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Abstract

A hundred years agan his 1903 volume Il of the monograph devoted to ‘Théorie Analytique de la Chaleur’, Joseph Valentin
Boussinesq observes that: “Thariations of density can be ignored except were they are multiplied by the acceleration
of gravity in equation of motion for the vertical component of the velocity vécforspectacular consequence of this
Boussinesq observation (called, in 1916, by Rayleigh, the ‘Boussinesq approximation’) is the possibility to work with a quasi-
incompressible system of coupled dynamic, (Navier) and thermal (Fourier) equations where buoyancy is the main driving force.
After a few words on the life of Boussinesq and on his observation, the applicability of this approximation is briefly discussed
for various thermal, geophysical, astrophysical and magnetohydrodynamic problems in the framework of ‘Boussinesquian fluid
dynamics’. An important part of our contemporary view is devoted to a logical (100 years later) justification of this Boussinesq
approximation for a perfect gas and an ideal liquid in the framework of an asymptotic modelling of the full fluid dynamics
(Euler and Navier—Stokes—Fourier) equations with especially careful attention given to the validity of this approxiheation.
citethisarticle: R.Kh. Zeytounian, C. R. Mecanique 331 (2003).
0O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Joseph Boussinesq et son approximation : un apergu actudtn 1903, Gauthier-Villars éditait a Paris le tome II, du traité
de Joseph Boussinesq intitulé : « Théorie Analytique de la Chaleur ». A la page VIl de I'Avertissement a ce tome Il Boussinesq
écrit :

«.. il fallait encore observer que, dans la plupart des mouvements provoqués par la chaleur sur nos fluides pesants, les
volumes ou les densités se conservent a trés peu pres, quoique la variation correspondante de aiite de volume soit
justement la cause des phénomenes qu'il s'agit d’analyser. T

De la résulte la possibilité de négliger les variations de la densité, la ou elles ne sont pas multipliées par la gravité g, tout en
conservant, dans les calculs, leur produit par celle-ci

Cette observation est, ce que I'on appelle, aujourd’hui : «I'approximation de Boussinesq» (en accord avec I'appellation,
en 1916, de Rayleigh), et une conséquence spectaculaire en est la possibilité de considérer un systéme d’'équations quasi-
incompressible couplé pour la dynamique (équation de Navier) et la température (équation de Fourier) pour lequel la poussée
d’Archiméde est la force active principale régissant le mouvement. Aprés un bref apergu sur la vie de Boussinesq et sur son
observation, I'application de I'approximation de Boussinesq (dans le cadre d'une «dynamique des fluides de Boussinesq»)
pour les problémes thermiques, géophysiques, astrophysiques et magnétohydrodynamiques fait I'objet de divers commentaires.
Une part importante de notre apergu actuel est consacrée a une justification logique de cette approximation de Boussinesq
(100 ans apres) pour un gaz parfait et un liquide ideal, dans le cadre d’'une modélisation asymptotique des équations (d’Euler
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et de Navier—Stokes—Fourier) de la dynamique des fluides, avec une attention toute particuliére pour ce qui concerne la validité
de cette approximatiofrour citer cet article: R.Kh. Zeytounian, C. R. Mecanique 331 (2003).
0 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Afew lines concerning Joseph Boussinesq and his approximate equations with an additional gravity
term

The French mathematician, Joseph Valentin Boussinesg was born on 15 March 1842 in Saint-André de Sangonis
(in the Hérault department, about 30 km from the town of Montpellier). In 1867, when he was 25, Boussinesq
received the scientific degree of Docteur de la Faculté des Sciences de Paris (Sorbonne) for a thesis entitled:
‘Sur la propagation de la chaleur dans les milieux hétérogénes’. Thanks to the protection of Saint-Venant, in
1873 Boussinesq (now 31) became Professeur de Calcul Différentiel et Intégral in the Science Faculty in Lille.
In 1886 (at 44), Boussinesq was elected member of the Académie des Sciences de Paris (Mechanics Section) and
became Professeur with the Chair of ‘Mécanique Physique et Expérimentale’ at Science Faculty of Paris, a position
which he held until 1896. He then moved to the Chair of ‘Physique Mathématique et Calcul des Probabilités’. All
things considered, Boussinesq kept the position of Professeur at the Sorbonne during more than 30 years. Amongst
the various and numerous important scientific contributions of Boussinesq in hydraulics and hydrodynamics in
this period, we shall mention only the fundamental contribution of Joseph Boussinesq to the theory of long
surface waves on water. In particular, Boussinesq (see [3]), with the help of his famous approximation, so-called,
‘Boussinesq equations’ resolved the conflict between Russell's observation of the solitary wave and the Airy’s
shallow water theory, according to which a wave of finite amplitude cannot propagate without changing its profile.
Moreover, we observe that, from these Boussinesq equations in [3, p. 354], Boussinesq himself derived the single
K dV equation as a particular case (15 years before Korteweg and de Vries [4]). For a detailed review concerning
these long surface waves on water, solitons and the Boussinesq contributions, see our 1995 review [5] paper. It
is only from 1900 that Boussinesq became seriously interested by the influence of temperature on various fluid
motions and he wrote, in particular, volume Il, [1], of his monograph ‘Théorie Analytique de la Chaleur’. During
40 years, Boussinesq was every day a frequent reader at the library of the Institut de France, across the river Seine
from the Louvre, from 30 pm until closing time. By the importance of his works, as well as by the nobleness and
modesty of his person, Boussinesq has honoured the French Académie des Sciences. Boussinesq died on 19 Feb-
ruary 1929 at almost 87, and for a detailed biography, concerning the life and the work of Joseph Boussinesq, the
reader can consult the ‘Lecture’, [6], given by Emile Picard. In Boussinesq’'s monograph [1], the reader can find
(see p. 174) a set of approximate equations, written according to the discussion of section 261 (pp. 172-174). If
we useu, v, w, for the velocity componentg;, for the perturbation of the pressure (relative to hydrostatic pressure
po(z)), andd for the heating (linked with the Archimedean force), then the following approxiradéeBoussinesq
equations (with a constant denspy) can be written:

