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Abstract

We study an evolutive model for electrical conduction in biological tissues, where the conductive intra-cellul
extracellular spaces are separated by insulating cell membranes. The mathematical scheme is an elliptic prob
dynamical boundary conditions on the cell membranes. The problem is set in a finely mixed periodic medium. We show
homogenization limitu0 of the electric potential, obtained as the period of the microscopic structure approaches zero
the equation−div(σ0∇xu0 + A0∇xu0 + ∫ t

0 A
1(t − τ)∇xu0(x, τ)dτ − F(x, t)) = 0 whereσ0 > 0 and the matricesA0, A1

depend on geometric and material properties, while the vector functionF keeps trace of the initial data of the original proble
Memory effects explicitly appear here, making this elliptic equation of non standard type.To cite this article: M. Amar et al.,
C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Limite d’homogénéisation pour la conduction électrique dans les tissus biologiques dans le domaine des radiofré-
quences. On étudie un modèle d’évolution pour la conduction électrique dans les tissus biologiques, où les espaces co
intracellulaires et extracellulaires sont séparés par des membranes cellulaires isolantes. Le schéma mathématique es
problème elliptique avec des conditions aux limites dynamiques sur les membranes des cellules. Le problème est for
un milieu périodique finement mixte. On démontre que la limite d’homogénéisationu0 du potentiel électrique, obtenue po
une période de la structure microscopique approchant de zéro, est solution de l’équation−div(σ0∇xu0 +A0∇xu0 + ∫ t0 A1(t −
τ)∇xu0(x, τ)dτ − F(x, t)) = 0 où σ0 > 0 et les matricesA0, A1 dépendent de la géométrie et des propriétés du maté
tandis que la fonction vectorielleF gardes une trace des données initiales du problème originaire. Des effets de mém
montrent ici explicitement, rendant cette équation elliptique de type non classique.Pour citer cet article : M. Amar et al., C. R.
Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords:Continuum mechanics; Electrical conduction; Homogenization; Biomathematics

Mots-clés :Mécanique des milieux continus ; Conduction électrique ; Homogénéisation ; Biomathématique

E-mail addresses:amar@dmmm.uniroma1.it (M. Amar), andreucci@dmmm.uniroma1.it (D. Andreucci), bisegna@uniroma2.it
(P. Bisegna), gianni@dmmm.uniroma1.it (R. Gianni).
1631-0721/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-0721(03)00107-4



504 M. Amar et al. / C. R. Mecanique 331 (2003) 503–508

phases,
logical

e interface
ction of
ee [1]).

phase,
ain. The

ut the
behavior

re finely

e
t

t

ain for

ct
1. Introduction

We consider a model for the electrical conduction in a medium composed of two different conductive
separated by a dielectric interface. This physical framework can be applied to electrical conduction in bio
tissues, where one of the phases is the extracellular space, the other one is the intra-cellular space, and th
is the cell membrane. Our model is designed to investigate the response of biological tissues to the inje
electrical currents in the radio-frequency range, that is the Maxwell–Wagner interfacial polarization effect (s
This effect is relevant in clinical applications like electric tomography and body composition (see [2]).

The mathematical scheme consists in partial differential equations of elliptic type prescribed in each
complemented with suitable boundary conditions at the interface, and at the boundary of the spatial dom
unknown function is here the electric potential.

Since the problem evolves in time, we have a family of elliptic problems parametrized by time; b
dependence of the unknown on time is not merely parametrical. Indeed, due to the resistive/capacitive
of the interface, the potential jumps across the interface, and the jump satisfies a dynamical condition.

On the other hand, also in view of the applications we have in mind, we assume that the two phases a
mixed with a microscopic periodic structure, so that the problem contains a small parameterε, coinciding with
the period of the microstructure. We investigate the homogenization limit of the electric potentialuε when we let
ε→ 0, in order to obtain a macroscopic model for the limiting potentialu0.

