
iew

lentin
ration
is
quasi-

ng force.
cussed
ian fluid

ssinesq
amics
tion.

ité
ssinesq

ants, les
t

, tout en

ellation,
ions quasi-

poussée
t sur son
sinesq »)
mentaires.
oussinesq
s (d’Euler
C. R. Mecanique 331 (2003) 575–586

Concise Review Paper/Le point sur...

Joseph Boussinesq and his approximation: a contemporary v

Radyadour Kh. Zeytounian

12, rue Saint-Fiacre, 75002 Paris, France

Article written at the invitation of the Editorial Board

Abstract

A hundred years ago, in his 1903 volume II of the monograph devoted to ‘Théorie Analytique de la Chaleur’, Joseph Va
Boussinesq observes that: “The variations of density can be ignored except were they are multiplied by the accele
of gravity in equation of motion for the vertical component of the velocity vector.” A spectacular consequence of th
Boussinesq observation (called, in 1916, by Rayleigh, the ‘Boussinesq approximation’) is the possibility to work with a
incompressible system of coupled dynamic, (Navier) and thermal (Fourier) equations where buoyancy is the main drivi
After a few words on the life of Boussinesq and on his observation, the applicability of this approximation is briefly dis
for various thermal, geophysical, astrophysical and magnetohydrodynamic problems in the framework of ‘Boussinesqu
dynamics’. An important part of our contemporary view is devoted to a logical (100 years later) justification of this Bou
approximation for a perfect gas and an ideal liquid in the framework of an asymptotic modelling of the full fluid dyn
(Euler and Navier–Stokes–Fourier) equations with especially careful attention given to the validity of this approximaTo
cite this article: R.Kh. Zeytounian, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Joseph Boussinesq et son approximation : un aperçu actuel.En 1903, Gauthier-Villars éditait à Paris le tome II, du tra
de Joseph Boussinesq intitulé : « Théorie Analytique de la Chaleur ». A la page VII de l’Avertissement à ce tome II Bou
écrit :

« .. il fallait encore observer que, dans la plupart des mouvements provoqués par la chaleur sur nos fluides pes
volumes ou les densités se conservent à très peu près, quoique la variation correspondante du poidsde l’unité de volume soi
justement la cause des phénomènes qu’il s’agit d’analyser.

De là résulte la possibilité de négliger les variations de la densité, là où elles ne sont pas multipliées par la gravité g
conservant, dans les calculs, leur produit par celle-ci».

Cette observation est, ce que l’on appelle, aujourd’hui : « l’approximation de Boussinesq » (en accord avec l’app
en 1916, de Rayleigh), et une conséquence spectaculaire en est la possibilité de considérer un système d’équat
incompressible couplé pour la dynamique (équation de Navier) et la température (équation de Fourier) pour lequel la
d’Archimède est la force active principale régissant le mouvement. Après un bref aperçu sur la vie de Boussinesq e
observation, l’application de l’approximation de Boussinesq (dans le cadre d’une « dynamique des fluides de Bous
pour les problèmes thermiques, géophysiques, astrophysiques et magnétohydrodynamiques fait l’objet de divers com
Une part importante de notre aperçu actuel est consacrée à une justification logique de cette approximation de B
(100 ans après) pour un gaz parfait et un liquide ideal, dans le cadre d’une modélisation asymptotique des équation

E-mail address:zeytounian@aol.com (R.Kh. Zeytounian).
1631-0721/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-0721(03)00120-7
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et de Navier–Stokes–Fourier) de la dynamique des fluides, avec une attention toute particulière pour ce qui concerne
de cette approximation.Pour citer cet article : R.Kh. Zeytounian, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords:Fluid mechanics; Asymptotic modelling in fluid dynamics; Thermal convection; Geo-astro physical fluid dynamics;
Magneto-hydrodynamics

Mots-clés :Mécanique des fluides ; Modélisation asymptotique en dynamique des fluides ; Convection thermique ; Dynamique des flu
Géo-astro physiques : Magnéto-hydrodynamique