ou/dx +dv/dy +ow/dz=0
(1/p0)om/dx = —du/dt, (1/po)dm/dy = —dv/dt, (1/p0)dm/dz = Io6 — dw/dt Q)
dg/dr = (Ko/ Co)[8%0/9x% + 9%6/9y? + 820 /977

with d/dt = 9/9t + ud/dx + vd/dy + wa/dz, where d/df, dv/dr, dw/d¢f, are the three components of the
acceleration. Both the coefficient& (thermal conductibility) andCo (specific caloric of the unit of volume at
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constant pressure), are assumed constant. In the equatian the term g9 (according to Boussinesq) is an
additional gravity term, proportional to the heatifgbut directed from below in the upwards direction, where

I'o = apg, andag is the constant coefficient of the thermal cubic dilatation (expansion) of the fluid. In particular, for

a perfect gasp = RpT, whereT is the temperature ankl the gas constant, we hawg = 1/ Tp with Tp a constant
temperature. Let us notice that Boussinesq deduced the set of approximate equations (1) mainly on the basis of
pertinent physical considerations from the exact equations for a compressible and heat conductor fluid subject to
force of gravity (but do not “as a consequence of a list of assertions” as this is claimed in Joseph’s book [7, p. 4]).
Namely, first, Boussinesq observes that the small variations of demsitg approximately related to a constant
pressurep being, in a such case, a function only of the heafingnd the equation fat, in Boussinesq system (1),

is a direct consequence of this observation. Then, Boussinesq observed that an important consequence of the
heating is the reduction of the weight of particles during their ascending movement, and in this case thgoveight

is divided by(1+ «6)! From this last observation Boussinesq deduced the emergence of an additional gravity term,
pogaol, proportional to heating, but directed from below in the upwards direction, in the momentum equation

for w. Finally, Boussinesq observed that, in thermal convection problems, the velocity changes appreciably the
form of particles but without important modifications of the volume (and as a consequence of the density which is
replaced bypg = const), and the term:(1/p) dp/dt is very small in the exact compressible continuity equation.
Obviously, if the fluid is viscous, then it is only necessary (in (1)) to add in right-hand side of the three momentum
equations fow, v andw a term with their Laplacian multiplied by the kinematic viscosity(see, for example,

below Egs. (2a), (2b)). A spectacular consequence of the Boussinesq observation, which leads to the approximate
Boussinesq equations, is the possibility to work with a quasi-incompressible system of coupled dynamics (Euler
or Navier, with a buoyancy term) and thermal (Fourier) simplified equations, where buoyancy is the main driving
force. It is true that the above mentioned additional gravity term proportional to heating also emerges easily in the
approximatdinear equations derived in 1879 by Oberbeck [8] and the reader can find in the paper by Eckart and
Ferris [9, p. 50] a remark concerning these Oberbeck equations and their relation with the Boussinesq equations.
Rayleigh [2], who has used Boussinesq’s 1903 observation (in 1916), called this observation the ‘Boussinesq
approximation’. Indeed, from an ad-hoc approach (as, for instance, in Drazin and Reid [10, §7] or in Landau and
Lifshitz [11, 856] books), it is very easy to derive the Oberbeck—Boussinesq approximate equations following the
standard scheme of perturbation theory. In Landau and Lifshitz [11, §56] the Boussinesq approximate equations
derived (in ad hoc manner) are called ‘free convection equations’ and are written in the following form, for the
velocity vectorv and thermodynamic perturbatiofis, p’:

Vv=0, p=pg=const 9T /ot+V.VT = xAT’ (2a)
aV/dt + (V.VIV+ V(p'/po) + aogT’ = voAv (2b)

whereT’ and p’ are the perturbations of temperature and pressure relative to a cofiseugraged temperature
and hydrostatic pressugg(z) such that:

dpo(z)/dz + pog =0 (2c)

with z the vertical coordinate with unit vectér(g = —gk).

