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Abstract

This work is devoted to the equilibrium distribution function for a fluid of mutually non-interacting identical composite
particles in three-dimensional physical space. The distribution function is derived within the generalized-kinetics (GK
from the proposed probabilistic model based on quantum-mechanical bosons and fermions. The first GK advantage
derivation does not involve any assumption on the interpolation between bosons and fermions whereas the resulting
provides this interpolation. The second GK advantage is that composons, the particles described with the GK-based d
function, are considerably less schematic and more consistent physically than quons. Composons correspond to a sp
of Isakov’s generalq-commutation relation involving an infinite number of theq-coefficients. Connection of the compos
concept to previous results in the literature is pointed out. A few directions for future research on the topic are form
The results of the work can be used in the composite-particle fluid problems where the Maxwell–Boltzmann descripti
valid, for instance, in dense populations of not too massive point-like particles of a complex, composite nature at not
temperatures.To cite this article: N. Bellomo et al., C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

La fonction de distribution d’équilibre pour des particules composées basée sur la cinétique généralisée. Ce travail
s’intéresse à la fonction de distribution d’équilibre pour un fluide mutuellement non agissant, composé de particule
dans un espace de dimension trois. La fonction de distribution provient, d’un point de vue de CG, d’un modèle pro
issu de la mécanique quantique des fermions et des bosons. Le premier avantage de CG est que la dérivation n
aucune hypothèse sur l’interpolation entre les bosons et les fermions alors que la fonction résultante fournit cette inte
Le second est que les composons, les particules décrites par ce procédé sont considérablement moins schématiq
consistantes, physiquement, que les quons. Les composons correspondent à un cas particulier de la relation génq-
commutation d’Isakov, pour un nombre infini deq-coefficients. Les résultats antérieurs liés au concept de composon
signalés et quelques directions de recherches futures sont proposées. Les résultats de ce travail peuvent servir p
de fluides composés, où la description Maxwell–Boltzmann n’est pas valable, par exemple, pour une dense popu
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1. The problem and the purpose of the work

This works is devoted to the equilibrium distribution function for a fluid of mutually non-interacting iden
composite point particles inthree-dimensional physical space. Composite particles are either elementary o
those formed by the latter.

If the fluid particles are elementary, then, as is well known (e.g., [1, §56]), the distribution function isf (x, ge)

wheref (x, g)= (g/h3)N(x,g), h is Planck’s constant,ge ∈ N is fixed,ge = 2se + 1, x = exp[(u− µ)/(KT )],
N = {1,2,3, . . .}, ge is the number of the particle–spin orientations,se is the particle quantum-spin numb
(expressing the intrinsic angular momentum of a particle, or its spin, withseh/(2π)), K is Boltzmann’s constan
T is the absolute temperature of the fluid,µ is the electrochemical potential,µ ∈ (−∞,∞), u� 0 is the particle
kinetic energy,N(x,g) is the mean occupation number,

N(x,g)= [
x + ι(g)

]−1
, exp

[−µ/(kT )] � −ι(g), g ∈ R (1)

ι(g)=
{0, g ∈ R\N

−1, g ∈ N andg is odd
1, g ∈ N andg is even

(2)

and R = (−∞,∞). Quantity ge is also known as the particleg-factor, or spin degeneracy, and, because
multiplier g in f (x, g), can be regarded as the particlemultiplicity. In what follows, we for brevity use this term
for ge. Also, for brevity, we shall callse the particle spin. Relationsge ∈ N andge = 2se + 1 correspond to

se ∈ {0,1/2,1,3/2,2, . . .} (3)

Numberge ∈N is odd or even depending on if the particles are bosons or fermions, respectively. Quantitiesf (x, g)

and (1) atg = ge whenge is odd (even) are called the Bose–Einstein (BE) (Fermi–Dirac (FD)) distribution fun
and mean occupation number respectively.