1. A few lines concerning Joseph Boussinesq and his approximate equations with an additional gravity
term

The French mathematician, Joseph Valentin Boussinesq was born on 15 March 1842 in Saint-André de
(in the Hérault department, about 30 km from the town of Montpellier). In 1867, when he was 25, Bous
received the scientific degree of Docteur de la Faculté des Sciences de Paris (Sorbonne) for a thesis
‘Sur la propagation de la chaleur dans les milieux hétérogènes’. Thanks to the protection of Saint-Ve
1873 Boussinesq (now 31) became Professeur de Calcul Différentiel et Intégral in the Science Faculty
In 1886 (at 44), Boussinesq was elected member of the Académie des Sciences de Paris (Mechanics Se
became Professeur with the Chair of ‘Mécanique Physique et Expérimentale’ at Science Faculty of Paris, a
which he held until 1896. He then moved to the Chair of ‘Physique Mathématique et Calcul des Probabilit
things considered, Boussinesq kept the position of Professeur at the Sorbonne during more than 30 years
the various and numerous important scientific contributions of Boussinesq in hydraulics and hydrodyna
this period, we shall mention only the fundamental contribution of Joseph Boussinesq to the theory
surface waves on water. In particular, Boussinesq (see [3]), with the help of his famous approximation, so
‘Boussinesq equations’ resolved the conflict between Russell’s observation of the solitary wave and th
shallow water theory, according to which a wave of finite amplitude cannot propagate without changing its
Moreover, we observe that, from these Boussinesq equations in [3, p. 354], Boussinesq himself derived t
KdV equation as a particular case (15 years before Korteweg and de Vries [4]). For a detailed review con
these long surface waves on water, solitons and the Boussinesq contributions, see our 1995 review [5]
is only from 1900 that Boussinesq became seriously interested by the influence of temperature on vario
motions and he wrote, in particular, volume II, [1], of his monograph ‘Théorie Analytique de la Chaleur’. D
40 years, Boussinesq was every day a frequent reader at the library of the Institut de France, across the r
from the Louvre, from 3:00 pm until closing time. By the importance of his works, as well as by the noblenes
modesty of his person, Boussinesq has honoured the French Académie des Sciences. Boussinesq died
ruary 1929 at almost 87, and for a detailed biography, concerning the life and the work of Joseph Boussin
reader can consult the ‘Lecture’, [6], given by Emile Picard. In Boussinesq’s monograph [1], the reader c
(see p. 174) a set of approximate equations, written according to the discussion of section 261 (pp. 172
we useu,v,w, for the velocity components,π for the perturbation of the pressure (relative to hydrostatic pres
p0(z)), andθ for the heating (linked with the Archimedean force), then the following approximate ‘à la Boussinesq’
equations (with a constant densityρ0) can be written:

∂u/∂x + ∂v/∂y + ∂w/∂z= 0

(1/ρ0)∂π/∂x = −du/dt, (1/ρ0)∂π/∂y = −dv/dt, (1/ρ0)∂π/∂z= Γ0θ − dw/dt (1)

dθ/dt = (K0/C0)
[
∂2θ/∂x2 + ∂2θ/∂y2 + ∂2θ/∂z2]

with d/dt ≡ ∂/∂t + u∂/∂x + v∂/∂y + w∂/∂z, where du/dt , dv/dt , dw/dt , are the three components of t
acceleration. Both the coefficientsK0 (thermal conductibility) andC0 (specific caloric of the unit of volume a
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constant pressure), are assumed constant. In the equation forw the termΓ0θ (according to Boussinesq) is a
additional gravity term, proportional to the heatingθ , but directed from below in the upwards direction, wh
Γ0 = α0g, andα0 is the constant coefficient of the thermal cubic dilatation (expansion) of the fluid. In particul
a perfect gas,p =RρT , whereT is the temperature andR the gas constant, we haveα0 = 1/T0 with T0 a constant
temperature. Let us notice that Boussinesq deduced the set of approximate equations (1) mainly on the
pertinent physical considerations from the exact equations for a compressible and heat conductor fluid s
force of gravity (but do not “as a consequence of a list of assertions” as this is claimed in Joseph’s book [7
Namely, first, Boussinesq observes that the small variations of densityρ are approximately related to a consta
pressure,ρ being, in a such case, a function only of the heatingθ , and the equation forθ , in Boussinesq system (1
is a direct consequence of this observation. Then, Boussinesq observed that an important consequen
heating is the reduction of the weight of particles during their ascending movement, and in this case the wgρ
is divided by(1+αθ)! From this last observation Boussinesq deduced the emergence of an additional gravi
ρ0gα0θ , proportional to heatingθ , but directed from below in the upwards direction, in the momentum equ
for w. Finally, Boussinesq observed that, in thermal convection problems, the velocity changes appreci
form of particles but without important modifications of the volume (and as a consequence of the density w
replaced byρ0 = const), and the term:−(1/ρ)dρ/dt is very small in the exact compressible continuity equat
Obviously, if the fluid is viscous, then it is only necessary (in (1)) to add in right-hand side of the three mom
equations foru, v andw a term with their Laplacian multiplied by the kinematic viscosityν0 (see, for example
below Eqs. (2a), (2b)). A spectacular consequence of the Boussinesq observation, which leads to the app
Boussinesq equations, is the possibility to work with a quasi-incompressible system of coupled dynamic
or Navier, with a buoyancy term) and thermal (Fourier) simplified equations, where buoyancy is the main
force. It is true that the above mentioned additional gravity term proportional to heating also emerges easi
approximatelinear equations derived in 1879 by Oberbeck [8] and the reader can find in the paper by Eck
Ferris [9, p. 50] a remark concerning these Oberbeck equations and their relation with the Boussinesq e
Rayleigh [2], who has used Boussinesq’s 1903 observation (in 1916), called this observation the ‘Bou
approximation’. Indeed, from an ad-hoc approach (as, for instance, in Drazin and Reid [10, §7] or in Land
Lifshitz [11, §56] books), it is very easy to derive the Oberbeck–Boussinesq approximate equations follow
standard scheme of perturbation theory. In Landau and Lifshitz [11, §56] the Boussinesq approximate e
derived (in ad hoc manner) are called ‘free convection equations’ and are written in the following form,
velocity vectorv and thermodynamic perturbationsT ′, p′:

∇.v = 0, ρ = ρ0 = const, ∂T ′/∂t + v.∇T ′ = χ�T ′ (2a)

∂v/∂t + (v.∇)v + ∇(p′/ρ0)+ α0gT ′ = ν0�v (2b)

whereT ′ andp′ are the perturbations of temperature and pressure relative to a constantT0 averaged temperatur
and hydrostatic pressurep0(z) such that:

dp0(z)/dz+ ρ0g = 0 (2c)

with z the vertical coordinate with unit vectork (g= −gk).

