Asymptotics for eigenvalues of the Laplacian with a Neumann boundary condition on a thin cut-out tube

Marina Yu. Planida
The Bashkir State Pedagogical University, October Revolution st., 3a, 450000 Ufa, Russia
Received 26 May 2003; accepted 6 June 2003
Presented by Évariste Sanchez-Palencia

Abstract

We consider the eigenvalue problem for the Laplace operator in a bounded three-dimensional domain where a thin tube is cut out. Imposing a Neumann boundary condition on the boundary of this tube, we construct asymptotics for eigenvalues on the small parameter that is a diameter of the tube. To cite this article: M.Yu. Planida, C. R. Mecanique 331 (2003). © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Comportement asymptotique des valeurs propres du laplacien avec conditions de Neumann sur un tube extrait. On considère l'opérateur de Laplace dans un domaine tridimensionnel borné dont on a extrait un tube fin, avec la condition aux limites de Neumann. Nous construisons le développement asymptotique des valeurs propres pour des valeurs petites du diamètre du tube. Pour citer cet article : M.Yu. Planida, C. R. Mecanique 331 (2003).
© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
Keywords: Vibrations; Asymptotique; Valeur propre
Mots-clés : Vibrations; Asymptotics; Eigenvalue

1. Introduction

We consider the eigenvalue problem for the Laplace operator in a bounded domain and impose a Neumann boundary condition on a boundary of a thin cut-out tube. The asymptotics for an eigenvalue of this singular perturbed problem is constructed under the assumption the tube shrinks to a closed curve.

Let $x=\left(x_{1}, x_{2}, x_{3}\right), \Omega \subset \mathbb{R}^{3}$ be a bounded simply-connected domain having an infinitely differentiable boundary $\Gamma, \gamma \in C^{\infty}$ be a closed curve with no self-intersection lying in the plane $x_{3}=0, \gamma \subset \Omega$. In a vicinity of γ we introduce coordinates $(y, s), y=\left(y_{1}, y_{2}\right)$, where s is a natural parameter (the arc) of the curve $\gamma, y_{1}=x_{3}, y_{2}$ is a distance to γ in the plane $x_{3}=0$ measured along the inward normal to the curve γ considered as a boundary of two-dimensional domain in the plane $x_{3}=0$. By ω we denote a simply-connected domain in \mathbb{R}^{2} having

[^0]1631-0721/\$ - see front matter © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Fig. 1.

Fig. 2.
smooth boundary and containing the origin. We set $\omega_{\varepsilon}=\left\{y \in \mathbb{R}^{2}: \varepsilon^{-1} y \in \omega\right\}, \gamma_{\varepsilon}=\left\{x \in \mathbb{R}^{3}: s \in \gamma, y \in \omega_{\varepsilon}\right\}$, $\Omega_{\varepsilon}=\Omega \backslash \overline{\gamma_{\varepsilon}}, 0<\varepsilon \ll 1$ (cf. Figs. 1, 2). In [1] it was proved that if λ_{0} is a simple eigenvalue of the boundary value problem

$$
\begin{equation*}
-\Delta \psi_{0}=\lambda_{0} \psi_{0} \quad \text { as } x \in \Omega, \quad \sigma_{1} \frac{\partial \psi_{0}}{\partial \tau}+\sigma_{2} \psi_{0}=0 \quad \text { as } x \in \Gamma \tag{1}
\end{equation*}
$$

where τ denotes inward normal to $\partial \Omega_{\varepsilon},\left(\sigma_{1}, \sigma_{2}\right)=(1,0)$ or $\left(\sigma_{1}, \sigma_{2}\right)=(0,1)$, then there exists a unique eigenvalue λ_{ε} of the problem

$$
\begin{equation*}
-\Delta \psi_{\varepsilon}=\lambda_{\varepsilon} \psi_{\varepsilon} \quad \text { in } \Omega_{\varepsilon}, \quad \frac{\partial \psi_{\varepsilon}}{\partial \tau}=0 \quad \text { on } \partial \gamma_{\varepsilon}, \quad \sigma_{1} \frac{\partial \psi_{\varepsilon}}{\partial \tau}+\sigma_{2} \psi_{\varepsilon}=0 \quad \text { on } \Gamma \tag{2}
\end{equation*}
$$

converging to λ_{0} as $\varepsilon \rightarrow 0$, and this perturbed eigenvalue is simple.
In the present paper using the method of matched asymptotics expansions [2-4], the asymptotics for this λ_{ε} are constructed as $\varepsilon \rightarrow 0$. We notice that for particular case when the curve is a circle the asymptotics for the solution to the Poisson equation was constructed in [5].

