spatial mesh offers important advantages with regards to efficiency and accuracy of the
process, particularly for problems with moving or highly localized features. This is a fact which has been ne
until now by researchers in the area of dynamic pipeline behavior.

The scope of the present paper is the development of an adaptive MOL algorithm and the investigati
performance for the unsteady gas pipe flow simulation. For that reason the one dimensional Euler sys
solved with the use of the MOL technique in connection with an adaptive grid algorithm. A static rem
procedure based on the equidistribution principle has been developed. Numerical experiments are used
off the effectiveness of the proposed grid adaptation which, indeed, is reducing the computational tim
calculation of the slow transient phenomena without significant losses in accuracy. The results which were
from a coarse adaptive grid solution proved to be equivalent with those obtained from a much finer uniform
slow transients propagation. Additionally, excellent improvement to the fast transients calculations was a
The proposed method is computationally efficient and is readily applicable as a method for design and co
network systems.

2. Mathematical formulation

The inhomogeneous, one-dimensional inviscid Euler system [10] of equations can describe comple
compressible unsteady gas flow in a horizontal pipeline with lengthL. It derives from the conservation of mas
momentum, energy for a small control volume. The flow can be adiabatic/isentropic which means flow w
heat exchange with the ground outside, or isothermal which implies flow with complete heat exchange w
ground outside. In general matrix representation the system is formulated as:

∂U

∂t
+ ∂F (U)

∂x
+ S(U)= 0 (1)
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whereU is a vector of dependent variables,F is a non-linear inU matrix andS is a vector accounting fo
irreversibility:

U =
[
ρ

ρu

e0

]
, F (U)=

[
ρu

ρu2 + p
(e0 + p)u

]
, S(U)=

[
ρuβ

ρ(G+ u2β)

(e0 + p)uβ − ρ(q + uG)

]
(2)

wheree0 = ρE = p/(Z(γ − 1))+ ρu2/2 is the total energy per unit volume,ρ is the density,u is the velocity and
p is the pressure. The inhomogeneous termS includes:

β = 1

A

dA

dx
, G= f u

2

2

u

|u|
4

D
, q = Q̇

ρAdx
(3)

which represent areaA, friction f and heat transfer effecṫQ respectively. For the closure of the system the equa
of statep =ZρRT is used, whereZ is the gas compressibility factor calculating with GERG-88 formula [11].
friction factorf is calculated with the explicit Colebrook–White formula.

3. Method of Lines

The Method of Lines is a convenient, reliable technique to approximate the solution of initial value pro
for systems of linear and nonlinear partial differential equations (PDE) [5]. There are two crucial aspects o
which determine the method’s success. The first deals with the choice of the spatial derivative’s approx
The second is the integrity of the chosen ODE solver.

For the discretization procedure of the system of Eq. (1), Taylor series approximation needs only first de
For higher accuracy a fourth order, five point approximation differentiation formula was used. For thei node:

∂F (xi)

∂x
= F(xi−2)− 8F(xi−1)+ 8F(xi+1)− F(xi+2)

3(�xi−2 +�xi−1 +�xi +�xi+1)
+ O

(
�x4) (4)

hence the system (1) converted to the following ODE system:

dUi
dt

= −F(xi−2)− 8F(xi−1)+ 8F(xi+1)− F(xi+2)

3(�xi−2 +�xi−1 +�xi +�xi+1)
− Si (5)

consisting of a total of 3∗n equations wheren is the number of computational nodes.�xi is the spatial step whic
is calculated as�xi = L/(n− 1) for the uniform grid and as�xi = xi+1 − xi for the adaptive grid.

For the time integration of the above ODE system, the implicit Gear’s Backward Differentiation Formula
method [12] was used. The method is appropriate for stiff systems of equations. The integration procedu
with automatic step size control and automatically selects the global error order of a given order bound.

4. Adaptive grid strategy

In order to reduce the truncation error of the solution in a coarse grid, an adaptive grid algorithm is develo
The discrete remeshing procedure consists of three main components. The first component is the algorith
construction of the new mesh ofM pointsXM , which derives from the existing mesh ofN pointsXN . The second
component is the interpolation operator for the definition of the solution in the new mesh in terms of the s
of the old mesh. The third component of the remeshing algorithm is the means of restarting the time integ

The spatial node movement is based on the equidistribution principle. For the description of the alg
consider the vector of the coordinates of the grid nodesx = [x1, x2, x3, . . . , xn] with xi−1< xi < xi+1 and having
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known locations at a time leveltj . Consider the corresponding solution as the vectorv = [v1, v2, v3, . . . , vn] for
one of the primitive variablesρ, u, p. The grid movement is based on the discrete function:

mi =
√
σ + α · ‖vx‖κ (6)

The parametersσ , α, κ are normally adjusted by solving a part of the problem. By the parameterσ > 0 the
maximum possible mesh-size can be controlled and a common value forκ is 2. The discrete functionmi is
converted to a continuous one with cubic spline interpolation. Integrating numerically themi with the trapezoida
rule from 0 toL the following area is calculated:

M0 =
∫ L

0 mi dx

n− 1
(7)

The newxi values are computed from the numerical solution with the Newton–Raphson method of the equ

mi +mi−1

2
(xi − xi−1)−M0 = 0 (8)

The values of the primitive variables are recalculated using polynomial interpolation for the updated va
the grid. The mesh is changed only at discrete times, interpolates the old mesh to the new mesh and the
the time integration. This approach is called static rezoning or discrete remeshing. Alternatively, as inter
operator a cubic-spline approximation may be used instead of polynomial interpolation so that the pr
derivatives behave more smoothly.