2. Boussinesquian fluid dynamics

The Boussinesq approximation, which gives the possibility to consider a Boussinesquian (à la Bou
fluid, is actually, perhaps, the most widely used simplification in various fluid dynamics problems. A very
illustration of this plurality of ‘Boussinesquian fluid dynamics’ is the numerous survey papers in volum
the Annual Review of Fluid Mechanics where this Boussinesq approximation is the basis for mathe
formulation in various problems (for example, as in: convection in mushy layers [12]; solar convection
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magnetoconvection [14] and magnetic buoyancy [13]; mantle convection [15]; atmospheric lee wave
Rayleigh–Bénard (RB) instabilities [17]; oceanic general circulation [18]; buoyancy-driven flows in crystal-g
melts [19]; environmental fluid mechanics [20]; fluid-dynamical problems in Galaxies [21]; gravity curre
rotating systems [22]; internal waves in the atmosphere and ocean [23]; convection involving thermal a
fields [24]; dynamic of Jovian atmospheres [25]; etc.. . .) whether for gases and liquids or for more complica
fluids with various complementary effects. It is interesting to observe that already in 1891 Oberbeck
Boussinesq type approximation in meteorological studies of the Hadley thermal regime for the trade-winds
from the deflecting effect of the Earth’s rotation. Among the early investigations of the applicability o
Boussinesq approximation we note, first, the applicability to flow in a thin layer of a compressible fluid by J
[26], for infinitesimal steady motions and, then, the book by Joseph [7, Chapter VIII; pp. 4, 5], where it is ob
that the crux of the Boussinesq approximation for a non-homogeneous (stratified), heat conducting visc
compressible (dilatable) fluid (liquid) motion in the gravity field, is that: (i) the variation of the density perturb
is neglected in the mass continuity equation and in the equation for the horizontal motion; (ii) however, this
perturbation is taken into account in the equation for the vertical motion through its influence as a bu
term; (iii) the influence of a pressure perturbation on the buoyancy and in the equation of energy (wri
the temperature perturbation) can be neglected; (iv) the influence of a perturbation of pressure in the eq
state can be also neglected and the rate of viscous dissipation is neglected in the equation for the tem
perturbation. When all of these simplifying factors are present, the Navier–Stokes–Fourier (NSF) exact e
for compressible heat conducting and diffusive flow of a viscous, nonhomogeneous fluid can be approxim
the following set of (the so-calledOberbeck–Boussinesq(OB)) equations:

ρ = ρ0
[
1− α0(T − T0)+ Γ0(C −C0)

]
, ∇.U = 0 (3a)

ρ0
[
∂U/∂t + (U · ∇)U] + ∇P − ρ0

[
1− α0(T − T0)+ Γ0(C −C0)

]
g = ∇ · S (3b)

∂T /∂t + U.∇T = κT∇2T +QT (t,x) (3c)

∂C/∂t + U.∇C = κC∇2C +QC(t,x) (3d)

In (3b) T = −P I + S is the stress,S= 2µD[U] is the extra stress,U is the (solenoidal) velocity andg is a body-
force field (typically gravity). In Eq. (3c) for the temperatureT (t,x), κT is the thermal diffusivity andQT (t,x) is
a prescribed heat source field. Finally, in Eq. (3d) for the solute concentrationC(t,x), κC is the solute diffusivity
andQC(t,x) is a prescribed field specifying the distribution of solute sources. Indeed, for adilatable(expansible)
liquid layer heated from below, the application of the Boussinesq approximation is more subtle, especially
is necessary to consider the influence of anupper(deformable) free surface separating this liquid layer from the
above, as in the case of the Bénard thermal problem [27]. Concerning this aspect of the Boussinesq appro
see, the discussion in next Section 3, and here we observe only that for avery thin layer of the liquid (of order
of a millimetre) thebuoyancy forceat the leading-order isnegligiblebut thedeformationsof the free surface
areoperative. On the other hand, for the RB instability problem, the main operative force is the buoyanc
deformations of the free surface are negligible. For an ad-hoc justification of the Boussinesq approx
when the equation of state isρ = ρ(T ,p), and the derivation of the OB equations, see, for instance, Sp
and Veronis [28], Mihaljan [29], and Dutton and Fichtl [30] among other papers. Concerning theatmospheric
flow in the Kotchin, Kibel and Roze [31, §§36, 38] book, the reader can again find an ad hoc presenta
the Boussinesq equations. The main difference is the necessity to take into account the existence of a h
(so-called ‘standard’) reference state,p∗(z∗), ρ∗(z∗), T ∗(z∗), which is a function only of the standard altitudez∗.
Namely:

dp∗/dz∗ + gρ∗(z∗)= 0, p∗ =Rρ∗T ∗ and !∗(z∗)= −dT ∗/dz∗ (4a)

where in the adiabatic case (considered below)!∗(z∗) is a given function ofz∗.
Then, for the thermodynamic functions dependent of(t,x) we write:

p = p∗(z∗)+ p′, ρ = ρ∗(z∗)+ ρ′, T = T ∗(z∗)+ T ′ (4b)
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|p′|  p∗, |ρ′|  ρ∗, |T ′|  T ∗ (4c)