Not only elementary particles but also composite particles, even very big ones, manifest their quantum
This is emphasized by recent experimental results (e.g., [2]). However, common quantum mechanics
provide distribution functions for general composite particles. The rules to determine if a composite pa
boson or fermion (or, in terms off (x, g), what is a specific value ofι(g)) are known only in certain simpl
cases (e.g., [3, p. 25], [4]). Modern research works in the field are beyond the standard, either-boson-or
prescription. They are summarized, for example, in [5, Section 1] and the references therein. All thes
assume interpolations between bosons and fermions (see also Remark 5 below for the details).

The present work approaches the problem from an entirely different point of view. Section 2 propo
spin-mixture model and a derivation of the equilibrium distribution function within the generalized-kinetics
vision [6, Section 10.3], [7,8]. The composite particles described in this way are called ‘composons’. Se
shows that the resulting expression corresponds to a specific case of Isakov’s generalq-commutation relation an
points out how composons differ from quons. The work is summed up in Section 4. (All the remarks are form
in Section 2.)
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2. Probabilistic derivation of the boson–fermion interpolation: the GK-based distribution function for
composite particles

Since the fluid particles are composite, we generally do not know the corresponding specific value of the
multiplicity ge. It is natural to considerg in f (x, g) as a value of a random variable, say,G and setN as the set o
the values ofG. This means thatG is a function of elementary eventξ ∈Ξ , Ξ is the space of elementary even
and random variableG(·) is discrete. It presents therandom multiplicity of the fluid particles. More specifically
the random multiplicity takes value (cf.ge ∈ N) j ∈ N with probability

pj � 0, j ∈ N (4)

where
∞∑
j=1

pj = 1 (5)

We assume that expectationḡ of random multiplicityG exists, i.e.,

ḡ =
∫
R

gρ(g)dg <∞ (6)

The spin value corresponding topj is (j − 1)/2. The probability densityρ of random variableG is

ρ(g)=
∑
j∈N

pj δ(g− j), g ∈ R (7)

whereδ is the Dirac delta-function.
Subsequently, distribution functionf (x, g) can be regarded as the conditional distribution function unde

condition thatG(ξ)= g. The corresponding overall, joint distribution function is

f (x, g)ρ(g), exp
[−µ/(KT )] � −ι(g), g ∈ R (8)

In fact, this is a particular case of the generalized distribution function introduced in the GK theory [6, S
10.3], [7] (see also [8]). The key feature of function (8) is that it takes into account the randomness in the in
parameter, multiplicity g in the present case, of the fluid particles. Common, i.e., averaged in the multip
version�F(x) of f (x, g) is determined by means of (8) as the well-known expectation [7, Section 2], [8, (5.1)

�F(x)=
∫
R

f (x, g)ρ(g)dg (9)

It follows from (9), thef -function form, (1), (2), and (7) that (see also the text above (1) forx)

�F(x)= h−3[ḡb/(x − 1)+ ḡf /(x + 1)
]
, µ� 0 if ḡb > 0 (10)

where numbers

ḡb =
∫
R

∑
j∈N: j is odd

gpjδ(g − j)dg, ḡf =
∫
R

∑
j∈N: j is even

gpj δ(g − j)dg (11)

are the expectations of the bosonic and fermionic multiplicities of the fluid particles. Obviously, expectation
the total particle multiplicity is coupled with these numbers by equality

ḡ = ḡb + ḡf (12)

In view of relationsge = 2se + 1 and (7), the particle–spin-number expectations̄ corresponding to (6) is
s̄ = ∫

R
[(g− 1)/2]ρ(g)dg and hencēg can also be expressed as follows

ḡ = 2s̄ + 1 (13)
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Remark 1. The above random model describes the composite-particle multiplicity and spin with the infi
countable sets of the values corresponding to probabilities (4). If one needs to assign asingle value to the
multiplicity or spin, expectations̄g and s̄ are the very numbers to be used in this capacity. Note that the
generally real and hence need not be in setN and the set displayed in (3). The physical picture for the latte
pointed out in Remark 2 whereas Remark 6 discusses the corresponding examples.