1.1. Main result

LetΩ be a bounded open connected set ofRN , N � 2. LetY = (0,1)N , and letE1 ⊂ Y be an open set mad
of a finite number of connected components whose closures do not intersect one another, or∂Y . We assume tha
E2 = Y \ E1 is a connected set, andΓ = ∂E1. For eachε > 0, we define the intra-cellular spaceΩε1 as the part
of the periodic latticeεz+ εE1, z ∈ Z, which is compactly contained inΩ . The extracellular spaceΩε2 is defined
asΩ \Ωε1, andΓ ε = ∂Ωε1 will represent the cell membranes. We assume thatΓ ε and∂Ω are smooth. Note tha
Γ ε ∩ ∂Ω = ∅, and thatΩε2 is connected, so that we are in the setting of [3].

We look at the homogenization limit asε→ 0 of the problem foruε(x, t) (here the operators div and∇ act only
with respect to the space variablex)

−div(σ1∇uε)= 0 inΩε1 (1)

−div(σ2∇uε)= 0 inΩε2 (2)

σ1∇u(int)
ε · ν = σ2∇u(out)

ε · ν onΓ ε (3)
α

ε

∂

∂t
[uε] + β

ε
[uε] = σ2∇u(out)

ε · ν onΓ ε (4)

[uε](x,0)= Sε(x) onΓ ε (5)

uε(x, t)= 0 on∂Ω (6)

The notation in (1)–(4), (6), means that the indicated equations are in force in the relevant spatial dom
0< t < T . Hereσ1, σ2, α > 0 andβ � 0 are constants, andν is the normal unit vector toΓ ε pointing intoΩε2.
Sinceuε is not in general continuous acrossΓ ε we have set

u(int)
ε := trace ofuε|Ωε1 onΓ ε; u(out)

ε := trace ofuε|Ωε2 onΓ ε

We also denote[uε] := u(out)
ε − u(int)

ε . Similar conventions are employed for other quantities; we also setσ = σ1 in
Ωε1, σ = σ2 inΩε2. The initial dataSε satisfiesSε(x)= εS1(x,

x
ε
)+ε2S2(x,

x
ε
)+o(ε2) where‖S1‖∞,‖S2‖∞ <∞,

S1(x, y), S2(x, y) are continuous inx, uniformly with respect toy ∈ ∂E1 (modZ), andY -periodic iny, for all
x ∈Ω . The dependence ofS1, S2 on the variabley = x/ε is introduced in order to take fully into account the effe
of the microscopic structure in the homogenized problem.
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Hereuε|Ωεi ∈H 1(Ωεi ), and (1)–(6) are solved in a standard weak sense.
For the sake of simplicity we have taken zero Dirichlet data in (6), but more realistic nonhomogeneous

treated with the same approach, leading to the same limiting equation (see [4]).

Theorem 1.1. Under the previous assumptions,uε → u0 weakly inL2(Ω) as ε→ 0, and the limiting potentia
u0 ∈H 1

0 (Ω) solves in the sense of distributions the equation

−div

(
σ0∇xu0 +A0∇xu0 +

t∫
0

A1(t − τ )∇xu0(x, τ )dτ −F(x, t)
)

= 0 (7)

where the matricesA0, A1 and the vector functionF are defined in(41), (42), andσ0> 0 is defined in(30).

In next section in order to identify the limit function, we make use of the Laplace transform (see [5]).
precisely, we first obtain the limit equation of the Laplace transform of problem (1)–(6), which gives a sta
scheme resembling a scheme studied by [3] in the context of linear elasticity. Then, we achieve the homo
equation (7), applying the inverse Laplace transform to the stationary limit equation.

2. Derivation of the homogenized equation

Multiplying (1), (2) byuε and integrating by parts we obtain for all 0< t < T the energy estimate

t∫
0

∫
Ω

σ |∇uε|2 dx dτ + α

2ε

∫
Γ ε

[uε]2(x, t)dσ + β

ε

t∫
0

∫
Γ ε

[uε]2 dσ dτ = α

2ε

∫
Γ ε

S2
ε (x)dσ (8)

Since|Γ ε|N−1 ∼ 1/ε, the right-hand side of (8) is stable asε→ 0 if Sε = O(ε), motivating our assumptions onSε.
This uniform estimate, together with a Poincaré-type inequality for functions with jumps (see [3,4]) yield a u
L2 bound foruε, which in turn implies weakL2 convergence of a subsequence ofuε to a limit u0; we still denote
here after such a subsequence byuε .