2. Construction of asymptotics

Since the function ψ_{0} does not meet the needed boundary condition on γ_{ε}, we employ the method of matched asymptotics expansions in order to construct the asymptotics of ψ_{ε} in a vicinity of γ_{ε}. These asymptotics are constructed in terms of 'inner' variables $\xi=y \varepsilon^{-1}$.

For small y the Laplace operator rewritten to (y, s) becomes

$$
\begin{equation*}
\Delta=\Delta_{y}-\left(t(s)+\sum_{i=1}^{\infty} d_{i}(s) y_{2}^{i}\right) \frac{\partial}{\partial y_{2}}+\left(1+\sum_{i=2}^{\infty} h_{i-1}(s) y_{2}^{i-1}\right) \frac{\partial^{2}}{\partial s^{2}}-\sum_{i=1}^{\infty} p_{i}(s) y_{2}^{i} \frac{\partial}{\partial s} \tag{3}
\end{equation*}
$$

where Δ_{y} is the two-dimensional Laplace operator with respect to variables y, t, and $b_{i}, h_{q}, p_{m} \in C^{\infty}(\gamma) ;|t|$ is the curvature of the curve γ, while eigenfunction ψ_{0} is expanded into a series

$$
\begin{align*}
& \psi_{0}(x(y ; s))=P_{0}(s)+P_{1}(y ; s)+P_{2}(y ; s)+\mathrm{O}\left(r^{3}\right), \quad r \rightarrow 0 \tag{4}\\
& P_{0}=c_{00}, \quad P_{1}=c_{10} y_{1}+c_{01} y_{2}, \quad P_{2}=\frac{c_{20} y_{1}^{2}+2 c_{11} y_{1} y_{2}+c_{02} y_{2}^{2}}{2}, \quad c_{i j}(s)=\left.\frac{\partial^{i+j} \psi_{0}}{\partial y_{1}^{i} \partial y_{2}^{j}}\right|_{y=0} \tag{5}
\end{align*}
$$

where $r=|y|$. Moreover, by (1) and (3),

$$
\begin{equation*}
c_{20}+c_{02}=t c_{01}-c_{00}^{\prime \prime}-\lambda_{0} c_{00} \tag{6}
\end{equation*}
$$

In accordance with the method of matched asymptotics expansions [2], we rewrite (4) in the variables ξ and see that asymptotics for the eigenfunction ψ_{ε} in a vicinity of γ_{ε} should be sought as

$$
\begin{align*}
& \psi_{\varepsilon}=v_{0}+\varepsilon v_{1}+\varepsilon^{2} v_{2}+\cdots \tag{7}\\
& v_{i}(\xi ; s) \sim P_{i}(\xi ; s), \quad \rho \rightarrow \infty \tag{8}
\end{align*}
$$

where $\rho=|\xi|$. Substituting (3), (7) into (2), and substituting in the equality obtained for the variables ξ, we get the boundary value problem for v_{0} :

$$
\begin{equation*}
\Delta_{\xi} v_{0}=0, \quad \xi \in \mathbb{R}^{2} \backslash \bar{\omega}, \quad \frac{\partial v_{0}}{\partial \tau}=0, \quad \xi \in \partial \omega \tag{9}
\end{equation*}
$$

It is clear that the function

$$
\begin{equation*}
v_{0}(\xi ; s) \equiv P_{0}(s) \tag{10}
\end{equation*}
$$

satisfies (9) and (8). Substituting (3), (7) in (2) and writing out the problems for v_{1}, v_{2}, we see that

$$
\begin{align*}
& \Delta_{\xi} v_{1}=0, \quad \xi \in \mathbb{R}^{2} \backslash \bar{\omega}, \quad \frac{\partial v_{1}}{\partial \tau}=0, \quad \xi \in \partial \omega \tag{11}\\
& \Delta_{\xi} v_{2}=t \frac{\partial v_{1}}{\partial \xi_{2}}-\frac{\partial^{2} v_{0}}{\partial s^{2}}-\lambda_{0} v_{0}, \quad \xi \in \mathbb{R}^{2} \backslash \bar{\omega}, \quad \frac{\partial v_{2}}{\partial \tau}=0, \quad \xi \in \partial \omega \tag{12}
\end{align*}
$$

Here we also bear in mind that v_{0} is independent of ξ.
Now we are going to study the solvability of the problems (11), (12) and find the asymptotics of v_{1}, v_{2} as $\rho \rightarrow \infty$. We start from the following obvious statement.