Numbersḡ and s̄ coincide withge andse respectively if the fluid particles are elementary, i.e.,pj = 0 for all
j ∈ N such thatj �= ge andpge = 1. This also agrees with that (13) is the composite-particle generalizati
equalityge = 2se + 1.

Remark 2. Comparison of the GK model (10), (11) based on (9) with the well-known mixed-state represen
[9, (14.4), (14.6), (14.10)] shows the following. The proposed model describes a composite particle as a
at themixed quantum state composed of a countable set of the mixing states (pure or also mixed) wherej th
mixing state,j ∈ N, has multiplicityj (and spin(j − 1)/2). In so doing, probabilitiespj are similar to the one
used in the mixed-state density matrix (cf. [10, Chapter 3]). In other words, a composite particle is regard
particle with themultiplicity (or spin) mixture. This in particular leads to quantum correlations betweendifferent
mixing states of thesame composite particle, new phenomena in quantum mechanics.

Relations (4), (5), (11), and (12) imply that andḡb � Pb, ḡf � 2Pf , and

ḡ � 1+ Pf (14)

where numbers

Pb =
∫
R

∑
j∈N: j is odd

pj δ(g− j)dg � 0, Pf =
∫
R

∑
j∈N: j is even

pjδ(g − j)dg� 0 (15)

are the probabilities of that the fluid particles are bosons and fermions respectively. They are such that

Pb + Pf = 1 (16)

Equality (16) follows from (15) and the fact that functionρ (see (7)) is a probability density.

Remark 3. Relations (15), (16), and (11) indicate that the fluid particles are bosons (fermions) if and only ifPb = 1
(Pf = 1). Importantly, equalityPb = 1 (Pf = 1) is equivalent to equalitȳgf = 0 (ḡb = 0). Subsequently (see als
(14) and the inequalities above it),�Q ∈ [−1,1] where

�Q= (ḡb − ḡf )/(ḡb + ḡf ) (17)

�Q= 1 and�Q= −1 for bosons and fermions respectively. Since the boson-like conditionµ� 0 is necessary as fa
asḡb > 0 (orPb > 0), one can regard the particle nature to be mostly bosonic.

Remark 4. The probability(1 − Pb)(1 − Pf ) of that a particle of the fluid is neither boson nor fermion is,
virtue of (16), equal toPbPf , i.e., the probability of that the particle is both boson and fermion. This is the
based generalization of the common, either-boson-or-fermion prescription mentioned in Section 1. In thi
the present approach inherits the cornerstone rule of standard quantum distributions.

Remark 5. It follows from Remark 3 (see also (12)) that the GK-based model (10) describes a composite
by means of an interpolation between bosons and fermions. This interpolation isderived from the more basic, spin
mixture model (see Remark 2), as opposed to many works (e.g., [5,11–15]) which do assume the boson
interpolations. These interpolations are usually linear and implemented with the interpolating parameters (
‘q ’ on p. 705], [12, ‘q ’ in (1)], [13, ‘gab’ in (2)], [5, ‘ q1’, ‘ q2’, . . . in (81)–(83)]], [14, ‘gab’ in (24) for (23)], [15,
‘α’ in (2) and ‘αij ’ in (3), (4)]). The fact that the present work is free from any interpolation assumption is o
the key advantages of the underlying GK approach.
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We for brevity call the particles described with the GK-based distribution function (10), (11)composons (due
to French ‘composons’ which means ‘let us compose’). This term is thought to emphasize that the parti
naturally composed of bosons and fermions (cf. Remark 4) within the GK vision of the proposed spin-m
model with no formalistic assumptions on the boson-fermion interpolation.

Remark 6. Experiments show that composons, composite particles with the spin (or multiplicity) mixture,
One of many examples of composons is the165Ho(n,γ ) nucleus where [16] (about) 39% of the compound states
with spin 4 whereas 61% of the states are with spin 3. Subsequently, allpj , exceptp7 andp9, are zero,p7 = 0.61,
p9 = 0.39,Pb = 1, Pf = 0, ḡf = 0, ḡ = ḡb = 9 × 0.39+ 7 × 0.61= 7.78, s̄ = (7.78− 1)/2 = 3.39. Thus, the
165Ho(n,γ ) nucleus is boson withexpected spin 3.39. This illustrates Remarks 1 and 2 as well. Also rather sim
but dissimilar examples of composons are associated with experiments in nuclear science [17, Table 3], el
[18], relativistic gravity [19], biology [20–22], and the Fermi-gas theory [23,24].