2. Boussinesquian fluid dynamics

The Boussinesq approximation, which gives the possibility to consider a Boussinesquian (a la Boussinesq)
fluid, is actually, perhaps, the most widely used simplification in various fluid dynamics problems. A very good
illustration of this plurality of ‘Boussinesquian fluid dynamics’ is the numerous survey papers in volumes of
the Annual Review of Fluid Mechanics where this Boussinesq approximation is the basis for mathematical
formulation in various problems (for example, as in: convection in mushy layers [12]; solar convection [13];
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magnetoconvection [14] and magnetic buoyancy [13]; mantle convection [15]; atmospheric lee waves [16];
Rayleigh—Bénard (RB) instabilities [17]; oceanic general circulation [18]; buoyancy-driven flows in crystal-growth
melts [19]; environmental fluid mechanics [20]; fluid-dynamical problems in Galaxies [21]; gravity currents in
rotating systems [22]; internal waves in the atmosphere and ocean [23]; convection involving thermal and salt
fields [24]; dynamic of Jovian atmospheres [25]; etd. whether for gases and liquids or for more complicated
fluids with various complementary effects. It is interesting to observe that already in 1891 Oberbeck uses a
Boussinesq type approximation in meteorological studies of the Hadley thermal regime for the trade-winds arising
from the deflecting effect of the Earth’s rotation. Among the early investigations of the applicability of the
Boussinesq approximation we note, first, the applicability to flow in a thin layer of a compressible fluid by Jeffreys
[26], for infinitesimal steady motions and, then, the book by Joseph [7, Chapter VIII; pp. 4, 5], where it is observed
that the crux of the Boussinesq approximation for a non-homogeneous (stratified), heat conducting viscous and
compressible (dilatable) fluid (liquid) motion in the gravity field, is that: (i) the variation of the density perturbation

is neglected in the mass continuity equation and in the equation for the horizontal motion; (ii) however, this density
perturbation is taken into account in the equation for the vertical motion through its influence as a buoyancy
term; (iii) the influence of a pressure perturbation on the buoyancy and in the equation of energy (written for
the temperature perturbation) can be neglected; (iv) the influence of a perturbation of pressure in the equation of
state can be also neglected and the rate of viscous dissipation is neglected in the equation for the temperature
perturbation. When all of these simplifying factors are present, the Navier—Stokes—Fourier (NSF) exact equations
for compressible heat conducting and diffusive flow of a viscous, nonhomogeneous fluid can be approximated by
the following set of (the so-calle@berbeck—Boussine$@B)) equations:

p = po[1—ao(T — To) + I'o(C — Cp)], V.U=0 (32)
po[dU/d1 + (U - V)U] + VP — po[1— ao(T — To) + Io(C — Co)|[g=V - S (3b)
AT /9t + U.VT = «kr V2T + Q7 (t,X) (3c)
3C /3t +U.VC =kcV2C + Qc(t, X) (3d)

In (3b) T = —PI + Siis the stressS = 2uD[U] is the extra stres4) is the (solenoidal) velocity anglis a body-

force field (typically gravity). In Eq. (3c) for the temperatufér, x), «7 is the thermal diffusivity and2 r (¢, X) is

a prescribed heat source field. Finally, in Eq. (3d) for the solute concenti@tior), «¢ is the solute diffusivity

and Q¢ (¢, X) is a prescribed field specifying the distribution of solute sources. Indeedditatable (expansible)

liquid layer heated from below, the application of the Boussinesqg approximation is more subtle, especially when it
is necessary to consider the influence otipper(deformablgfree surface separating this liquid layer from the air
above, as in the case of the Bénard thermal problem [27]. Concerning this aspect of the Boussinesq approximation
see, the discussion in next Section 3, and here we observe only thavéoy ¢hinlayer of the liquid (of order

of a millimetre) thebuoyancy forceat the leading-order isegligible but the deformationsof the free surface

are operative On the other hand, for the RB instability problem, the main operative force is the buoyancy, and
deformations of the free surface are negligible. For an ad-hoc justification of the Boussinesq approximation,
when the equation of state js= p(7, p), and the derivation of the OB equations, see, for instance, Spiegel
and Veronis [28], Mihaljan [29], and Dutton and Fichtl [30] among other papers. Concernirggrnttospheric

flow in the Kotchin, Kibel and Roze [31, §836, 38] book, the reader can again find an ad hoc presentation of
the Boussinesq equations. The main difference is the necessity to take into account the existence of a hydrostatic
(so-called ‘standard’) reference stag&(z*), p*(z*), T*(z*), which is a function only of the standard altitugie

