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Abstract

We consider the eigenvalue problem for the Laplace operator in a bounded three-dimensional domain where a th
cut out. Imposing a Neumann boundary condition on the boundary of this tube, we construct asymptotics for eigenvalu
small parameter that is a diameter of the tube.To cite this article: M.Yu. Planida, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Comportement asymptotique des valeurs propres du laplacien avec conditions de Neumann sur un tube extrait. On
considère l’opérateur de Laplace dans un domaine tridimensionnel borné dont on a extrait un tube fin, avec la cond
limites de Neumann. Nous construisons le développement asymptotique des valeurs propres pour des valeurs petites
du tube.Pour citer cet article : M.Yu. Planida, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

We consider the eigenvalue problem for the Laplace operator in a bounded domain and impose a N
boundary condition on a boundary of a thin cut-out tube. The asymptotics for an eigenvalue of this s
perturbed problem is constructed under the assumption the tube shrinks to a closed curve.

Let x = (x1, x2, x3), Ω ⊂ R
3 be a bounded simply-connected domain having an infinitely different

boundaryΓ, γ ∈ C∞ be a closed curve with no self-intersection lying in the planex3 = 0, γ ⊂ Ω . In a vicinity of
γ we introduce coordinates(y, s), y = (y1, y2), wheres is a natural parameter (the arc) of the curveγ, y1 = x3, y2
is a distance toγ in the planex3 = 0 measured along the inward normal to the curveγ considered as a bounda
of two-dimensional domain in the planex3 = 0. By ω we denote a simply-connected domain inR

2 having
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Fig. 1. Fig. 2.

smooth boundary and containing the origin. We setωε = {y ∈ R
2: ε−1y ∈ ω}, γε = {x ∈ R

3: s ∈ γ, y ∈ ωε},
Ωε = Ω \ γε, 0< ε 	 1 (cf. Figs. 1, 2). In [1] it was proved that ifλ0 is a simple eigenvalue of the boundary va
problem

−�ψ0 = λ0ψ0 asx ∈ Ω, σ1
∂ψ0

∂τ
+ σ2ψ0 = 0 asx ∈ Γ (1)

whereτ denotes inward normal to∂Ωε, (σ1, σ2) = (1,0) or (σ1, σ2) = (0,1), then there exists a unique eigenva
λε of the problem

−�ψε = λεψε in Ωε,
∂ψε

∂τ
= 0 on∂γε, σ1

∂ψε

∂τ
+ σ2ψε = 0 onΓ (2)

converging toλ0 asε → 0, and this perturbed eigenvalue is simple.
In the present paper using the method of matched asymptotics expansions [2–4], the asymptotics for thλε are

constructed asε → 0. We notice that for particular case when the curve is a circle the asymptotics for the so
to the Poisson equation was constructed in [5].

2. Construction of asymptotics

Since the functionψ0 does not meet the needed boundary condition onγε, we employ the method of matche
asymptotics expansions in order to construct the asymptotics ofψε in a vicinity of γε. These asymptotics ar
constructed in terms of ‘inner’ variablesξ = yε−1.

For smally the Laplace operator rewritten to(y, s) becomes

� = �y −
(
t (s) +

∞∑
i=1

di(s)y
i
2

)
∂

∂y2
+
(

1+
∞∑
i=2

hi−1(s)y
i−1
2

)
∂2

∂s2 −
∞∑
i=1

pi(s)y
i
2
∂

∂s
(3)

where�y is the two-dimensional Laplace operator with respect to variablesy, t , andbi, hq,pm ∈ C∞(γ ); |t| is
the curvature of the curveγ , while eigenfunctionψ0 is expanded into a series

ψ0
(
x(y; s))= P0(s) + P1(y; s)+ P2(y; s)+ O

(
r3), r → 0 (4)