The GK-based model (10) is fully determined if parametersḡb andḡf or, equivalently (see (11)), probabilitie
(4) of properties (5), (6) are available. They can be obtained by means of the experimental or theoretical
However, model (10) also admits another representation which is the topic of the next section.

3. Connection of the GK-based distribution function to Isakov’s general q-commutation
quantum-mechanical relation: composons and quons

The GK-based distribution function (10) is described with the help of two parametersḡb and ḡf . It can
equivalently be formulated in terms ofḡ (see (12)) and�Q (see (17)) where�Q, as we shall see below, turns out
be equal to parameterq1 in the generalq-commutation quantum-mechanical (QM) relation by Isakov [5]. We
consider a series of the related issues.

As is well known (e.g., [5, Section 2]), mean occupation numberN(x) (e.g., see (1)) involved inf (x, g) is
a fundamental notion which is introduced for fluids of rather general, composite particles, not only in the
boson-or-fermion case (ge ∈ N, (1)). For any fluid, the following features (e.g., [5, p. 743]) hold

N
(
1/x−1) = 0 and dN

(
1/x−1)/d(

x−1) = 1 in the limit case asx → ∞ (18)

This means that the mean occupation number forany fluid in the limit case in (18) coincides with the Maxwel
Boltzmann (MB) one, i.e.,N(x) = x−1. (Note that the MB version of distribution function (see (10)) inclu
ḡ (see (12)), namely,�F (x) = (ḡ/h3)x−1.) Mean occupation numberN(x) is coupled with the correspondin
partition functionΠ(x−1) as follows (e.g., [5, (14), (15)])

N
(
1/x−1) = x−1[dΠ(

x−1)/d(
x−1)]/[Π(

x−1)], lim
x−1→0

[
dΠ

(
x−1)/d(

x−1)]/[Π(
x−1)] = 1 (19)

The GK-based distribution function (10) is (see (12)) equivalent to�F(x) = (ḡ/h3)[x − (ḡb − ḡf )/(ḡb +
ḡf )]/(x2 − 1) whereµ � 0 if ḡb > 0. This can, after accounting Remark 3, be represented in the form si
to that of functionf , namely,�F(x)= f̄ (x, ḡ, �Q) where

f̄
(
x, ḡ, �Q ) = (

ḡ/h3)�N(
x, �Q )

(20)

and mean occupation number�N(x, �Q) differs from (1) since

�N(
x, �Q ) = [(

1+ �Q )
/2

]
(x − 1)−1 + [(

1− �Q )
/2

]
(x + 1)−1 = (

x + �Q )
/
(
x2 − 1

)
, µ� 0 if �Q>−1

(21)

It follows from Remark 3 that both coefficients(1 + �Q)/2 = ḡb/ḡ and(1 − �Q)/2 = ḡf /ḡ in (21) are in interval
[0,1]. They present the probabilities with which total multiplicityḡ (see (12)) is formed by bosonic and fermion
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multiplicities ḡb and ḡf , respectively. (Note that these probabilities generally differ from�Pb and �Pf .) One can
readily check that�N(x, �Q) has properties (18) as it should. The partition functionΠ(x−1, �Q)(see (19)) is (e.g.

