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Abstract

This work is devoted to the equilibrium distribution function for a fluid of mutually non-interacting identical composite point
particles in three-dimensional physical space. The distribution function is derived within the generalized-kinetics (GK) vision
from the proposed probabilistic model based on quantum-mechanical bosons and fermions. The first GK advantage is that the
derivation does not involve any assumption on the interpolation between bosons and fermions whereas the resulting function
provides this interpolation. The second GK advantage is that composons, the particles described with the GK-based distribution
function, are considerably less schematic and more consistent physically than quons. Composons correspond to a specific case
of Isakov’s general-commutation relation involving an infinite number of thecoefficients. Connection of the composon
concept to previous results in the literature is pointed out. A few directions for future research on the topic are formulated.
The results of the work can be used in the composite-particle fluid problems where the Maxwell-Boltzmann description is not
valid, for instance, in dense populations of not too massive point-like particles of a complex, composite nature at not too high
temperaturesto cite thisarticle: N. Bellomo et al., C. R. Mecanique 331 (2003).
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Résumé

La fonction de distribution d’équilibre pour des particules composées basée sur la cinétique généralisée. Ce travalil
s'intéresse a la fonction de distribution d'équilibre pour un fluide mutuellement non agissant, composé de particules points
dans un espace de dimension trois. La fonction de distribution provient, d'un point de vue de CG, d'un modéle probabiliste
issu de la mécanique quantique des fermions et des bosons. Le premier avantage de CG est que la dérivation ne nécessite
aucune hypothése sur I'interpolation entre les bosons et les fermions alors que la fonction résultante fournit cette interpolation.
Le second est que les composons, les particules décrites par ce procédé sont considérablement moins schématiques et plus
consistantes, physiquement, que les quons. Les composons correspondent a un cas particulier de la relation générale de
commutation d’'lsakov, pour un nombre infini gecoefficients. Les résultats antérieurs liés au concept de composon sont
signalés et quelques directions de recherches futures sont proposées. Les résultats de ce travail peuvent servir pour I'étude
de fluides composés, ou la description Maxwell-Boltzmann n’est pas valable, par exemple, pour une dense population de
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particules, pas trop lourdes et a des températures pas trop élevées, et d'une comoposition de nature Bounpiire cet
article: N. Bellomo et al., C. R. Mecanique 331 (2003).
0 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. The problem and the purpose of the work

This works is devoted to the equilibrium distribution function for a fluid of mutually non-interacting identical
composite point particles ithree-dimensional physical space. Composite particles are either elementary ones or
those formed by the latter.

If the fluid particles are elementary, then, as is well known (e.g., [1, §56]), the distribution functfam,ig.)
where f (x, g) = (g/h®)N(x, g), h is Planck’s constangg, € N is fixed, go = 25, + 1, x = expl(u — ) /(K T)],
N={123,...}, g. is the number of the particle—spin orientations,is the particle quantum-spin number
(expressing the intrinsic angular momentum of a particle, or its spin,saith(27)), K is Boltzmann’s constant,

T is the absolute temperature of the fluidjs the electrochemical potential,e (—oo, 00), u > 0 is the particle
kinetic energyN (x, g) is the mean occupation number,

NG gy =[x +1@] " exd—u/(kT)]>—i(e), geR 1)
0, g e R\N
t(g)=1-1, geNandgisodd (2)

1, g €Nandgis even

and R = (—o0, 00). Quantity g, is also known as the particlg-factor, or spin degeneracy, and, because of
multiplier g in f(x, g), can be regarded as the partiahaltiplicity. In what follows, we for brevity use this term
for g.. Also, for brevity, we shall cali, the particle spin. Relationg € N andg, = 2s. + 1 correspond to

se€{0,1/2,1,3/2,2,..} 3)

Numberg, € N is odd or even depending on if the particles are bosons or fermions, respectively. Qu#ntities
and (1) atg = g. wheng, is odd (even) are called the Bose—Einstein (BE) (Fermi—Dirac (FD)) distribution function
and mean occupation number respectively.

Not only elementary particles but also composite particles, even very big ones, manifest their quantum nature.
This is emphasized by recent experimental results (e.g., [2]). However, common gquantum mechanics does not
provide distribution functions for general composite particles. The rules to determine if a composite particle is
boson or fermion (or, in terms of (x, g), what is a specific value af(g)) are known only in certain simple
cases (e.g., [3, p. 25], [4]).- Modern research works in the field are beyond the standard, either-boson-or-fermion
prescription. They are summarized, for example, in [5, Section 1] and the references therein. All these works
assume interpolations between bosons and fermions (see also Remark 5 below for the details).