P0 = c00, P1 = c10y1 + c01y2, P2 = c20y
2
1 + 2c11y1y2 + c02y

2
2

2
, cij (s) = ∂i+jψ0

∂yi
1∂y

j

2

∣∣∣∣
y=0

(5)

wherer = |y|. Moreover, by (1) and (3),

c20 + c02 = tc01 − c′′
00 − λ0c00 (6)

In accordance with the method of matched asymptotics expansions [2], we rewrite (4) in the variablesξ and see
that asymptotics for the eigenfunctionψε in a vicinity of γε should be sought as
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ψε = v0 + εv1 + ε2v2 + · · · (7)

vi(ξ; s) ∼ Pi(ξ; s), ρ → ∞ (8)

whereρ = |ξ |. Substituting (3), (7) into (2), and substituting in the equality obtained for the variablesξ , we get the
boundary value problem forv0:

�ξv0 = 0, ξ ∈ R
2 \ω,

∂v0

∂τ
= 0, ξ ∈ ∂ω (9)

It is clear that the function

v0(ξ; s) ≡ P0(s) (10)

satisfies (9) and (8). Substituting (3), (7) in (2) and writing out the problems forv1, v2, we see that

�ξv1 = 0, ξ ∈ R
2 \ω,

∂v1

∂τ
= 0, ξ ∈ ∂ω (11)

�ξv2 = t
∂v1

∂ξ2
− ∂2v0

∂s2
− λ0v0, ξ ∈ R

2 \ ω,
∂v2

∂τ
= 0, ξ ∈ ∂ω (12)

Here we also bear in mind thatv0 is independent ofξ .
Now we are going to study the solvability of the problems (11), (12) and find the asymptotics ofv1, v2 as

ρ → ∞. We start from the following obvious statement.

Lemma 2.1. Let Zn(ξ; s) be an arbitrary harmonic polynomial ofn-th degree with respect to the variablesξ
whose coefficients depend ons. Then there exists a harmonic functionV (ξ;Zn(ξ; s)) defined inR

2 \ ω satisfying
the homogeneous Neumann condition on∂ω and the asymptotics

V
(
ξ;Zn(ξ; s))= Zn(ξ; s) + (

a(s)sinϕ + b(s)cosϕ
)
ρ−1 + O

(
ρ−2) (13)

asρ → ∞. Hereϕ is polar angle.

Corollary 2.2. (a) There exists, harmonic inR2 \ ω, functionsV (ξ; ξ1), V (ξ; ξ2) satisfying the homogeneou
Neumann condition on∂ω and asymptotics

V (ξ; ξi) = ξi + 1

2π

2∑
j=1

mij
∂ lnρ

∂ξj
+ O

(
ρ−2), ρ → ∞ (14)

(b) The matrixM(ω) = (mij )i,j=1,2 is positive defined, symmetric and determined by the domainω.

Item (a) is implied by Lemma 2.2 while the validity of item (b) can be established by analogy with [3,7].

Remark 1. We note that whenω is a unit disk, we haveV (ξ; ξ1) = (ρ + ρ−1)sinϕ, V (ξ; ξ2) = (ρ + ρ−1)cosϕ
and, therefore, the assertion (14) yields thatM = 2πE, whereE is a unit matrix.

Due to Corollary 2.2 the function

v1(ξ; s) = c10(s)V (ξ; ξ1) + c01(s)V (ξ; ξ2) (15)

is a solution of the boundary value problem (11) and has the asymptotics

v1(ξ; s) = P1(ξ; s) + (
A(s)sinϕ + B(s)cosϕ

)
ρ−1 + O

(
ρ−2) (16)

asρ → ∞. Thus, it satisfies (8), moreover, by (15), (14),

A = 1

2π
(c10m12 + c01m22), B = 1

2π
(c10m11 + c01m21) (17)
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Let us proceed to the problem (12). We seekv2 in the form:

v2 = t

2
ξ2v1 − ρ2

4
(c′′

00 + λ0c00) + ṽ2 (18)