[25, 140 and 141.1.])
√
(1+ x−1)1−�Q/(1− x−1)1+�Q whereµ� 0 if �Q>−1. It is reduced to the FD and BE cas

(e.g., [5, p. 743])(1+ x−1) and 1/(1− x−1) at �Q= −1 and�Q= 1, respectively.
The generalq-commutation QM relation was proposed and analyzed by Isakov [5]. It is [5, (83)]

aa† = 1+ q1a
†a + q2

(
a†)2

a2 + · · · = 1+
∞∑
i=1

qi
(
a†)iai (22)

wherea anda† are the QM annihilation and creation operators,q1 ∈ [−1,1], andqi = 0, i = 2,3, . . . , atq1 = ±1,
i.e., for bosons or fermions. If the particles are not fermions, i.e.,q1 > −1, then [5, Section 5.2 and the te
above (69)] coefficientsq1, q2, q3, . . . in (22) can be obtained from the expansion of mean occupation numb
the powers ofx−1. This expansion for composons follows from (21) and is of the form below

�N(
x, �Q ) = x−1 + �Qx−2 + x−3 + �Qx−4 + · · · , x > 1, µ� 0 if �Q>−1 (23)

This is a specific case of the series [5, (90)] corresponding to (22). Comparison of (23) and [5, (90)] po
that all the Isakov coefficients{qi}i∈N for composons are determined solely by�Q. In particular,q1 = �Q, q2 = 0
if �Q= −1, andq2 = 1 − �Q if �Q ∈ (−1,1]. Note thatq2 is discontinuous in the limit case as�Q→ −1 + 0 since
in this very case composons become fermions making the boson-like limitationµ � 0 which is presumed for a
�Q ∈ (−1,1] no longer necessary.

Composons are not quons. Compared to composons, quons [12] (see also [11]), [5, Section 5.1] are
oversimplified nature and considerably more schematic. Indeed, all Isakov’s coefficients in (22) exceptq1 for quons
are identically zero. This peculiar construction of quons does not protect them against the Gibbs paradox (
p. 707], [26, pp. 40–41]) associated with the so-called ‘quantum’ MB distribution atq1 = 0, i.e., the MB one tha
holds forall x ∈ R rather than as the second limit equality in (18). Unlike this, composons at�Q = 0 have (see
(21)) �N(x, �Q) = x/(x2 − 1), µ� 0, that is the same as [5, (21)] and can be regarded as thequasi-MB behavior,
somewhat similar to that stressed in [27, pp. 933, 934]. Also note that there is no derivation of quons from
basic model (like that in Section 2 for composons) either.

4. Summing up

The main results of this work are the following.

• The GK-based equilibrium distribution function (10) (or (20), (21), (12), (17)) and (11) (see also th
above (1) onx) of a three-dimensional fluid of mutually non-interacting composite identical point par
is obtained. Composons, the particles described with it, are composite particles with the mixture
multiplicity (or spin) of a particle (see Remark 2). Rather simple examples of composons are shown in
experiments (see Remark 6). Composons include both bosons and fermions as quite particular ca
Remarks 3 and 4). The above distribution fucntion is derived without assumptions on the boson–
interpolation (see Remark 5).

• The composon model stemming from the GK vision corresponds to a specific case of the Isakov
q-commutation relation (22) involving coefficients{q1, q2, . . .}. For composons, the work obtainsq1 = �Q
and determines Isakov’s coefficientq2 �= 0. Composons are not quons. Compared to quons, composo
considerably less schematic and more consistent physically. Connection of the composon concept
other results in theq-commutation relations is pointed out.

The results of the work can be especially useful in the composite-particle fluid problems where the Ma
Boltzmann description is not valid, for instance, in dense populations of not too massive point-like parti
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a complex, composite nature at not too high temperatures. Even if the Maxwell–Boltzmann description i
the present results are important since the corresponding distribution function depends (see the text betw
and (19)) on parameter (12). We also emphasize the following three problems for future research on th
(i) evaluation of Isakov’s coefficients{q3, q4, . . .} in (22) for composons, (ii) theoretical and experimental stu
on how to determine either probabilities (4), (5) or parameters (12) and (17), and (iii) development of the d
QM mixed-state treatment outlined in Remark 2.

Of a special interest are applications of the generalized-kinetics theory [6–8] to other problems in c
and quantum mechanics. This can noticeably facilitate solving the problems difficult to approach with the
common techniques.
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