Lemma 2.1. Let $Z_{n}(\xi ; s)$ be an arbitrary harmonic polynomial of n-th degree with respect to the variables ξ whose coefficients depend on s. Then there exists a harmonic function $V\left(\xi ; Z_{n}(\xi ; s)\right)$ defined in $\mathbb{R}^{2} \backslash \bar{\omega}$ satisfying the homogeneous Neumann condition on $\partial \omega$ and the asymptotics

$$
\begin{equation*}
V\left(\xi ; Z_{n}(\xi ; s)\right)=Z_{n}(\xi ; s)+(a(s) \sin \varphi+b(s) \cos \varphi) \rho^{-1}+\mathrm{O}\left(\rho^{-2}\right) \tag{13}
\end{equation*}
$$

as $\rho \rightarrow \infty$. Here φ is polar angle.
Corollary 2.2. (a) There exists, harmonic in $\mathbb{R}^{2} \backslash \bar{\omega}$, functions $V\left(\xi ; \xi_{1}\right), V\left(\xi ; \xi_{2}\right)$ satisfying the homogeneous Neumann condition on $\partial \omega$ and asymptotics

$$
\begin{equation*}
V\left(\xi ; \xi_{i}\right)=\xi_{i}+\frac{1}{2 \pi} \sum_{j=1}^{2} m_{i j} \frac{\partial \ln \rho}{\partial \xi_{j}}+\mathrm{O}\left(\rho^{-2}\right), \quad \rho \rightarrow \infty \tag{14}
\end{equation*}
$$

(b) The matrix $M(\omega)=\left(m_{i j}\right)_{i, j=1,2}$ is positive defined, symmetric and determined by the domain ω.

Item (a) is implied by Lemma 2.2 while the validity of item (b) can be established by analogy with [3,7].
Remark 1. We note that when ω is a unit disk, we have $V\left(\xi ; \xi_{1}\right)=\left(\rho+\rho^{-1}\right) \sin \varphi, V\left(\xi ; \xi_{2}\right)=\left(\rho+\rho^{-1}\right) \cos \varphi$ and, therefore, the assertion (14) yields that $M=2 \pi E$, where E is a unit matrix.

Due to Corollary 2.2 the function

$$
\begin{equation*}
v_{1}(\xi ; s)=c_{10}(s) V\left(\xi ; \xi_{1}\right)+c_{01}(s) V\left(\xi ; \xi_{2}\right) \tag{15}
\end{equation*}
$$

is a solution of the boundary value problem (11) and has the asymptotics

$$
\begin{equation*}
v_{1}(\xi ; s)=P_{1}(\xi ; s)+(A(s) \sin \varphi+B(s) \cos \varphi) \rho^{-1}+\mathrm{O}\left(\rho^{-2}\right) \tag{16}
\end{equation*}
$$

as $\rho \rightarrow \infty$. Thus, it satisfies (8), moreover, by (15), (14),

$$
\begin{equation*}
A=\frac{1}{2 \pi}\left(c_{10} m_{12}+c_{01} m_{22}\right), \quad B=\frac{1}{2 \pi}\left(c_{10} m_{11}+c_{01} m_{21}\right) \tag{17}
\end{equation*}
$$

Let us proceed to the problem (12). We seek v_{2} in the form:

$$
\begin{equation*}
v_{2}=\frac{t}{2} \xi_{2} v_{1}-\frac{\rho^{2}}{4}\left(c_{00}^{\prime \prime}+\lambda_{0} c_{00}\right)+\tilde{v}_{2} \tag{18}
\end{equation*}
$$

By (18), (12), (11), (10), (8), (5) and (6), the boundary value problem for \tilde{v}_{2} can be written as follows:

$$
\begin{align*}
& \Delta_{\xi} \tilde{v}_{2}=0, \quad \xi \in \mathbb{R}^{2} \backslash \bar{\omega}, \quad \frac{\partial \tilde{v}_{2}}{\partial \tau}=-\frac{t}{2} v_{1} \frac{\partial \xi_{2}}{\partial \tau}+\frac{1}{4} \frac{\partial \rho^{2}}{\partial \tau}\left(c_{00}^{\prime \prime}+\lambda_{0} c_{00}\right), \quad \xi \in \partial \omega \tag{19}\\
& \tilde{v}_{2}(\xi ; s)=Z_{2}(\xi ; s)+\mathrm{o}\left(\rho^{2}\right), \quad \rho \rightarrow \infty
\end{align*}
$$