In this case we can derive for the velocityu, Φ = RT ∗(0)(p′/p∗) andT ′ the following approximateinviscid
Boussinesq equations:

∇.u = 0, ∂u/∂t + (u.∇)u + ∇Φ − [
g/T ∗(0)

]
T ′k = 0 (5a)

∂T ′/∂t + u.∇T ′ + {
(g/R)

[
(γ − 1)/γ

] +!∗(0)
}
w= 0 (5b)

with w= u.k andγ is the ratio of specific heats. The above system of Eqs. (5a), (5b) is very frequently used
investigations of thelee waves phenomenon downstream of a mountainin the stratified (when the term proportion
tow in (5b) is different from zero) baroclinic atmosphere. An another application of the Boussinesq approxi
in the atmosphere is linked with thelocal circulations phenomena above a thermally non-homogeneous grou. In
this case for the velocity (horizontal and vertical) componentsv andw, thermodynamic perturbationsθ andπ we
obtain the followingquasi-static system, à la Boussinesq written withdimensionlessquantities [32, Section 29]:

D · v + ∂w/∂z= 0, ∂π/∂z= τθ (6a)

S∂v/∂t + (v.D)v +w∂v/∂z+ (1/Ro)(k ∧ v)+ Dπ = Gr−1/2∂2v/∂z2 (6b)

S∂θ/∂t + v · Dθ +w∂θ/∂z+ τΛ(0)w= Gr−1/2 ∂2θ/∂z2 (6c)

whereS, RoandGr are the Strouhal, Rossby and Grashof numbers, respectively,τ = O(1) is a similarity paramete
such thatτ = β/M with β =�T 0/T ∗(0) 1, where�T 0 is a measure of the heating of the non-homogene
ground andM  1 the Mach number. Finally,Λ∗(0)= {[(γ − 1)/γ ] +!∗(0)}, γ = Cp/Cv , and we observe tha
this system is obtained in an asymptotically consistent way ([33], as in Section 3).

Concerning the application of the Boussinesq approximation for the dynamics of the (upper) ocean
instance, the very pertinent book by Phillips [34, §2.4]. In Section 4 we consider the so-called isochoric
(which is very judicious in the inviscid case for oceanic motions) and its relation with the Boussinesq s
However, in fact, many authors use the system of Boussinesq equations (3a)–(3d) for ocean motions,
quasi-hydrostatic approximation (a boundary layer type simplification).

In general, for the application of the Boussinesq approximation to the mathematical formulation of v
problems, where the buoyancy plays an important role, it is necessary to state somesimilarity rulesbetween the
main small Mach number (low compressibility) and other small parameters which characterize the con
physical problem. For example, in magnetoconvection the ratio of the (small) Alfven number to Mach n
must be of order 1.

A very important area of the application of the Boussinesq approximation concerns the thermal convectio
Earth’s mantle [35,36], numerical study and experimental investigation in magneo-convection [37,38], atmo
circulation and climate of various planets of the Solar system as well as the atmosphere of the Sun [39
Hadley circulation [41]. In recent book by Getling [42] the reader can find an analysis of the structur
dynamics of RB convection.

3. The asymptotic justification of the Boussinesq approximation

We observe that it is only during the last 25 years that the development in asymptotic modelling [43] gi
possibility to reveal consistently the asymptotic character of the Boussinesq approximation, first, for a po
gas [44], and, then, for a dilatable (expansible) liquid [45,46]. Indeed, the approximate equations derived
Boussinesq approximation can be obtained in the same unique form for any fluid [47] at order zero with
to the small parameter:ε = Uc/(CpTc)

1/2, whereUc is a characteristic speed of the medium,Cp andTc being
a characteristic (constant) heat capacity with constant pressure and a characteristic temperature of this
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respectively. Below, we consider, first, the case of a perfect gas (withγ = Cp/Cv andR both constant) when
M  1 (Uc  (γRTc)

1/2) and, then, the case of a weakly expansible liquid whenε = �T 0α0  1, where�T 0

is a difference of temperatures in the classical Bénard thermal problem andα0 the constant coefficient of therm
cubic dilatation of the liquid.