The present work approaches the problem from an entirely different point of view. Section 2 proposes the
spin-mixture model and a derivation of the equilibrium distribution function within the generalized-kinetics (GK)
vision [6, Section 10.3], [7,8]. The composite particles described in this way are called ‘composons’. Section 3
shows that the resulting expression corresponds to a specific case of Isakov’s gerwrahutation relation and
points out how composons differ from quons. The work is summed up in Section 4. (All the remarks are formulated
in Section 2.)
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2. Probabilistic derivation of the boson—fermion interpolation: the GK-based distribution function for
composite particles

Since the fluid particles are composite, we generally do not know the corresponding specific value of the particle
multiplicity g.. Itis natural to consideg in f(x, g) as a value of a random variable, s&yand selN as the set of
the values ofG. This means tha is a function of elementary evebate =, = is the space of elementary events,
and random variabl& (-) is discrete. It presents thrandom multiplicity of the fluid particles. More specifically,
the random multiplicity takes value (¢f. € N) j € N with probability

pj=0, jeN (4)
where
o
> pi=1 (5)
j=1
We assume that expectatigrof random multiplicityG exists, i.e.,
§=/gp(g)dg<oo (6)
R
The spin value corresponding tg is (j — 1)/2. The probability density of random variablés is
p()=) pis(g—j). geR (7)
jeN

wheres is the Dirac delta-function.
Subsequently, distribution functiofi(x, g) can be regarded as the conditional distribution function under the
condition thatG (¢§) = g. The corresponding overall, joint distribution function is

fx.9p@). exg—u/(KT)]|>—1(g). geR (8)

In fact, this is a particular case of the generalized distribution function introduced in the GK theory [6, Section
10.3], [7] (see also [8]). The key feature of function (8) is that it takes into account the randomness in the involved
parameter, multiplicity g in the present case, of the fluid particles. Common, i.e., averaged in the multiplicity,
versionF (x) of f(x, g) is determined by means of (8) as the well-known expectation [7, Section 2], [8, (5.1)],i.e.,

F(x)= / f(x,9)p(g)dg (9)
R
It follows from (9), the f-function form, (1), (2), and (7) that (see also the text above (1} for
Fo)=h7[g/(c—D+g/(x+D], n<0 ifg>0 (10)
where numbers
2 =/ > epidg—jdg.  &f =/ Y epid(g—j)dg (11)
R J€N:jis odd R JE€N:jiseven

are the expectations of the bosonic and fermionic multiplicities of the fluid particles. Obviously, expectation (6) of
the total particle multiplicity is coupled with these numbers by equality

§=8r+8&r (12)
In view of relationsg, = 2s, + 1 and (7), the particle—spin-number expectatiomrorresponding to (6) is
5= fR[(g —1)/2]p(g) dg and hencg can also be expressed as follows

g=25+1 (13)
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Remark 1. The above random model describes the composite-particle multiplicity and spin with the infinitely
countable sets of the values corresponding to probabilities (4). If one needs to assigeavalue to the
multiplicity or spin, expectationg ands are the very numbers to be used in this capacity. Note that they are
generally real and hence need not be ineatnd the set displayed in (3). The physical picture for the latter is
pointed out in Remark 2 whereas Remark 6 discusses the corresponding examples.

Numbersg ands coincide withg, ands, respectively if the fluid particles are elementary, izg.,= 0 for all
J € N such thatj # g. and p,, = 1. This also agrees with that (13) is the composite-particle generalization of
equalityg, = 2s, + 1.

Remark 2. Comparison of the GK model (10), (11) based on (9) with the well-known mixed-state representations
[9, (14.4), (14.6), (14.10)] shows the following. The proposed model describes a composite particle as a particle
at themixed quantum state composed of a countable set of the mixing states (pure or also mixed) whj¢he the
mixing state,j € N, has multiplicity j (and spin(j — 1)/2). In so doing, probabilitieg; are similar to the ones

used in the mixed-state density matrix (cf. [10, Chapter 3]). In other words, a composite particle is regarded as a
particle with themultiplicity (or spin) mixture. This in particular leads to quantum correlations betwdiéfierent

mixing states of theame composite particle, new phenomena in quantum mechanics.

Relations (4), (5), (11), and (12) imply that aggl> Py, g > 2P, and

where numbers
Pb=/ Z pjd(g—j)dg =0, PfZ/ Z pid(g—j)dg=0 (15)
R jeN: jis odd R jeN: j is even

are the probabilities of that the fluid particles are bosons and fermions respectively. They are such that
P,+Pr=1 (16)
Equality (16) follows from (15) and the fact that functipr(see (7)) is a probability density.

Remark 3. Relations (15), (16), and (11) indicate that the fluid particles are bosons (fermions) if and Bny it
(Pr =1). Importantly, equality?, = 1 (P = 1) is equivalent to equality s = 0 (g, = 0). Subsequently (see also
(14) and the inequalities above i), € [-1, 1] where

0=&—81/@+8&p) 17)
0 =1 andQ = —1 for bosons and fermions respectively. Since the boson-like conditiol is necessary as far
asg, > 0 (or P, > 0), one can regard the particle nature to be mostly bosonic.