In turn, \tilde{v}_{2} is constructed as

$$
\begin{equation*}
\tilde{v}_{2}(\xi ; s)=V\left(\xi ; Z_{2}(\xi ; s)\right)+\hat{v}_{2}(\xi ; s), \quad \hat{v}_{2}(\xi ; s)=\mathrm{o}(\rho), \quad \rho \rightarrow \infty \tag{20}
\end{equation*}
$$

It follows from (20) and (19) that the boundary value problem for \hat{v}_{2} has the form

$$
\begin{equation*}
\Delta_{\xi} \hat{v}_{2}=0, \quad \xi \in \mathbb{R}^{2} \backslash \bar{\omega}, \quad \frac{\partial \hat{v}_{2}}{\partial \tau}=-\frac{t}{2} v_{1} \frac{\partial \xi_{2}}{\partial \tau}+\frac{1}{4} \frac{\partial \rho^{2}}{\partial \tau}\left(c_{00}^{\prime \prime}+\lambda_{0} c_{00}\right), \quad \xi \in \partial \omega \tag{21}
\end{equation*}
$$

It is known that there exists the solution to the problem (21) having the asymptotics

$$
\begin{equation*}
\hat{v}_{2}(\xi ; s)=G(s) \ln \rho+\mathrm{O}(1), \quad G(s)=\frac{1}{2 \pi} \int_{\partial \omega} \frac{\partial \hat{v}_{2}}{\partial \tau} \mathrm{~d} l_{\xi} \tag{22}
\end{equation*}
$$

as $\rho \rightarrow \infty$. Calculating $G(s)$ by the boundary condition in (21), (15) and employing (14), we derive that

$$
\begin{equation*}
G(s)=-\frac{t(s)}{4 \pi}\left(c_{10} m_{12}+c_{01} m_{22}\right)+\frac{1}{2 \pi}|\omega|\left(c_{00}^{\prime \prime}+\lambda_{0} c_{00}\right) \tag{23}
\end{equation*}
$$

It follows from (18), (20), (22) that the boundary value problem (12) has a solution v_{2} satisfying the asymptotics

$$
\begin{equation*}
v_{2}(\xi ; s)=P_{2}(\xi ; s)+G(s) \ln \rho+\mathrm{O}(1), \quad \rho \rightarrow \infty \tag{24}
\end{equation*}
$$

and, therefore, this solution satisfies (8).
Remark 2. Observe that rewriting asymptotics of the function $\varepsilon^{2} v_{2}$ (as $\rho \rightarrow \infty$) in the variables x is the origin of the term $\left(-\varepsilon^{2} \ln \varepsilon G(s)\right)$. To eliminate this term, in the inner expansion we introduce an additional term $\varepsilon^{2} \ln \varepsilon v_{2,1}$ obeying the asymptotics:

$$
\begin{equation*}
v_{2,1}(\xi ; s)=G(s)+\mathrm{o}(1) \tag{25}
\end{equation*}
$$

Thus, the leading terms of the asymptotics ψ_{ε} should be constructed as

$$
\begin{equation*}
\psi_{\varepsilon} \approx v_{0}+\varepsilon v_{1}+\varepsilon^{2} \ln \varepsilon v_{2,1}+\varepsilon^{2} v_{2} \tag{26}
\end{equation*}
$$

Now we substitute (26), (3) into (2), pass to the variables ξ in the equality obtained and equate the coefficient of $\varepsilon^{2} \ln \varepsilon$. This procedure gives the following boundary value problem:

$$
\begin{equation*}
\Delta_{\xi} v_{2,1}=0, \quad \xi \in \mathbb{R}^{2} \backslash \bar{\omega}, \quad \frac{\partial v_{2,1}}{\partial \tau}=0, \quad \xi \in \partial \omega \tag{27}
\end{equation*}
$$

