
rticles,
umerical

e
al liquide,
mériques

freely

e

C. R. Mecanique 331 (2003) 753–758

On particle–particle interactions in solid,
non-conducting impurity removal

Antoine Sellier

LadHyX, École polytechnique, 91128 Palaiseau cedex, France

Received 18 June 2003; accepted after revision 27 July 2003

Presented by René Moreau

Abstract

A whole boundary-integral formulation is proposed to determine the rigid-body motions of two solid and insulating pa
freely-suspended in a metal liquid and subject to uniform ambient electric and magnetic fields. As revealed by our n
results, particle–particle interactions may become significant for close enough bodies.To cite this article: A. Sellier, C. R.
Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur l’interaction particule–particule lors de l’extraction d’impuretés solides isolantes. En s’appuyant sur un
formulation intégrale, on détermine le mouvement de deux particules solides, isolantes et plongées dans un mét
sous l’action conjuguée d’un champ électrique et d’un champ magnétique uniformes. Les premiers résultats nu
montrent que les interactions entre les particules peuvent être très fortes lorsque ces dernières s’avèrent proches.Pour citer
cet article : A. Sellier, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

As theoretically predicted [1] and further experimentally confirmed [2], a solid and insulating particle
immersed in a Newtonian liquid metal of uniform densityρ, kinematic viscosityµ and conductivityσl > 0 moves
under externally applied, steady and uniform electric and magnetic fieldsE andB. As established in [1], a singl
sphere of radiusa then does not rotate and translates at the following velocity

U = −σla
2

6µ
E ∧ B (1)
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1631-0721/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
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A general framework [3] and a theoretical procedure have been proposed and implemented for a sing
conducting and arbitrarily-shaped particle in [4,5]. However, particle–particle interactions may become sig
for close bodies. This study thus extends the prior works [4,5] to the case of two (close) insulating pa
The conditions of zero net force and torque on each particle are first expressed by using the reciprocal
The required velocity components are thus governed by a linear system which solely appeals on each
boundary to the surface tractions induced by six specific Stokes flows and the first-order and second-order
derivatives of the perturbation potential. All these quantities are finally obtained by solving boundary-i
equations; a procedure which circomvents the calculation of the electric field and the flow in the unbound
domain.

2. The governing integral formulation

As sketched in Fig. 1, let us consider two solid particlesPn (n = 1,2), of insulating boundariesSn, closely
immersed in the conducting liquid metal occupying the unbounded domainΩ. We further denote byn the unit
outward normal on the whole surfaceS = S1 ∪ S2 and resort to Cartesian coordinates(O,x1, x2, x3) and the usua
tensor summation convention withOM = xiei andr = (xixi)

1/2.

The particles modify the electric field which becomesE − ∇φ in the domainΩ. For our insulating surfaceS
the potentialφ obeys the well-posed exterior Neumann problem

∇2φ = 0 in Ω, ∇φ → 0 asr → ∞, ∇φ · n = E · n onS1 ∪ S2 (2)

The unknown rigid-body motion ofPn is entirely described by its angular velocityΩ(n) = Ω
(n)
j ej and the

(translational) velocityU(n) = U
(n)
j ej of its pointOn. Denoting byµ0, V anda the uniform fluid electromagneti

permeability and the typical particles length and velocity scales, we assume that the associated Reynold
Re, magnetic Reynolds number Rem and Hartmann number are small, i.e. that

Re= ρV a/µ � 1, Rem = µ0σlV a � 1, M = |B|a(σl/µ)1/2 � 1 (3)

Thus [3], the magnetic fieldB is not disturbed and the Lorentz body forcef in the fluid isf = A − σl∇φ ∧ B where
A = σlE ∧ B is uniform. In addition, the quasi-steady fluid flow of velocityu and pressurep + A · OM is such that

∇ · u = 0, µ∇2u = ∇p + σl∇φ ∧ B in Ω (4)

(u,p) → (0,0) asr → ∞, u = U(n) + Ω(n) ∧ OnM onSn (5)

If σ (u,p) is the stress tensor associated to(u,p) and Vn the volume ofPn, the requirement of zero ne
hydrodynamic force and torque on each freely-suspended particle can then be written∫

Sn

σ (u,p) · n dSn = VnA,

∫
Sn

OnM ∧ [
σ (u,p) · n

]
dSn = −A ∧

∫
Pn

OnM dv; n = 1,2 (6)

Fig. 1. Two solid and insulating inequal spheres in Case 1, i.e., when(E,B) = (Ee3,Be2).