Namely:

dp*/dz* + gp*(z*) =0, p*=Rp*T* and O*(z*)=—-dT*/d* (4a)

where in the adiabatic case (considered bel®¥#):*) is a given function of*.
Then, for the thermodynamic functions dependert of) we write:

p=p"@)+p, p=p"C+p, T=T*CH+T (4b)
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with
Pl p*, lpI<Kp*, |T'NKT* (4c)

In this case we can derive for the velocity® = RT*(0)(p’/p*) and T’ the following approximaténviscid
Boussinesq equations:

V.u=0, du/dt+ u.Vyu+Ve —[g/T*0)]|T'k=0 (5a)
AT /3t +u VT +{(g/B[(y - V/y]+0*O0)}w=0 (5b)

with w = u.k andy is the ratio of specific heats. The above system of Egs. (5a), (5b) is very frequently used in the
investigations of théee waves phenomenon downstream of a mouitadire stratified (when the term proportional

to w in (5b) is different from zero) baroclinic atmosphere. An another application of the Boussinesq approximation
in the atmosphere is linked with thacal circulations phenomena above a thermally non-homogeneous grsund

this case for the velocity (horizontal and vertical) compongrgadw, thermodynamic perturbatiodsand we

obtain the followingquasi-static systena la Boussinesq written wittimensionlesguantities [32, Section 29]:

D-v+ow/dz=0, 0n/dz=160 (6a)
SaV/dt 4+ (V.D)V + wdv/dz + (1/ Ro(k A V) + D = Gr~25%v/372 (6b)
$06/91 +V - DO + wdb 0z + T AO)w = Gr25%0/972 (6c)

whereS, RoandGr are the Strouhal, Rossby and Grashof numbers, respectivel)(1) is a similarity parameter
such thatr = /M with 8 = AT?/T*(0) « 1, whereAT? is a measure of the heating of the non-homogeneous
ground and¥ « 1 the Mach number. Finallyy*(0) = {[(y —1)/y1+ ®*(0)}, y = C,/C,, and we observe that
this system is obtained in an asymptotically consistent way ([33], as in Section 3).

Concerning the application of the Boussinesq approximation for the dynamics of the (upper) ocean see, for
instance, the very pertinent book by Phillips [34, §2.4]. In Section 4 we consider the so-called isochoric system
(which is very judicious in the inviscid case for oceanic motions) and its relation with the Boussinesq system.
However, in fact, many authors use the system of Boussinesq equations (3a)—(3d) for ocean motions, with the
quasi-hydrostatic approximation (a boundary layer type simplification).

In general, for the application of the Boussinesq approximation to the mathematical formulation of various
problems, where the buoyancy plays an important role, it is necessary to statsisalagty rulesbetween the
main small Mach number (low compressibility) and other small parameters which characterize the considered
physical problem. For example, in magnetoconvection the ratio of the (small) Alfven number to Mach number
must be of order 1.

Avery important area of the application of the Boussinesq approximation concerns the thermal convectionin the
Earth’s mantle [35,36], numerical study and experimental investigation in magneo-convection [37,38], atmospheric
circulation and climate of various planets of the Solar system as well as the atmosphere of the Sun [39,40] and
Hadley circulation [41]. In recent book by Getling [42] the reader can find an analysis of the structures and
dynamics of RB convection.

3. The asymptotic justification of the Boussinesq approximation

We observe that it is only during the last 25 years that the development in asymptotic modelling [43] gives the
possibility to reveal consistently the asymptotic character of the Boussinesq approximation, first, for a polytropic
gas [44], and, then, for a dilatable (expansible) liquid [45,46]. Indeed, the approximate equations derived via the
Boussinesq approximation can be obtained in the same unique form for any fluid [47] at order zero with respect
to the small parametee: = UC/(CpTC)l/Z, whereU. is a characteristic speed of the mediuth), and 7. being
a characteristic (constant) heat capacity with constant pressure and a characteristic temperature of this medium,
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respectively. Below, we consider, first, the case of a perfect gas fwithC,/C, and R both constant) when
M <1 (U, <« (yRT.)Y?) and, then, the case of a weakly expansible liquid whenAT %o <« 1, whereAT©

is a difference of temperatures in the classical Bénard thermal problempethé constant coefficient of thermal
cubic dilatation of the liquid.