5. Results and discussion

For the evaluation of the adaptive grid model two representative test cases are examined. The gas veloc
as the monitoring function for the grid adaptation model. The CPU time is benchmarked in a 433 MHz P
personal computer. The bound for absolute and relative error of the Gear’s BDF method is set to 10−5. So long as
the grid adaptation movement is static the ODE’s integrator restarts 1000 times for case 1 and 100 times fo

5.1. Test case 1: Slow transient propagation in an actual transmission pipeline

The system consists of a 72259.5 m long and 0.2 m diameter pipeline which transports natural gas
specific gravity and 10◦C temperature. The gas viscosityµg is 11.84× 10−6 kg · m−1 · s−1 while the pipeline wall
roughness is 0.617 mm. The same problem has been simulated from Taylor et al. [13]. As concerns the b
conditions, at the pipeline’s inlet the gas pressure and density are kept constant whereas the pipe’s mass
at the outlet varies with a 24-hour cycle, corresponding to changes in consumer demand within a day (Fig

The numerical experiment was carried out as follows. A very coarse, 11 nodes adaptive grid, is compare
uniform one of the same size and with a finer one of 101 nodes. The Fig. 2 shows the comparison between
histories at pipe’s outlet for the three different grids. The coarse adaptive grid gave good results in com
to the finer grid, with a maximum deviation of 2.1%, only in a small section at the end of the experime
the contrary the uniform coarse grid presents significant deviation especially after 14 h, with maximum v
13.28%.

Fig. 3 depicts the comparison of volume flow rate at pipe’s inlet. Again the adaptive grid gave better resu
the uniform one. Fig. 4 shows the predicted pressure distributions along the pipeline at three times (t = 4.84, 12.95,
23.00 h). In all times, the pressure decreases monotonically from inlet to outlet, due to pressure drop in
direction along the pipeline. In Fig. 5 the time dependent adaptive grid movement along the pipeline is d
Table 1 is the summary of the numerical experiments’ parameters and computational costs. That is the
of steps that ODE’s integrator used as well as the computational time.�t is the mean value of the numeric
integration step. Grid adaptation improves the accuracy in comparison with the coarse uniform grid.
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Fig. 1. Prescribed outlet volume flow rate for test case 1
(boundary condition).

Fig. 2. Comparison between adaptive and uniform grids
for pipe’s outlet pressure history.

Fig. 3. Comparison between adaptive and uniform grids
for inlet volume flow rate history.

Fig. 4. Pressure distribution along pipeline at three
instants for test case 1.

Table 1
Computational statistics for test case 1

Grid Nodes Steps CPU (s) �t (s)

Uniform 101 1264905 5422.748 58.587
Uniform 11 391019 56.892 28.434
Adaptive 11 411617 69.710 28.682

5.2. Test case 2: Instantaneous closure of downstream valve

Severe transients conditions are created from a downstream valve’s stroking. Att = 0−, steady state flow is
established (pipeline length and diameter are 30 m and 0.1 m respectively) with gas mass flux of 20 kg·m−2 ·s and
inlet gas density of 2 kg· m−3; at t = 0+, the downstream valve is closed instantaneously, thus setting the gas
flux at the outlet equal to zero, while the inlet mass flux is maintained at its original value. The pipe rough
set to 0.03 mm, gas density is 0.795 kg· m−3 hence the duration of the numerical experiment is 0.08 s. Figs. 6
7 depict a comparison between the predicted wave fronts of velocity for uniform and adaptive grid of 101
Multiple lines show the velocity waves while travelling backwards along the pipeline after the valve’s str
The time interval between two neighboring wave fronts is 8 ms. In Fig. 8 the adaptive grid movement wi
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Fig. 5. Adaptive grid movement with time along pipeline
for test case 1.

Fig. 6. Velocity wave propagation with uniform grid
solution for test case 2.

Fig. 7. Velocity wave propagation with adaptive grid
solution for test case 2.

Fig. 8. Grid adaptive distribution with time along pipeline
for test case 2.

is shown. To ensure the clarity of the diagram only every fourth node is depicted. The spurious oscillati
very strong for the uniform grid solution. Using adaptive grid calculations the spurious oscillations are da
significantly especially after the first 0.01 s.

6. Conclusions

An adaptive MOL grid algorithm is combined with the full one-dimensional Euler equations for the simu
of unsteady flow in gas transmission systems. Two numerical experiments are used for the validatio
proposed method. The first simulates a slow transient propagation at a 24 h cycle, in a 72259.5 m long a
diameter pipeline. The numerical results of the adaptive coarse grid are in good agreement with those of
uniform one. On the contrary the uniform coarse grid gave poor results. From Table 1 we observe that sol
the adaptive MOL as compared to that with fine uniform grid is obtained significantly more efficiently, in ter
CPU time for numerical results obtained with almost the same accuracy.

In the second test case fast transients are created from the instantaneous closure of a downstream
short pipe. Intense spurious oscillations are present in the uniform MOL solution. On the other hand, us
adaptation, the results are improved dramatically without the use of any artificial viscosity terms or flux li
The solution captures and maintains the integrity of the wave fronts satisfactorily.
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The numerical results of this study prove that the proposed methodology is appropriate for the acce
of slow transient gas pipe predictions, and the error reduction in fast transient predictions. The investig
continuing and the optimization of the model and of the whole numerical procedure will be presented in
papers.
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