Remark 4. The probability(1 — P,)(1 — Py) of that a particle of the fluid is neither boson nor fermion is, by
virtue of (16), equal taP, Py, i.e., the probability of that the particle is both boson and fermion. This is the GK-
based generalization of the common, either-boson-or-fermion prescription mentioned in Section 1. In this sense,
the present approach inherits the cornerstone rule of standard quantum distributions.

Remark 5. It follows from Remark 3 (see also (12)) that the GK-based model (10) describes a composite particle
by means of an interpolation between bosons and fermions. This interpoladi&ivisd from the more basic, spin-
mixture model (see Remark 2), as opposed to many works (e.g., [5,11-15]) which do assume the boson—fermion
interpolations. These interpolations are usually linear and implemented with the interpolating parameters (e.g., [11,
‘g’ on p. 705], [12, g’ in (1)], [13, ‘gap’ In (2)], [5, ‘g1, ‘g2, ... in (81)—(83)1], [14, ‘gap’ in (24) for (23)], [15,

‘a’in (2) and ‘o;;’ in (3), (4)]). The fact that the present work is free from any interpolation assumption is one of
the key advantages of the underlying GK approach.
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We for brevity call the particles described with the GK-based distribution function (10)céhijosons (due
to French ‘composons’ which means ‘let us compose’). This term is thought to emphasize that the particles are
naturally composed of bosons and fermions (cf. Remark 4) within the GK vision of the proposed spin-mixture
model with no formalistic assumptions on the boson-fermion interpolation.

Remark 6. Experiments show that composons, composite particles with the spin (or multiplicity) mixture, exist.
One of many examples of composons istfrRHo(n,y) nucleus where [16] (about) 39% of the compound states are

with spin 4 whereas 61% of the states are with spin 3. Subsequenily, &kceptp7 andpg, are zeropz = 0.61,
p9=039,P, =1 Pr=0,8y=0,2=2,=9%x039+7x0.61=7.78,5 = (7.78— 1)/2 = 3.39. Thus, the
165H0(n,y) nucleus is boson withxpected spin 3.39. This illustrates Remarks 1 and 2 as well. Also rather simple

but dissimilar examples of composons are associated with experiments in nuclear science [17, Table 3], electronics
[18], relativistic gravity [19], biology [20—22], and the Fermi-gas theory [23,24].

The GK-based model (10) is fully determined if parameggrandg ; or, equivalently (see (11)), probabilities
(4) of properties (5), (6) are available. They can be obtained by means of the experimental or theoretical studies.
However, model (10) also admits another representation which is the topic of the next section.

3. Connection of the GK-based distribution function to I sakov’s general g-commutation
quantum-mechanical relation: composons and quons

The GK-based distribution function (10) is described with the help of two paramgjeasnd g . It can
equivalently be formulated in terms gf(see (12)) and) (see (17)) wherg), as we shall see below, turns out to
be equal to parametes in the generay-commutation quantum-mechanical (QM) relation by Isakov [5]. We first
consider a series of the related issues.

As is well known (e.g., [5, Section 2]), mean occupation numkér) (e.g., see (1)) involved irf (x, g) is
a fundamental notion which is introduced for fluids of rather general, composite particles, not only in the either-
boson-or-fermion case{ € N, (1)). For any fluid, the following features (e.g., [5, p. 743]) hold

N(1/x1) =0 and av(1/x~Y)/d(x"Y) =1 inthe limitcase as — oo (18)

This means that the mean occupation numbeafyrfluid in the limit case in (18) coincides with the Maxwell—
Boltzmann (MB) one, i.e.N(x) = x 1. (Note that the MB version of distribution function (see (10)) includes
g (see (12)), namelyF (x) = (z/h%)x~1.) Mean occupation numbe¥ (x) is coupled with the corresponding
partition function/7 (x 1) as follows (e.g., [5, (14), (15)])

Nx) =x M dn (T hd YA lim [dn(CdE))[AET)]=1 19
The GK-based distribution function (10) is (see (12)) equivalenFte) = (3/h3)[x — (g, — g1/ @y +

gf)]/(x2 — 1) whereu < 0 if g, > 0. This can, after accounting Remark 3, be represented in the form similar
to that of functionf, namely,F (x) = f(x, g, Q) where

f(x.3.0)=(3/h®)N(x.0) (20)
and mean occupation numh®ix, Q) differs from (1) since

N(x 0)=[1+0)2lc - +[(1-0)/2]Jx+ D =(x+Q)/(x*~1), n<O fQ>-1
(21)