3.1. The case of a perfect gas low-Mach number flow

When the gas is perfect:

then we have an intrinsic vertical height* = p*(0)/go*(0) implied by the hydrostatic reference state (4a).
As a consequence we can consider the rafyg H* = Bo (the so-calledBoussinesaqiumber), whereHy is the
characteristic vertical length scale of the considered low-Ma¢h« 1) number perfect gas flow, and write the
following similarity rule:

Bo/M = B* = O(1) (8)

The heightH* is a judicious characteristic vertical length scale for the standard altiftidsich that, with
dimensionless quantitie$i*z*' = Hpz’ = z*' = Boz/, and in place of the first two relations of (4a) we obtain
(in dimensionless form)p*’ = p*'T*', dp*'/dz*" + p*'(z*") = 0 with d/dz*" = (1/ B0)a/dz’. For the derivation
of approximate Boussinesq inviscid adiabaguations it is necessary to consider the followBaogissinesq limit

Bo| O0andM | 0 suchthat Bo/M = B* =0(1) (9)

which is the more significant limit between two other particular (and more degenerate-less, significant) limits
of flows at low Mach and Boussinesq numbers in the presence of gravity (see, for instance, our recent book,
Zeytounian [48, pp. 150, 151]. To apply the above Boussinesq limit (9) with the low-Mach-number expansions:

P =p"@ 1+ Mrp+--). p'=p"E")1+Mop+-) (10a)
T =T*Z*)Y(1+ Mbg +---) (10b)

we derive at the leading-order, from the exact Euler (inviscid adiabatic) dimensionless equations, the following
Boussinesq approximate equations:

Vug=0; wp=-06p
Dpup/Dt +V(mg/y) — (B*/y)0pk =0 (11)
Dp6p/Dt + B*A*(Q)wp =0

with Dp/Dt = 3/dt + up.V, whereup is the Boussinesq velocity vector as a limit of the Eulerian velogity

by (9). We observe that, in dimensionless form, we obviously ha¥&0) = 1, but, in generalA*(0) is different

from zero The choice of (8) and (10a), (10b)), which give, with (9), the limit Boussinesq equations (11) follows
from a carefully asymptotic analysis of the various degeneracies of the exact dimensionless Euler equations [49,
Chapter 8]. Namely, it is necessary to observe that the above way, for the derivation of inviscid adiabatic Boussinesq
model equations (11), is the only rational way for a consistent derivation of second-order, ‘a la Boussinesq’ linear
model equations (with the non-Boussinesq effects). In Zeytounian [49, Chapter 8], the reader can find a tentative
theory of the Boussinesq approximation, for atmospheric motion. In fact, in Volume Il of the book ‘Mécanique’ by
Paul Germain [50, pp. 225, 226] the reader can find our above Boussinesq equations (11), but with, in the right-hand
side of the second equation (fog) a viscous (incompressible, ‘a la Navier’ — since we have g = 0) term of the

form: (1/ ReV2ug, and in right-hand side of the third equation (faf) a dissipative term of the forifi/ Pe)V263,
wherePeis the Péclet number (the product of the Reynolds nurRewith the PrandtPr, number). In particular,
whenRe— oo, butPr — 0 such thaPe= O(1) andA*(0) = 0, we rediscover the Boussinesq equations (1) written



R.Kh. Zeytounian / C. R. Mecanique 331 (2003) 575-586 581

in the dimensionless form. When we considesteady two-dimensional floiw the plane of gravityx, z), such
that:up = 0y p/dz, andwp = —3y¥p/dx then the following single Boussinesq equation{fqy(x, z) is derived:

3%y /0x? + 8%yp /2% — (B*/y)zdH (Yp) /dyrg = F (¥p) (12)

whereH (yp) and F (), in (12), are two arbitrary functions afp only. In a particular case, in the framework
of the airflow over mountains, if at upstream infinity of a mountain, whes —oo, we have a 2D steady uniform
constant flow in the direction of > 0, with w3 = 65 = 0, then we derive the followinlinear Helmholtzequation
for the functionAg (x,z) =z — ¥3p:

32Ap/0x2 + 9°Ap/32° + (B*?/y) A*(0)Ap =0 (13)

The dominant feature, from a mathematical point of view, is that the linearity of Eq. (13) is do not related to any
one hypothesis of small perturbations. But, from exact slip condition on the considered mountain, simulated by
the dimensionless equationss= dn(x), wheres is an amplitude parameter, we must write the following boundary
(slip, non-linear!) condition foA g on the surface of the mountain:z (x, §n(x)) = 8n(x).