One may check that the Laplace transforms

Uε(x, s)=
∞∫

0

e−stuε(x, t)dt

are well defined fors ∈ C, with sufficiently large Re(s), and that theUε converge weakly to

Ũ0(x, s)=
∞∫

0

e−stu0(x, t)dt (9)

As customary when employing Laplace transforms, we assume thatuε and all other functions depending ont
identically vanish fort < 0. Let us calculate

∞∫
0

e−st ∂
∂t

[uε]dt = −Sε(x)+ s[Uε]

Then the problem solved byUε is

−div(σ∇Uε)= 0 inΩε1, Ω
ε
2 (10)

[σ∇Uε · ν] = 0 onΓ ε (11)
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ε
[Uε] = α

ε
Sε(x)+ σ2∇U(out)

ε · ν onΓ ε (12)

Uε(x, t)= 0 on∂Ω (13)

whereα̃ = α̃(s)= αs + β .
Existence of solutions to this problem follows from a standard application of Lax–Milgram theorem; the

applies to the cell problems stated below.
In order to identify the limiting problem we apply the classical two-scale approach (see [6]), and consi

asymptotic expansion in powers ofε

Uε(x, s)=U0(x, y, s)+ εU1(x, y, s)+ ε2U2(x, y, s)+ · · ·
wherey = x/ε is the microscopic variable. HereU0, U1 andU2 are periodic iny ∈ Y , andU1, U2 have zero
integral average overY . Then

∇Uε = 1

ε
∇yU0 + (∇xU0 + ∇yU1)+ ε(∇xU1 + ∇yU2)+ · · ·

A similar decomposition of Uε can be easily found. On substituting these expansions in (10)–(13), one fin
boundary problem solved byU0, U1 andU2 in the period cellY . The termU0 satisfies

−σ yU0 = 0 inE1, E2 (14)

[σ∇yU0 · ν] = 0 onΓ (15)

α̃[U0] = σ2∇yU(out)
0 · ν onΓ (16)

As a consequence,U0 =U0(x, s), a piece of information which we use below; in particular we stress that[U0] = 0.
Next, we look atU1, solving

−σ yU1 = 0 inE1, E2 (17)

[σ∇yU1 · ν] = −[σ∇xU0 · ν] onΓ (18)

α̃[U1] = αS1 + σ2∇yU(out)
1 · ν + σ2∇xU0 · ν onΓ (19)

It is convenient to separate inU1 the contributions ofU0 and of the initial dataS1; i.e., we write

U1(x, y, s)= −X (y, s) · ∇xU0(x, s)+ S(x, y, s)

Here the (transformed) cell functionsXh satisfy forh= 1, . . . ,N ,

−σ yXh = 0 inE1, E2 (20)[
σ(∇yXh − e) · ν]= 0 onΓ (21)

α̃[Xh] = σ2
(∇yX (out)

h − e
) · ν onΓ (22)

where{eh} is the standard basis inRN . As usual, theXh are assumed: (i) to be periodic inY ; (ii) to have zero
average overY . MoreoverS, besides fulfilling requirements (i) and (ii), must satisfy

−σ yS = 0 inE1, E2 (23)

[σ∇yS · ν] = 0 onΓ (24)

α̃[S] = αS1(x, y)+ σ2∇yS(out) · ν onΓ (25)

The limit equation will be obtained as a compatibility condition necessary for the solvability of the pro
for U2
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−σ yU2 = σ xU0 + 2σ
∂2U1

∂xj ∂yj
in E1, E2 (26)

[σ∇yU2 · ν] = −[σ∇xU1 · ν] onΓ (27)

α̃[U2] = αS2 + σ2∇yU(out)
2 · ν + σ2∇xU(out)

1 · ν onΓ (28)

Indeed, after straightforward calculations, we arrive at

σ0 xU0 =
∫
Y

σ xU0 dy =
∫
Γ

[σ∇xU1 · ν]dσ = div

(
−
∫
Γ

ν ⊗ [σX ]dσ ∇xU0 +
∫
Γ

[σS]ν dσ

)
(29)

where

σ0 = |E1|σ1 + |E2|σ2 (30)

and⊗ denotes tensor product.
We can prove that for sufficiently large Res, Eq. (29), complemented with homogeneous Dirichlet bound

conditions, has a unique solutionU0 ∈H 1
0 (Ω), which is holomorphic ins. For s ∈ R problem (10)–(13) is simila

to the one in [3]. However, the inhomogeneous term in (12), due to the initial dataSε and leading to the source ter
in (29), was not present there. It is possible, anyway, to apply the techniques of [3] to obtain that, fors ∈ R, the
sequence{Uε} converges to the functionU0. Hence, by unique holomorphic extension, we conclude thatU0 = Ũ0,
whereŨ0 has been defined in (9), and that the whole sequenceUε converges toU0.