3.1. The case of a perfect gas low-Mach number flow

When the gas is perfect:

p =RρT (7)

then we have an intrinsic vertical heightH ∗ = p∗(0)/gρ∗(0) implied by the hydrostatic reference state (4
As a consequence we can consider the ratioH0/H

∗ = Bo (the so-calledBoussinesqnumber), whereH0 is the
characteristic vertical length scale of the considered low-Mach (M  1) number perfect gas flow, and write th
following similarity rule:

Bo/M = B∗ = O(1) (8)

The heightH ∗ is a judicious characteristic vertical length scale for the standard altitudez∗ such that, with
dimensionless quantities:H ∗z∗ ′ = H0z

′ ⇒ z∗ ′ = Boz′, and in place of the first two relations of (4a) we obt
(in dimensionless form):p∗ ′ = ρ∗ ′T ∗ ′, dp∗ ′/dz∗ ′ + ρ∗ ′(z∗ ′)= 0 with d/dz∗ ′ = (1/Bo)∂/∂z′. For the derivation
of approximate Boussinesq inviscid adiabaticequations it is necessary to consider the followingBoussinesq limit

Bo↓ 0 andM ↓ 0 such that Bo/M = B∗ = O(1) (9)

which is the more significant limit between two other particular (and more degenerate-less, significant
of flows at low Mach and Boussinesq numbers in the presence of gravity (see, for instance, our rece
Zeytounian [48, pp. 150, 151]. To apply the above Boussinesq limit (9) with the low-Mach-number expans

p′ = p∗ ′(z∗ ′)
(
1+M2πB + · · ·), ρ′ = ρ∗ ′(z∗ ′)(1+MωB + · · ·) (10a)

T ′ = T ∗ ′(z∗ ′)(1+MθB + · · ·) (10b)

we derive at the leading-order, from the exact Euler (inviscid adiabatic) dimensionless equations, the fo
Boussinesq approximate equations:

∇.uB = 0; ωB = −θB
DBuB/Dt + ∇(πB/γ )− (B∗/γ )θBk = 0 (11)

DBθB/Dt +B∗Λ∗(0)wB = 0

with DB/Dt = ∂/∂t + uB.∇, whereuB is the Boussinesq velocity vector as a limit of the Eulerian velocitu
by (9). We observe that, in dimensionless form, we obviously have:T ∗ ′(0)≡ 1, but, in general,Λ∗(0) is different
from zero. The choice of (8) and (10a), (10b)), which give, with (9), the limit Boussinesq equations (11) fo
from a carefully asymptotic analysis of the various degeneracies of the exact dimensionless Euler equat
Chapter 8]. Namely, it is necessary to observe that the above way, for the derivation of inviscid adiabatic Bou
model equations (11), is the only rational way for a consistent derivation of second-order, ‘à la Boussines
model equations (with the non-Boussinesq effects). In Zeytounian [49, Chapter 8], the reader can find a
theory of the Boussinesq approximation, for atmospheric motion. In fact, in Volume II of the book ‘Mécaniq
Paul Germain [50, pp. 225, 226] the reader can find our above Boussinesq equations (11), but with, in the ri
side of the second equation (foruB ) a viscous (incompressible, ‘à la Navier’ – since we have∇ ·uB = 0) term of the
form: (1/Re)∇2uB , and in right-hand side of the third equation (forθB ) a dissipative term of the form(1/Pe)∇2θB ,
wherePeis the Péclet number (the product of the Reynolds numberRe, with the PrandtlPr, number). In particular
whenRe→ ∞, butPr → 0 such thatPe= O(1) andΛ∗(0)≡ 0, we rediscover the Boussinesq equations (1) wri
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in the dimensionless form. When we consider asteady two-dimensional flowin the plane of gravity(x, z), such
that:uB = ∂ψB/∂z, andwB = −∂ψB/∂x then the following single Boussinesq equation forψB(x, z) is derived:

∂2ψB/∂x
2 + ∂2ψB/∂z

2 − (B∗/γ )zdH(ψB)/dψB = F(ψB) (12)

whereH(ψB) andF(ψB), in (12), are two arbitrary functions ofψB only. In a particular case, in the framewo
of the airflow over mountains, if at upstream infinity of a mountain, whenx → −∞, we have a 2D steady uniform
constant flow in the direction ofx > 0, withπB = θB ≡ 0, then we derive the followinglinear Helmholtzequation
for the function�B(x, z)= z−ψB :

∂2�B/∂x
2 + ∂2�B/∂z

2 + (B∗2/γ )Λ∗(0)�B = 0 (13)

The dominant feature, from a mathematical point of view, is that the linearity of Eq. (13) is do not related
one hypothesis of small perturbations. But, from exact slip condition on the considered mountain, simul
the dimensionless equations:z= δη(x), whereδ is an amplitude parameter, we must write the following bound
(slip, non-linear!) condition for�B on the surface of the mountain:�B(x, δη(x))= δη(x).