By (18), (12), (11), (10), (8), (5) and (6), the boundary value problem forṽ2 can be written as follows:

�ξ ṽ2 = 0, ξ ∈ R
2 \ω,

∂ṽ2

∂τ
= − t

2
v1

∂ξ2

∂τ
+ 1

4

∂ρ2

∂τ
(c′′

00 + λ0c00), ξ ∈ ∂ω

ṽ2(ξ; s) = Z2(ξ; s) + o
(
ρ2
)
, ρ → ∞

(19)

In turn, ṽ2 is constructed as

ṽ2(ξ; s) = V
(
ξ;Z2(ξ; s))+ v̂2(ξ; s), v̂2(ξ; s) = o(ρ), ρ → ∞ (20)

It follows from (20) and (19) that the boundary value problem forv̂2 has the form

�ξ v̂2 = 0, ξ ∈ R
2 \ω,

∂v̂2

∂τ
= − t

2
v1

∂ξ2

∂τ
+ 1

4

∂ρ2

∂τ
(c′′

00 + λ0c00), ξ ∈ ∂ω (21)

It is known that there exists the solution to the problem (21) having the asymptotics

v̂2(ξ; s) = G(s) lnρ + O(1), G(s) = 1

2π

∫
∂ω

∂v̂2

∂τ
dlξ (22)

asρ → ∞. CalculatingG(s) by the boundary condition in (21), (15) and employing (14), we derive that

G(s) = − t (s)

4π
(c10m12 + c01m22) + 1

2π
|ω|(c′′

00 + λ0c00) (23)

It follows from (18), (20), (22) that the boundary value problem (12) has a solutionv2 satisfying the asymptotics

v2(ξ; s) = P2(ξ; s) + G(s) lnρ + O(1), ρ → ∞ (24)

and, therefore, this solution satisfies (8).

Remark 2. Observe that rewriting asymptotics of the functionε2v2 (asρ → ∞) in the variablesx is the origin of
the term(−ε2 ln εG(s)). To eliminate this term, in the inner expansion we introduce an additional termε2 ln εv2,1
obeying the asymptotics:

v2,1(ξ; s) = G(s) + o(1) (25)

Thus, the leading terms of the asymptoticsψε should be constructed as

ψε ≈ v0 + εv1 + ε2 ln εv2,1 + ε2v2 (26)

Now we substitute (26), (3) into (2), pass to the variablesξ in the equality obtained and equate the coeffici
of ε2 ln ε. This procedure gives the following boundary value problem:

�ξv2,1 = 0, ξ ∈ R
2 \ ω,

∂v2,1

∂τ
= 0, ξ ∈ ∂ω (27)

It is obvious thatv2,1(ξ; s) ≡ G(s) is a solution of the boundary value problem (27) and has the asymp
(25). Replacingvi by their asymptotics at infinity (10), (16), (24), (25) in (26) and rewriting these asympt
in the variabley, in accordance with method of matched asymptotics expansions, we see that the asymp
the eigenfunction outside a neighbourhood ofγε and the asymptotics of the eigenvalue should be construct
follows:
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ψε(x) = ψ0(x)+ ε2ψ2(x) + · · · (28)

ψ2(x) = r−1(A(s)sinϕ + B(s)cosϕ
)+ G(s) ln r + O(1), r → 0 (29)

λε = λ0 + ε2λ2 + · · · (30)

Substituting (30) and (28) into (2), we arrive at the boundary value problem forψ2:

−�ψ2 = λ0ψ2 + λ2ψ0, x ∈ Ω \ γ, σ1
∂ψ2

∂τ
+ σ2ψ2 = 0, x ∈ Γ (31)

By analogy with [4] one can prove the following statement:

Lemma 2.3. Leta, b, g ∈ C∞(γ ), ‖ψ0‖L2(Ω) = 1. Then there exist functionsΨ (0)
2 (x;g), Ψ (2)