3.2. The case of a weakly expansible liquid

When the fluid is amxpansible liquidwith an equation of state of the general form (tri-variate baroclinic fluid):
p=p(T, p), (14)

the justification of the Boussinesq approximation for the derivation of the OB model equations for the RB shallow
convection is more subtle. Below we consider the classical Bénard thermal problem of an infinite horizontal layer of
viscous, thermally conducting, and (weakly) expansible liquid, of depsitygated from below (at3 =0, T = T),)

and when at the levels = d, is a free surface which separates the liquid from a passive atmosphere (at rest of
constant temperatuf®g and pressure,, having negligible viscosity and density). In motionlessductiorsteady

state the temperaturel§(x3) = T, — b1 x3 and we introduce a perturbation of the temperature(T — To) /AT,

with AT = (T, — To) = b.d, andTp = Ts(d). On the other hand, we observe that from the asymptotic analysis of
the considered Bénard problem, if we want derive consistently the OB approximate equations, then it is necessary
to introduce a pressure perturbatior= (1/ Frf,){(p — pa)/gdpo+ (x3/d) — 1}, the densitypg being a reference
constant density anBr; = (vo/d)/(gd)Y? is a Froude number withg the kinematic constant viscosity. For the
liquid, according to Dutton and Fichtl [30, Section 2], we considereakly expansible ideal liqujdvhen in place

of (14) we write as approximate equation of state:

p R ,00{1— aoATO + Bog d,oo[Frfl 7 — (x3/d) + 1]} (15)

wherefp is the constant pressure expansion coefficient (or, isothermal compressibility coefficient). However, we
have the following thermodynamic relation:

ag/Bo=Cu(y — D(po/To), Withy =C,/C, (16)
and we deduce the following similarity relation:
Bog dpo = Koe?, whereKo=[gdTo/(AT)?Cy(y — 1)] (17)

Finally, if we assume thako = O(1) = (AT)2 ~ [gdTo/C,(y — 1)1, then in the leading order for the shallow
convection OB equations we can use as equation of state:

P~ poll — &b] (18)

with and error of @s2). According to Zeytounian [45,46], for the derivation of the OB approximate equations,
governing the RB shallow convection model problem, it is necessary to consider the folBairsginesq limit
process

el 0andFry | 0, suchthat ¢/(Fry)?>=Gr=0(1) (19)
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where Gr is the Grashof number. In this case, sirferg | 0: “it is not consistent, in the leading order (from

an asymptotic point of view), to take into account simultaneously in the RB thermal shallow convection model
problem the buoyancy effect and the deformation effect of the free surface.” More precisely if we associate to (19)
the following asymptotic expansions for the velocity componentnd thermodynamic perturbationsé:

ui =uio+Freuj+---, m=no+Frlmi4---, O=00+Fr?6+--. (20)
then, in place of the full exact NSF dimensionless equations, we derive asymptotically the following dimensionless
OB equations for;o, andryg, 6o:

duijo/dx; =0

Douio/ Dt 4+ dmo/dx; — Gropdiz = Aujo (22)

Dobo/ Dt = (1/ Pr)A6g

In the limit equation fo®g the viscous dissipation term is negligible because
1mm =~ (v3/g)"° < d~ Co/gAT (22)

with Co = (dE/dO)p—=0 WhereE = E(6) is the internal specific energy of our ideal liquid with an approximate
equation of state (18). The relation (22) is an estimate for the thickness of the liquiddafera sequel of arigid-

free ‘exact’ starting Bénard thermal problem, for the above OB model equations (21), we obtain in the Boussinesq
limit (19) with (20) the following boundary conditions at the non-deformable surfgee 1, with Marangoni and

Biot effects:

v30=0, and 82vsp/dx3 =Ma[8%0/9x? + 820 /9x3] (23a)

06p/0x3+ Bi6g+1=0 (23b)
On the lower rigid flat plate we have the conditions:

uio=0 and =1, atxz3=0 (23c)

The deformation of the free surfacgt, x1, x2) is then determined, when the perturbation of the pressure
m1(t, x1, x2, x3) is known atxz = 1, after the solution of the RB problem (21), (23(a)—(c)), by the equation:

3%n/0x2 + 9%n/0x2 — (5 / Wey = —(1/ Wemo(t, x1, x2. 1) (24)

where §* = §/ Frgzl, with § « 1 the dimensionless amplitude parameter of the deformable free surface. The
Marangoni(Ma) and WebernWe numbers are linked with the surface tension, assumed temperature dependent,
and the Biot Bi) number is linked with the use of the Newton'’s law for the heat transfer between the air and liquid
via the free surface. The above Eq. (24),1aor, x1, x2), seems do not have been derived in framework of classical,

ad hoc, theory [10], and emerges very naturally in our asymptotic approach. The RB problem: (21), (23(a)—(c)),
has been recently considered by Dauby and Lebon [51], but without Eqg. (24). A final remark concerning the
conclusions of the paper by Rajagopal, Ruzicka and Srinivasa [52], which curiously assert that their derivation of
OB Egs. (21): “is free from the additional assumptions usually added in various earlier works in order to obtain the
correct equations”?