3.2. The case of a weakly expansible liquid

When the fluid is anexpansible liquid, with an equation of state of the general form (tri-variate baroclinic flu

ρ = ρ(T ,p), (14)

the justification of the Boussinesq approximation for the derivation of the OB model equations for the RB s
convection is more subtle. Below we consider the classical Bénard thermal problem of an infinite horizontal
viscous, thermally conducting, and (weakly) expansible liquid, of densityρ, heated from below (atx3 = 0,T = Tw)
and when at the levelx3 = d , is a free surface which separates the liquid from a passive atmosphere (at
constant temperatureTa and pressurepa , having negligible viscosity and density). In motionlessconductionsteady
state the temperature isTS(x3)= Tw−b⊥x3 and we introduce a perturbation of the temperatureθ = (T −T0)/�T ,
with �T = (Tw − T0)= b⊥d , andT0 = TS(d). On the other hand, we observe that from the asymptotic analys
the considered Bénard problem, if we want derive consistently the OB approximate equations, then it is n
to introduce a pressure perturbationπ = (1/Fr2

d ){(p− pa)/g dρ0 + (x3/d)− 1}, the densityρ0 being a reference
constant density andFrd = (ν0/d)/(gd)

1/2 is a Froude number withν0 the kinematic constant viscosity. For th
liquid, according to Dutton and Fichtl [30, Section 2], we consider aweakly expansible ideal liquid, when in place
of (14) we write as approximate equation of state:

ρ ≈ ρ0
{
1− α0�T θ + β0g dρ0

[
Fr2
d π − (x3/d)+ 1

]}
(15)

whereβ0 is the constant pressure expansion coefficient (or, isothermal compressibility coefficient). Howe
have the following thermodynamic relation:

α2
0/β0 = Cv(γ − 1)(ρ0/T0), with γ = Cp/Cv (16)

and we deduce the following similarity relation:

β0g dρ0 =K0ε
2, whereK0 = [

g dT0/(�T )
2Cv(γ − 1)

]
(17)

Finally, if we assume thatK0 = O(1)⇒ (�T )2 ≈ [g dT0/Cv(γ − 1)], then in the leading order for the shallo
convection OB equations we can use as equation of state:

ρ ≈ ρ0[1− εθ ] (18)

with and error of O(ε2). According to Zeytounian [45,46], for the derivation of the OB approximate equat
governing the RB shallow convection model problem, it is necessary to consider the followingBoussinesq limi
process:

ε ↓ 0 andFrd ↓ 0, such that ε/(Frd)
2 = Gr = O(1) (19)
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whereGr is the Grashof number. In this case, sinceFrd ↓ 0: “it is not consistent, in the leading order (fro
an asymptotic point of view), to take into account simultaneously in the RB thermal shallow convection
problem the buoyancy effect and the deformation effect of the free surface.” More precisely if we associate
the following asymptotic expansions for the velocity componentsui and thermodynamic perturbationsπ , θ :

ui = ui0 + Fr2ui1 + · · · , π = π0 + Fr2π1 + · · · , θ = θ0 + Fr2 θ1 + · · · (20)

then, in place of the full exact NSF dimensionless equations, we derive asymptotically the following dimens
OB equations forui0, andπ0, θ0:

∂ui0/∂xi = 0

D0ui0/Dt + ∂π0/∂xi − Gr θ0δi3 =�ui0 (21)

D0θ0/Dt = (1/Pr)�θ0

In the limit equation forθ0 the viscous dissipation term is negligible because

1 mm ≈ (
ν2

0/g
)1/3  d ≈ C0/g�T (22)

with C0 = (dE/dθ)θ=0 whereE = E(θ) is the internal specific energy of our ideal liquid with an approxim
equation of state (18). The relation (22) is an estimate for the thickness of the liquid layer,d . As a sequel of a ‘rigid-
free’ ‘exact’ starting Bénard thermal problem, for the above OB model equations (21), we obtain in the Bous
limit (19) with (20) the following boundary conditions at the non-deformable surfacex3 = 1, with Marangoni and
Biot effects:

v30 = 0, and ∂2v30/∂x
2
3 = Ma

[
∂2θ/∂x2

1 + ∂2θ/∂x2
2

]
(23a)

∂θ0/∂x3 + Biθ0 + 1 = 0 (23b)

On the lower rigid flat plate we have the conditions:

ui0 = 0 and θ0 = 1, atx3 = 0 (23c)

The deformation of the free surfaceη(t, x1, x2) is then determined, when the perturbation of the pres
π1(t, x1, x2, x3) is known atx3 = 1, after the solution of the RB problem (21), (23(a)–(c)), by the equation:

∂2η/∂x2
1 + ∂2η/∂x2

2 − (δ∗/We)η= −(1/We)π0(t, x1, x2,1) (24)

where δ∗ = δ/Fr2
d , with δ  1 the dimensionless amplitude parameter of the deformable free surface

Marangoni(Ma) and Weber(We) numbers are linked with the surface tension, assumed temperature depe
and the Biot (Bi) number is linked with the use of the Newton’s law for the heat transfer between the air and
via the free surface. The above Eq. (24), forη(t, x1, x2), seems do not have been derived in framework of class
ad hoc, theory [10], and emerges very naturally in our asymptotic approach. The RB problem: (21), (23(
has been recently considered by Dauby and Lebon [51], but without Eq. (24). A final remark concern
conclusions of the paper by Rajagopal, Ruzicka and Srinivasa [52], which curiously assert that their deriv
OB Eqs. (21): “is free from the additional assumptions usually added in various earlier works in order to ob
correct equations”?