2 (x;a, b)∈ C∞(Ω \
γ ), having the asymptotics

Ψ
(0)
2

(
x;g(s))(x) ∼ g(s) ln r, Ψ

(2)
2

(
x;a(s), b(s))∼ r−1(a(s)sinϕ + b(s)cosϕ

)
as r → 0 and being the solutions of the boundary value problem(31) for λ2 = Λ

(0)
2 andλ2 = Λ

(2)
2 , respectively,

where

Λ
(0)
2 = 2π

∫
γ

c00g ds, Λ
(2)
2 = −2π

∫
γ

(c10b + c01a)ds

It follows from Lemma 2.3 that the functionψ2 = Ψ
(2)
2 (x;A,B)+ Ψ

(0)
2 (x;G), where the quantitiesA, B, G

are defined by the equalities (17), (23), has the asymptotics (29) and is a solution to the boundary value
(31) as

λ2 = |ω|
∫
γ

(
λ0ψ

2
0 −

(
∂ψ0

∂s

)2)
ds −

∫
γ

∇yψ0M(ω)

(
∇yψ0 + 1

2
t (s)ψ0e2

)
ds (32)

wheree2 = (0,1).
Thus, the eigenvalue of the problem (2) has the asymptotics (30), (32). Rigorous justification of this asym

can be carried by analogy with [4].

3. Conclusing remarks

We note that if we impose Dirichlet boundary conditions on the tube’s boundary, the variational prope
the eigenvalues say thatλε − λ0 > 0. At the same time, for the problem considered in this paper, the qua
λε − λ0 has no definite sign. Indeed, assume thatSR1 is a disk of radiusR1 > 1 with center at the origin
Ω = SR1 × (−π/2,π/2), γ ⊂ Ω ∩ {x3 = 0} is a unit circle with center at the origin,(R,Θ,x3) are cylindrical
coordinates associated withx. It is known that a simple eigenvalue of the problem (1) for(σ1, σ2) = (0,1) (i.e., of
the Dirichlet problem) is given byλ0 = 82 + (νj /R1)

2, and the associated eigenfunction normalized inL2(Ω) is
determined by the equality

ψ0(x) = 2

πR1

I0(νjR/R1)

I ′
0(νj )

X(x3) (33)

whereX(x3) = sin(8x3) for even8; X(x3) = cos(8x3) for odd8; νj are zeroes for Bessel functionI0(ν) of zero
order. Sinceγ is a circle, it follows from (33) that∂ψ0/∂s = 0 onγ (and, therefore, the second term in the fi
integral in (32) disappears). Assume, in addition, thatω is a unit circle. Therefore,M = 2πE (see Remark 1).
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Let us consider the case8 = 2, andνj /R1 is not a zero of the Bessel functionI0(ν). Clearly, there exists suc
anR1. Thenψ0 = ∂ψ0/∂s = 0 onγ and it follows from the formula (32) that:

λ2 = −2π‖∇yψ0‖2
L2(γ )

< 0 (34)

Now assume that8 = 1 andνs/R1 is a zero of first derivative of the Bessel functionI0(ν) (clearly, fors large
enough such anR1 does exist). Then∇yψ0 = 0 onγ and it follows from (32) that:

λ2 = 2πλ0‖ψ0‖2
L2(γ )

> 0 (35)

Therefore, the assertions (30), (34) and (35) imply that in the first caseλε − λ0 < 0, while in the second
λε − λ0 > 0.

We note that similar phenomena appears in two- and three-dimensional boundary value problems for the
operator in domains with a small cavity, when the Neumann condition is imposed on the boundary of the
while the cavity shrinks to a point [6,7].

In conclusion we also note that in the case of the Robin condition onΓ , the convergence of the eigenvalu
and the estimates of the inverse operator needed for a rigorous justification of the asymptotics can b
exactly by analogy with [1] (in this paper they considered Dirichlet and Neumann boundary conditions onΓ ). The
construction of the asymptoticsλε does not differ from that above.
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