4. Some comments concerning the validity of the Boussinesq approximation

4.1. The problem of initial conditions

If we consider the above two main model system of equations, (11), and (21), derived in the above Sections 3,
via the Boussinesq approximation, then we observe that in these approximate two model systems (derived when the
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time, 7, is fixed and @1)) we have arelocity divergence-less equation place of the full compressible continuity
equation, and only two derivatives with respect to time:ufgrandép in (11), and foru;o, andép in (21). On the

other hand, in the full unsteady Euler and NSF equations, we thagederivatives with respect to time: for the
velocity vectoru, densityp and temperaturgé. As a consequence, if we want resolve a pure initial-valu@sarchy
(prediction) problem(in the L2-norm, for example), it is necessary (for the well-posedness) to have a complete set
of initial conditions (data):

t=0:u=ulx), p=p°x%), T=T° (25)

wherep%(x) > 0 andT%(x) > 0. Now, if we consider, for instance, the systenBolussinesq equationél 1), then
we have the possibility to assume omiyo initial data, namely:

t=0: uBzu%(x) and e:eg(x) (26)

This is due to the fact that, for instance, the Boussinesq limit proaeaad x both fixed in (9)), which
leads to the approximate equations (flljers outsome time derivatives — these correspondingdoustic fast
waves— because such waves are of no importance for low speed (hyposonic) motions considered. Due to this;
one encounters the problem of deciding what initial conditi(n% eg) one may prescribe for the approximate
(‘ala Boussinesq’) equations (11), and in what way these two initial conditions (26) are related to the given initial
conditions (25) associated with the starting Euler exact equations. It is important to note that the exact initial
conditions for the Euler (and also NSF) equations, are not, in general, consistent with the estimates of basic orders
of magnitude implied by the approximate (without acoustic waves!) model equations (11) and (21). A physical
process of time evolution is necessary to bring the initial set to a consistent level as far as the orders of magnitude
are concerned. Such a process is called onaidteady adjustmen@nd is short on the time scale (compared
with the time characterizing the approximate simplified equations) and at the end of itasyamptotic sense
we obtain values for the set of initial conditions suitable to the simplified (via the Boussinesq approximation)
equations, at = 0: The aim of the unsteady adjustment problem is to clarify just how a set of initial data associated
with a determined (exact) starting system of equations can be related to another set of initial data associated
with a simpler, approximate model equations, which is a significant degeneracy of the system of (exact) equations
considered at the starMore precisely, the obtaining of consistent initial conditions (at0) for the approximate
Boussinesq equations (11) is a consequence of a matching between the two asymptotic representations: the main
one Boussinesgwith ¢ fixed; r = 0) and the local oneaousti¢ nears = 0, with r = ¢/M fixed; r — +00), and
Lim(Boussinesq, at = 0) = Lim(Acoustics, att — 4o00). In order to solve a such problem, it is necessary to
introduce an initial layer in the vicinity of = 0 by distorting the time scale and the unknowns which were initially
undefined. In [32, Chapter V], the reader can find the solution of this problem for the Boussinesq equations but the
result is valid only when we assume, for the exact Euler equations, as initial conditions:

t=0u=u’ v=1° w=uw’ 7=Mr% w=Mo and 6=me° 27)
where the initial data are given functionsxafy andz, and the initial velocity vector is assumed be of the following
form: u® = (u®, 10, w® = Vg0 + v A 0.

4.2. The upper boundary condition at the top of the troposphere and the radiation (Sommerfeld) condition

If we assume that the upper flat plang = H*, bound (as a tropopause) the considered lee-waves phenomenon
(in the troposphere), then we must write the following dimensionless upper boundary (slip) condition for the exact
dimensionless Euler equations

w=0 onz=1/Bo (28)

which isvery singularwhenBo — 0! As a consequenci reality, for the 2D steady Boussinesq equation (13) we
obtain, as upper condition the ‘paradoxical’ behaviour condittogp(x, z 1 +00) = +o0o! Obviously, the infinity
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in altitude relative ta, for the Boussinesq equations (11), with (28), must be understood as a behaviour condition
relative to the ‘inner’ vertical (Boussinesq) coordinatéwith the dimensionless quantities), which is matched
with an outer¢ = Mz, coordinate. This outer vertical dimensionless coordigataking into account the upper
condition at the top of the troposphere, which is rejected at infinity in the framework of the Boussinesq (inner)
problem (we observe that, as a consequendg*of O(1), the Boussinesq inner problem is significant only in a
layer of the thicknes#fz = (U./g)[RT*(0)/y1%2 of order of 1& m). The outer region is bounded by the plane

¢ =1/B*, with B* = O(1), and in an unbounded atmosphere (which is in fact a boundary layer type inner region),
it is necessary to impose fax g, solution of (13), a radiation condition (a la Sommerfeld):