4. Some comments concerning the validity of the Boussinesq approximation

4.1. The problem of initial conditions

If we consider the above two main model system of equations, (11), and (21), derived in the above Se
via the Boussinesq approximation, then we observe that in these approximate two model systems (derived
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time, t , is fixed and O(1)) we have avelocity divergence-less equation, in place of the full compressible continui
equation, and only two derivatives with respect to time: foruB andθB in (11), and forui0, andθ0 in (21). On the
other hand, in the full unsteady Euler and NSF equations, we havethreederivatives with respect to time: for th
velocity vectoru, densityρ and temperatureT . As a consequence, if we want resolve a pure initial-value orCauchy
(prediction) problem(in the L2-norm, for example), it is necessary (for the well-posedness) to have a compl
of initial conditions (data):

t = 0: u = u0(x), ρ = ρ0(x), T = T 0(x) (25)

whereρ0(x) > 0 andT 0(x) > 0. Now, if we consider, for instance, the system ofBoussinesq equations, (11), then
we have the possibility to assume onlytwo initial data, namely:

t = 0: uB = u0
B(x) and θ = θ0

B(x) (26)

This is due to the fact that, for instance, the Boussinesq limit process (t and x both fixed in (9)), which
leads to the approximate equations (11),filters outsome time derivatives – these corresponding toacoustic fast
waves– because such waves are of no importance for low speed (hyposonic) motions considered. Due
one encounters the problem of deciding what initial conditions(u0

B, θ
0
B) one may prescribe for the approxima

(‘à la Boussinesq’) equations (11), and in what way these two initial conditions (26) are related to the give
conditions (25) associated with the starting Euler exact equations. It is important to note that the exac
conditions for the Euler (and also NSF) equations, are not, in general, consistent with the estimates of bas
of magnitude implied by the approximate (without acoustic waves!) model equations (11) and (21). A p
process of time evolution is necessary to bring the initial set to a consistent level as far as the orders of m
are concerned. Such a process is called one of ‘unsteady adjustment’, and is short on the time scale (compar
with the time characterizing the approximate simplified equations) and at the end of it, in anasymptotic sense,
we obtain values for the set of initial conditions suitable to the simplified (via the Boussinesq approxim
equations, att = 0: The aim of the unsteady adjustment problem is to clarify just how a set of initial data asso
with a determined (exact) starting system of equations can be related to another set of initial data ass
with a simpler, approximate model equations, which is a significant degeneracy of the system of (exact) e
considered at the start.More precisely, the obtaining of consistent initial conditions (att = 0) for the approximate
Boussinesq equations (11) is a consequence of a matching between the two asymptotic representations
one (Boussinesq, with t fixed; t = 0) and the local one (acoustic, neart = 0, with τ = t/M fixed; τ → +∞), and
Lim(Boussinesq, att = 0) = Lim(Acoustics, atτ → +∞). In order to solve a such problem, it is necessary
introduce an initial layer in the vicinity oft = 0 by distorting the time scale and the unknowns which were initi
undefined. In [32, Chapter V], the reader can find the solution of this problem for the Boussinesq equation
result is valid only when we assume, for the exact Euler equations, as initial conditions:

t = 0: u= u0, v = v0, w =w0, π =Mπ0, ω=Mω0, and θ =Mθ0 (27)

where the initial data are given functions ofx, y andz, and the initial velocity vector is assumed be of the follow
form: u0 = (u0, v0,w0)= ∇φ0 + ∇ ∧ψ0.

4.2. The upper boundary condition at the top of the troposphere and the radiation (Sommerfeld) condition

If we assume that the upper flat plane,x3 =H ∗, bound (as a tropopause) the considered lee-waves phenom
(in the troposphere), then we must write the following dimensionless upper boundary (slip) condition for th
dimensionless Euler equations

w= 0 onz= 1/Bo (28)

which isvery singularwhenBo→ 0! As a consequence,in reality, for the 2D steady Boussinesq equation (13)
obtain, as upper condition the ‘paradoxical’ behaviour condition:�B(x, z ↑ +∞)= +∞! Obviously, the infinity
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in altitude relative toz, for the Boussinesq equations (11), with (28), must be understood as a behaviour co
relative to the ‘inner’ vertical (Boussinesq) coordinatez (with the dimensionless quantities), which is match
with an outer,ζ = Mz, coordinate. This outer vertical dimensionless coordinateζ , taking into account the uppe
condition at the top of the troposphere, which is rejected at infinity in the framework of the Boussinesq
problem (we observe that, as a consequence ofB∗ = O(1), the Boussinesq inner problem is significant only i
layer of the thicknessHB = (Uc/g)[RT ∗(0)/γ ]1/2 of order of 103 m). The outer region is bounded by the pla
ζ = 1/B∗, with B∗ = O(1), and in an unbounded atmosphere (which is in fact a boundary layer type inner re
it is necessary to impose for�B , solution of (13), a radiation condition (à la Sommerfeld):