It follows from Remark 3 that both coefficients + 0)/2 = g»/g and(1— Q)/2= gs/g in (21) are in interval
[0,1]. They present the probabilities with which total multipliciy(see (12)) is formed by bosonic and fermionic



466 N. Bellomo et al. / C. R. Mecanique 331 (2003) 461-467

multiplicities g, and g, respectively. (Note that these probabilities generally differ frE_mand P7f.) One can
readily check thaiV (x, Q) has properties (18) as it should. The partition functidtr—1, Q)(see (19)) is (e.g.,
[25, 140 and 141.1.M(1 +x~1)1-0/(1 — x~1)1+0 whereu < 0if O > —1. Itis reduced to the FD and BE cases
(e.9.,[5,p. 743 1+ xYH and ¥(1—x~1) atQ = —1 andQ = 1, respectively.

The generay-commutation QM relation was proposed and analyzed by Isakov [5]. It is [5, (83)]

o0
aaT=1+qlaTa+q2(aT)2a2+...=1+ Zqi(aT)lai (22)

wherea anda are the QM annihilation and creation operatgtise [—1, 1], andg; =0,i =2,3, ..., atgs = +1,

i.e., for bosons or fermions. If the particles are not fermions, 4£> —1, then [5, Section 5.2 and the text
above (69)] coefficients, g2, g3, ... in (22) can be obtained from the expansion of mean occupation number in
the powers ofc ~1. This expansion for composons follows from (21) and is of the form below

N, 0)=x14+0x2+x2+0x*+--, x>1 <0 if0>-1 (23)

This is a specific case of the series [5, (90)] corresponding to (22). Comparison of (23) and [5, (90)] points out
that all the Isakov coefficient; };cn for composons are determined solely @y In particular,qy = 0,q2=0
if 0=—1,andg2=1—- Q if Q0 € (-1, 1]. Note thatg, is discontinuous in the limit case & — —1 + 0 since
in this very case composons become fermions making the boson-like limifatof which is presumed for all
0 € (-1, 1] no longer necessary.

Composons are not quons. Compared to composons, quons [12] (see also [11]), [5, Section 5.1] are of a little
oversimplified nature and considerably more schematic. Indeed, all Isakov’s coefficients in (22);eXoegtions
are identically zero. This peculiar construction of quons does not protect them against the Gibbs paradox (e.g., [11,
p. 707], [26, pp. 40—41]) associated with the so-called ‘quantum’ MB distributign @10, i.e., the MB one that
holds forall x € R rather than as the second limit equality in (18). Unlike this, composoiis-at0 have (see
(21)) N(x, Q) = x/(x2 — 1), u < 0, that is the same as [5, (21)] and can be regarded agutiseMB behavior,
somewhat similar to that stressed in [27, pp. 933, 934]. Also note that there is no derivation of quons from a more
basic model (like that in Section 2 for composons) either.

4. Summing up

The main results of this work are the following.

e The GK-based equilibrium distribution function (10) (or (20), (21), (12), (17)) and (11) (see also the text
above (1) onx) of a three-dimensional fluid of mutually non-interacting composite identical point particles
is obtained. Composons, the particles described with it, are composite particles with the mixture of the
multiplicity (or spin) of a particle (see Remark 2). Rather simple examples of composons are shown in various
experiments (see Remark 6). Composons include both bosons and fermions as quite particular cases (see
Remarks 3 and 4). The above distribution fucntion is derived without assumptions on the boson—fermion
interpolation (see Remark 5).

e The composon model stemming from the GK vision corresponds to a specific case of the Isakov general
g-commutation relation (22) involving coefficien{gs, ¢, ...}. For composons, the work obtaigs = O
and determines Isakov’s coefficieqit # 0. Composons are not quons. Compared to quons, composons are
considerably less schematic and more consistent physically. Connection of the composon concept to some
other results in thg-commutation relations is pointed out.

The results of the work can be especially useful in the composite-particle fluid problems where the Maxwell—
Boltzmann description is not valid, for instance, in dense populations of not too massive point-like particles of
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a complex, composite nature at not too high temperatures. Even if the Maxwell-Boltzmann description is valid,
the present results are important since the corresponding distribution function depends (see the text between (18)
and (19)) on parameter (12). We also emphasize the following three problems for future research on the topic:
(i) evaluation of Isakov’s coefficientgs, ga, ...} in (22) for composons, (ii) theoretical and experimental studies
on how to determine either probabilities (4), (5) or parameters (12) and (17), and (iii) development of the detailed
QM mixed-state treatment outlined in Remark 2.

Of a special interest are applications of the generalized-kinetics theory [6—8] to other problems in classical
and quantum mechanics. This can noticeably facilitate solving the problems difficult to approach with the help of
common techniques.
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