Ap ~ [2Ko/nr1Y?sing Real G (cosd) exfi (Kor — /4] (29)

whenr = [x2 + z21Y2 - oo, with Ko = (B*2/y) A*(0), where the functiorG (cosd) is arbitrary and depends on

the form of the relief simulated by= §n(x). So as to satisfy the upstream infinity behaviour (fer —o0), the
conditionG(cos9) = 0, for co® < 0 must also be imposed. It is pointed out that the polar coordinatés,in

the upper half-plane > 0 are defined such that:=» cosf andz = r sind. The inner Boussinesq model problem

is, in fact, the problem considered by Miles [53] and also by Kozhevnikov [54], with the condition (29), which
express that “no waves are radiated inwards”. In Guiraud and Zeytounian [55] paper the associated outer problem
is asymptotically analysed and it is shown that the upper and lower boundaries of the troposphere alternately reflect
internal short gravity waves excited by the lee waves of the inner (Boussinesq) approximation, with a wavelength
of the order of the Mach numbe¥/, to the scale of the outer region. As a consequence, there is a double scale
built into the solution and we must take care of it — the important point of GZ [55] analysis is that: “these short
gravity excited waves propagate downstream and that not feedback occurs on the inner Boussinesq flow close to
the mountain (to lower order at least!)”. As a consequence, we should understand the imposed upper boundary at
the top of the troposphere as artificial one having asymptoticallyo effectoon the inner Boussinesq flow which

is the only really interesting one. In Bois [56], it is shown tiveithin a generalized Boussinesq approximation, the
atmospheric linearized flow over a relief can, in realistic cases, be approximated by a confined flow

4.3. Isochoric model equation

If, first, we consider an Eulerian (nonviscous) motion witbhamstant internal specific energy per unit mass
a so-called isochoric E = Eg = const’ flow, then we observe that in the framework of Euler compressible
nonviscous dimensionless equations for a perfect gas the corresponding isochoric model equations are derived
under the following limiting process:

M — 0andy — oo, suchthat yM?= M*=0(1) (30)

and y — oo, because for a perfect ‘isochoric’ gag = O(1), but ¢, — 0. For instance, in the steady two-
dimensional inviscid case, on the one hand, in place of dimensidimieas Helmholtz—Boussinegguations (13),
we derive, for the (isochoric) functions(x, z), the following dimensionless (quasipnlinearequation [48, pp.
104-108], where in the right-hand side we have the non-Boussinesq effects:

3%A1s/0x% + 0% A1s/92° + (BO? /M*)Nis(Boz) Ajs
= (B0/2)[20 A1s/dz — (3 A1s/3x)* — (3 A1s/32)?] (31)

with Nis(z*) = (1/T*(z*))[1 + dT*(z*)/dz*], z* = Boz, and, on the other hand, this isochoric equation (31) is
valid in the whole thickness of the tropospheB® (being unity. Moreover, wherBo — 0, with Bo= B*M — 0,

y = O(1), we recover again a Helmholtz equation, similar to (13), forAigbut with K,2S = (B*2/y)Nis(0), in
place of(B*2/y) A*(0) = K2.
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4.4. Deep convection model equation

WhenBo= O(1) we also have the possibility to assume a constrairdd(z*) given by (4a). Indeed, first, in the
whole thickness of theoposphere®* (z*') = —dT*'(z*’) /dz*’ is very close tqy — 1)/y, and as a consequence
we can assume that (withaytut in dimensionless form):

—dT*(z%)/dz* =[(y — D) /y ]+ M?x(z%) (32)

where |x (z*)| = O(1). In particular, again for thesteady, two-dimensionalee-waves problem in the whole
troposphere, we derive the following single equation fordhep stream functio®p:

02Wp /0x? + 0%Wp /072 + (Bo/y){1— [(v — D Bo/y]z) ‘owp/oz

={1—[(y =1 Bo/y]z) " P{FpWp) + (Bo/y)z[dHp (¥p)/d¥p]) (33)

which is an extended form (with non-Boussinesq effects) of Boussinesq equation (12) writtes flor Pekelis,

[57], the reader can find some numerical results fordisep lee-waves the troposphere, which are computed via

an equation very similar to (33), but derived from the so-called ‘anelastic’ equations of Ogura and Phillips [58].
We observe that, in the two-dimensional steady case, the Boussinesq, (13), isochoric, (31), and deep convection,
(33), equations, have been derived, in Zeytounian [59], directly from a single vorticity equation deduced from
the exact Euler steady compressible two-dimensional non-viscous adiabatic dimensionless system. Finally, in
Zeytounian [60] the reader can finddeep OB systerof equations with thenon-Boussinesterms proportional

to depth parametes; = apg d/ Co.
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