�B ≈ [2K0/πr]1/2 sinθ Real
{
G(cosθ)exp

[
i(K0r − π/4)

]}
(29)

whenr = [x2 + z2]1/2 → ∞, with K0 ≡ (B∗2/γ )Λ∗(0), where the functionG(cosθ) is arbitrary and depends o
the form of the relief simulated byz= δη(x). So as to satisfy the upstream infinity behaviour (forx → −∞), the
conditionG(cosθ) = 0, for cosθ < 0 must also be imposed. It is pointed out that the polar coordinates,r, θ , in
the upper half-planez > 0 are defined such that:x = r cosθ andz= r sinθ . The inner Boussinesq model proble
is, in fact, the problem considered by Miles [53] and also by Kozhevnikov [54], with the condition (29), w
express that “no waves are radiated inwards”. In Guiraud and Zeytounian [55] paper the associated outer
is asymptotically analysed and it is shown that the upper and lower boundaries of the troposphere alternate
internal short gravity waves excited by the lee waves of the inner (Boussinesq) approximation, with a wav
of the order of the Mach number,M, to the scale of the outer region. As a consequence, there is a double
built into the solution and we must take care of it – the important point of GZ [55] analysis is that: “these
gravity excited waves propagate downstream and that not feedback occurs on the inner Boussinesq flow
the mountain (to lower order at least!)”. As a consequence, we should understand the imposed upper bo
the top of the troposphere as anartificial one, having asymptoticallyno effectson the inner Boussinesq flow whic
is the only really interesting one. In Bois [56], it is shown that,within a generalized Boussinesq approximation,
atmospheric linearized flow over a relief can, in realistic cases, be approximated by a confined flow.

4.3. Isochoric model equation

If, first, we consider an Eulerian (nonviscous) motion with aconstant internal specific energy per unit mas–
a so-called ‘isochoric, E = E0 ≡ const’ flow, then we observe that in the framework of Euler compres
nonviscous dimensionless equations for a perfect gas the corresponding isochoric model equations ar
under the following limiting process:

M → 0 andγ → ∞, such that γM2 =M∗ = O(1) (30)

and γ → ∞, because for a perfect ‘isochoric’ gascp = O(1), but cv → 0. For instance, in the steady tw
dimensional inviscid case, on the one hand, in place of dimensionlesslinear Helmholtz–Boussinesqequations (13)
we derive, for the (isochoric) function�Is(x, z), the following dimensionless (quasi)nonlinearequation [48, pp
104–108], where in the right-hand side we have the non-Boussinesq effects:

∂2�Is/∂x
2 + ∂2�Is/∂z

2 + (Bo2 /M∗)NIs(Boz)�Is

= (Bo/2)
[
2∂�Is/∂z− (∂�Is/∂x)

2 − (∂�Is/∂z)
2] (31)

with NIs(z
∗) = (1/T ∗(z∗))[1 + dT ∗(z∗)/dz∗], z∗ = Boz, and, on the other hand, this isochoric equation (31

valid in the whole thickness of the troposphere (Bo being unity). Moreover, whenBo→ 0, with Bo= B∗M → 0,
γ = O(1), we recover again a Helmholtz equation, similar to (13), for lim�Is but withK2

Is = (B∗2/γ )NIs(0), in
place of(B∗2/γ )Λ∗(0)=K2

0.
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4.4. Deep convection model equation

WhenBo= O(1)we also have the possibility to assume a constraint on!∗(z∗) given by (4a). Indeed, first, in th
whole thickness of thetroposphere,!∗(z∗ ′)= −dT ∗ ′(z∗ ′)/dz∗ ′ is very close to(γ − 1)/γ , and as a consequen
we can assume that (without′, but in dimensionless form):

−dT ∗(z∗)/dz∗ = [
(γ − 1)/γ

] +M2χ(z∗) (32)

where |χ(z∗)| = O(1). In particular, again for thesteady, two-dimensional, lee-waves problem in the who
troposphere, we derive the following single equation for thedeep stream functionΨD:

∂2ΨD/∂x
2 + ∂2ΨD/∂z

2 + (Bo/γ )
{
1− [

(γ − 1)Bo/γ
]
z
}−1

∂ΨD/∂z

= {
1− [

(γ − 1)Bo/γ
]
z
}−2/(γ−1){

FD(ΨD)+ (Bo/γ )z
[
dHD(ΨD)/dΨD

]}
(33)

which is an extended form (with non-Boussinesq effects) of Boussinesq equation (12) written forΨB . In Pekelis,
[57], the reader can find some numerical results for thedeep lee-wavesin the troposphere, which are computed
an equation very similar to (33), but derived from the so-called ‘anelastic’ equations of Ogura and Phillip
We observe that, in the two-dimensional steady case, the Boussinesq, (13), isochoric, (31), and deep co
(33), equations, have been derived, in Zeytounian [59], directly from a single vorticity equation deduce
the exact Euler steady compressible two-dimensional non-viscous adiabatic dimensionless system. F
Zeytounian [60] the reader can find adeep OB systemof equations with thenon-Boussinesqterms proportiona
to depth parameter:δd = α0g d/C0.
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