It is obvious that $v_{2,1}(\xi ; s) \equiv G(s)$ is a solution of the boundary value problem (27) and has the asymptotics (25). Replacing v_{i} by their asymptotics at infinity (10), (16), (24), (25) in (26) and rewriting these asymptotics in the variable y, in accordance with method of matched asymptotics expansions, we see that the asymptotics of the eigenfunction outside a neighbourhood of γ_{ε} and the asymptotics of the eigenvalue should be constructed as follows:

$$
\begin{align*}
& \psi_{\varepsilon}(x)=\psi_{0}(x)+\varepsilon^{2} \psi_{2}(x)+\cdots \tag{28}\\
& \psi_{2}(x)=r^{-1}(A(s) \sin \varphi+B(s) \cos \varphi)+G(s) \ln r+\mathrm{O}(1), \quad r \rightarrow 0 \tag{29}\\
& \lambda_{\varepsilon}=\lambda_{0}+\varepsilon^{2} \lambda_{2}+\cdots \tag{30}
\end{align*}
$$

Substituting (30) and (28) into (2), we arrive at the boundary value problem for ψ_{2} :

$$
\begin{equation*}
-\Delta \psi_{2}=\lambda_{0} \psi_{2}+\lambda_{2} \psi_{0}, \quad x \in \Omega \backslash \gamma, \quad \sigma_{1} \frac{\partial \psi_{2}}{\partial \tau}+\sigma_{2} \psi_{2}=0, \quad x \in \Gamma \tag{31}
\end{equation*}
$$

By analogy with [4] one can prove the following statement:
Lemma 2.3. Let $a, b, g \in C^{\infty}(\gamma),\left\|\psi_{0}\right\|_{L^{2}(\Omega)}=1$. Then there exist functions $\Psi_{2}^{(0)}(x ; g), \Psi_{2}^{(2)}(x ; a, b) \in C^{\infty}(\bar{\Omega} \backslash$ γ), having the asymptotics

$$
\Psi_{2}^{(0)}(x ; g(s))(x) \sim g(s) \ln r, \quad \Psi_{2}^{(2)}(x ; a(s), b(s)) \sim r^{-1}(a(s) \sin \varphi+b(s) \cos \varphi)
$$

as $r \rightarrow 0$ and being the solutions of the boundary value problem (31) for $\lambda_{2}=\Lambda_{2}^{(0)}$ and $\lambda_{2}=\Lambda_{2}^{(2)}$, respectively, where

$$
\Lambda_{2}^{(0)}=2 \pi \int_{\gamma} c_{00} g \mathrm{~d} s, \quad \Lambda_{2}^{(2)}=-2 \pi \int_{\gamma}\left(c_{10} b+c_{01} a\right) \mathrm{d} s
$$

It follows from Lemma 2.3 that the function $\psi_{2}=\Psi_{2}^{(2)}(x ; A, B)+\Psi_{2}^{(0)}(x ; G)$, where the quantities A, B, G are defined by the equalities (17), (23), has the asymptotics (29) and is a solution to the boundary value problem (31) as

$$
\begin{equation*}
\lambda_{2}=|\omega| \int_{\gamma}\left(\lambda_{0} \psi_{0}^{2}-\left(\frac{\partial \psi_{0}}{\partial s}\right)^{2}\right) \mathrm{d} s-\int_{\gamma} \nabla_{y} \psi_{0} M(\omega)\left(\nabla_{y} \psi_{0}+\frac{1}{2} t(s) \psi_{0} \mathbf{e}_{2}\right) \mathrm{d} s \tag{32}
\end{equation*}
$$

where $\mathbf{e}_{2}=(0,1)$.
Thus, the eigenvalue of the problem (2) has the asymptotics (30), (32). Rigorous justification of this asymptotics can be carried by analogy with [4].

3. Conclusing remarks

We note that if we impose Dirichlet boundary conditions on the tube's boundary, the variational properties of the eigenvalues say that $\lambda_{\varepsilon}-\lambda_{0}>0$. At the same time, for the problem considered in this paper, the quantity $\lambda_{\varepsilon}-\lambda_{0}$ has no definite sign. Indeed, assume that $S_{R_{1}}$ is a disk of radius $R_{1}>1$ with center at the origin, $\Omega=S_{R_{1}} \times(-\pi / 2, \pi / 2), \gamma \subset \Omega \cap\left\{x_{3}=0\right\}$ is a unit circle with center at the origin, $\left(R, \Theta, x_{3}\right)$ are cylindrical coordinates associated with x. It is known that a simple eigenvalue of the problem (1) for $\left(\sigma_{1}, \sigma_{2}\right)=(0,1)$ (i.e., of the Dirichlet problem) is given by $\lambda_{0}=\varkappa^{2}+\left(v_{j} / R_{1}\right)^{2}$, and the associated eigenfunction normalized in $L^{2}(\Omega)$ is determined by the equality