In order to obtain the limiting equation in the variable space(x, t), it is only left to anti-transform (29); this i
best done by splittingX (y, s)= χ0(y)+X 1(y, s) where

−σ yχ0
h = 0 inE1, E2 (31)[

σ
(∇yχ0

h − eh
) · ν]= 0 onΓ (32)[

χ0
h

]= 0 onΓ (33)

Moreover

−σ yX 1
h = 0 inE1, E2 (34)[

σ∇yX 1
h · ν]= 0 onΓ (35)

α̃
[
X 1
h

]= σ2
(∇yχ0(out)

h − eh
) · ν + σ2∇yX 1(out)

h · ν onΓ (36)

Denote byL−1 the inverse Laplace transform. We have

L−1
(∫
Γ

ν ⊗ [
σX 1](y, s)dσ ∇xU0(x, s)

)
=

t∫
0

{∫
Γ

ν ⊗ [
σL−1(X 1)](y, t − τ )dσ}∇xu0(x, τ )dτ

Note that the existence of the above inverse Laplace transforms follows from standard estimates ofX 1 (a similar
remark applies toL−1(S) below). Defineχ1 = L−1(X 1); then it can be easily checked that

α
[
χ1
h(y,0)

]= σ2
(∇yχ0(out)

h − eh
) · ν, χ1

h = T
([
χ1
h(·,0)

])
Here the transformT (g) is defined byT (g)= v, wherev is the solution to

−σ yv = 0 inE1, E2 (37)

[σ∇yv · ν] = 0 onΓ (38)

α
∂

∂t
[v] + β[v] = σ2∇yv(out) · ν onΓ (39)

[v](y,0)= g(y) onΓ (40)
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herev is a periodic function inY , such that
∫
Y
v dy = 0. The problem (37)–(40) is parabolic in the abstract se

of [7], Chapter 7.
By means of a similar reasoning, one finds thatL−1(S(x, ·, ·)) = T (S1(x, ·)). Thereforeu0 solves (7), where

the matricesA0 andA1 are defined by

A0 =
∫
Γ

ν ⊗ [σ ]χ0 dσ, A1(t)=
∫
Γ

ν ⊗ [
σχ1](t)dσ (41)

and

F(x, t)=
∫
Γ

[
σT

(
S1(x, ·)

)]
(y, t)ν dσ (42)

The matricesA0 andA1 are symmetric, andσ0I +A0 is positive definite (see [4]).

3. Remarks on the T transform

TheT transform can be rewritten in a more expressive way by introducing the operator

C(g)= −σ2∇v(out) · ν
wherev solves the elliptic problem (37), (38), complemented with[v](y)= g(y) onΓ , and is periodic inY , with
zero average there.C is self-adjoint inH 1/2(Γ ), andC + λ is coercive forλ > 0 [4]. Let {wn} be a complete
orthonormal system of eigenfunctions ofC in L2(Γ ), and let{λn} be the corresponding sequence of nonnega
eigenvalues. It is known (see [7], Chapter 7) that[

T (g)
]
(y, t)=

∞∑
n=0

e−((β+λn)/α)twn(y)
∫
Γ

g(z)wn(z)dσ (43)

Indeed, one may formally write (39) asα ∂
∂t

[T (g)] + β[T (g)] = −C([T (g)]). Note that theλn, wn depend only
on the geometry ofE1, and on the conductivitiesσ1, σ2. On the other hand, through the representation form
(43), theλn,wn enter the homogenized constitutive functions in (7). Therefore it is hoped that reconstruction
constitutive functions in (7) may lead to gain some knowledge on the morphology and properties of the bio
tissue.
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