$$
\begin{equation*}
\psi_{0}(x)=\frac{2}{\pi R_{1}} \frac{I_{0}\left(v_{j} R / R_{1}\right)}{I_{0}^{\prime}\left(v_{j}\right)} X\left(x_{3}\right) \tag{33}
\end{equation*}
$$

where $X\left(x_{3}\right)=\sin \left(\varkappa x_{3}\right)$ for even $\varkappa ; X\left(x_{3}\right)=\cos \left(\varkappa x_{3}\right)$ for odd $\varkappa ; v_{j}$ are zeroes for Bessel function $I_{0}(\nu)$ of zero order. Since γ is a circle, it follows from (33) that $\partial \psi_{0} / \partial s=0$ on γ (and, therefore, the second term in the first integral in (32) disappears). Assume, in addition, that ω is a unit circle. Therefore, $M=2 \pi E$ (see Remark 1).

Let us consider the case $\varkappa=2$, and v_{j} / R_{1} is not a zero of the Bessel function $I_{0}(\nu)$. Clearly, there exists such an R_{1}. Then $\psi_{0}=\partial \psi_{0} / \partial s=0$ on γ and it follows from the formula (32) that:

$$
\begin{equation*}
\lambda_{2}=-2 \pi\left\|\nabla_{y} \psi_{0}\right\|_{L^{2}(\gamma)}^{2}<0 \tag{34}
\end{equation*}
$$

Now assume that $\varkappa=1$ and v_{s} / R_{1} is a zero of first derivative of the Bessel function $I_{0}(\nu)$ (clearly, for s large enough such an R_{1} does exist). Then $\nabla_{y} \psi_{0}=0$ on γ and it follows from (32) that:

$$
\begin{equation*}
\lambda_{2}=2 \pi \lambda_{0}\left\|\psi_{0}\right\|_{L^{2}(\gamma)}^{2}>0 \tag{35}
\end{equation*}
$$

Therefore, the assertions (30), (34) and (35) imply that in the first case $\lambda_{\varepsilon}-\lambda_{0}<0$, while in the second $\lambda_{\varepsilon}-\lambda_{0}>0$.

We note that similar phenomena appears in two- and three-dimensional boundary value problems for the Laplace operator in domains with a small cavity, when the Neumann condition is imposed on the boundary of the cavity while the cavity shrinks to a point [6,7].

In conclusion we also note that in the case of the Robin condition on Γ, the convergence of the eigenvalues and the estimates of the inverse operator needed for a rigorous justification of the asymptotics can be proved exactly by analogy with [1] (in this paper they considered Dirichlet and Neumann boundary conditions on Γ). The construction of the asymptotics λ_{ε} does not differ from that above.

Acknowledgements

The author thanks R.R. Gadyl'shin and D.I. Borisov for attention to this work. The author is supported by RFBR (02-01-00693), by the program 'Leading Scientific School' (NSh-1446.2003.1) and by the program 'Universities of Russia' (UR.04.01.010).

References

[1] M.Yu. Planida, On the convergence of solutions of singularly perturbed boundary-value problems for the Laplace operator, Math. Notes 71 (2002) 867-877.
[2] A.M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, American Mathematical Society, Providence, RI, 1992.
[3] R.R. Gadyl'shin, Ramification of a multiple eigenvalue of the Dirichlet problem for the Laplacian under singular perturbation of the boundary condition, Math. Notes 52 (1992) 1020-1029.
[4] M. Yu. Planida, Asymptotics of eigenvalues for a cylinder insulated on a narrow strip, Comput. Math. Math. Phys. 43 (2003) $403-413$.
[5] S.A. Nazarov, M.V. Paukshto, Discrete models and homogenization in problems of elastisity theory, Lenigrad University, Leningrad, 1984 (in Russian).
[6] S. Ozawa, Spectra of domains spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983) 259-277.
[7] V.G. Maz’ya, S.A. Nazarov, B.A. Plamenevskij, Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes, Math. USSR-Izv. 24 (1985) 321-345.

[^0]: E-mail address: planida@bspu.ru (M.Yu. Planida).