Fig. 1. Deux sphères isolantes de tailles différentes dans le Cas 1, c’est-à-dire pour(E,B) = (Ee3,Be2).
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As achieved in [4] for one particle, let us now introduce, forL ∈ {T ,R} andn ∈ {1,2}, 12 steady Stokes flow
(u(n),i

L ,p
(n),i
L ) free from body forces, quiescent far fromO and such that

u(n),i
T = δnmei , u(n),i

R = δnm[ei ∧ OnM] onSm (7)

with δnn = 1 andδnm = 0 if m �= n. Clearly, subscriptsT orR are used for a translation or a rotation respectivel
only one particle and the previous flows induce onS a surface forcef(n),iL = σ (u(n),i

L ,p
(n),i
L ) ·n. Extending the usua

reciprocal identity [6] to the multiply-connected surfaceS in presence of the decaying body force−σl∇φ ∧B, one
also obtains∫

S

[
u(n),i
L · σ (u,p) · n − u · f(n),iL

]
dS = F

(n),i
L , F

(n),i
L = −σl

∫
Ω

u(n),i
L · [∇φ ∧ B]dΩ (8)

Exploiting (8), the equalities (6) then yield the basic governing linear system

A
(n),i,j

(m),T U
(m)
j + B

(n),i,j

(m),T Ω
(m)
j = 1

µ

{−σlVPn
[E ∧ B] · ei + F

(n),i
T

}
(9)

A
(n),i,j

(m),R U
(m)
j + B

(n),i,j

(m),R Ω
(m)
j = 1

µ

{
σl

(
[E ∧ B] ∧

[∫
Pn

OnM dv

])
· ei + F

(n),i
R

}
(10)

if we adopt the following definitions

−µA
(n),i,j

(m),L =
∫
Sm

ej · f(n),iL dSm, −µB
(n),i,j

(m),L =
∫
Sm

(ej ∧ OmM) · f(n),iL dSm (11)

Finally, it is possible to obtain a whole boundary formulation by converting each volume integralF
(n),i
L into a

surface integral. In the same spirit as in [4], one first notices thatu(n),i
L fortunately admits in the whole doma

Ω ∪ S the fruitful integral representation

[
u(n),i
L · ek

]
(M) = −

∫
S

{
δjk

PM
+ (PM · ej )(PM · ek)

PM3

}[
f(n),iL · ej

8πµ

]
(P )dS; k = 1, . . . ,3 (12)

Injecting (12) in (8) and proceeding as in [4] (for conciseness, details are omitted here), one thus obtains
decomposition

8πµ

σl

F
(n),i
L = −

∫
S

∫
S

f(n),iL (P ) · [∇φ(M) ∧ B
]PM · n(M)

PM
dSP dSM

+
∫
S

∫
S

[
f(n),iL (P ).

PM
PM

][∇φ(M) ∧ B
] · n(M)dSP dSM

+
∫
S

∫
S

εkmnPM
[
f(n),iL · ek

]
(P )[B · en]

[∇(φ,m) · n
]
(M)dSP dSM (13)

whereεkmn denotes the Cartesian component of the usual antisymmetric permutation tensor and the
φ,m = ∂φ/∂xm is adopted. In summary, by virtue of (11) and (13) one only needs to compute the surface
f(n),iL , the gradient∇φ = φ,mem and the normal fluxes∇(φ,m) · n on the surfaceS1 ∪ S2 when solving the linea
system (9) and (10) of unknown generalized velocityX = (U(1),Ω(1),U(2),Ω(2)). It is thus no use to determin
the fluid flow(u,p) and the potentialφ in the unbounded domainΩ and we only appeal to surface quantities: t
is the announced integral formulation of the problem. Note also that the system (9), (10) is well-posed: this
a unique solutionX because its 12× 12 matrix is symmetric and positive-definite [7].
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3. Advocated boundary-integral equations and numerical implementation

It is actually possible to compute all the required surface quantitiesf(n),iL , ∇φ and∇(φ,m) · n by resorting to a
few boundary-integral equations onS as follows:

(1) by ensuring (12) on whole surfaceS in conjunction with (7) one readily obtains a Fredholm bounda
integral equation of the first kind onS for f(n),iL ;

(2) recalling that any functionψ harmonic inΩ and decaying far fromO at least as fast as 1/r fulfills (use the
usual second Green’s identity) the key boundary link

BM [ψ] = DM [ψ] − 4πψ(M) = CM [∇ψ · n] onS (14)

under the following definitions

DM [v] =
∫
S

[
v(P ) − v(M)

]PM · n(P )

PM3
dS, CM [v] =

∫
S

v(P )

PM
dS (15)

one also evaluates∇φ = φ,mem and∇(φ,m) · n onS by appealing to two steps:
(i) by virtue of (2), first selectψ = φ and determineφ onS by solving the Fredholm boundary-integral equat

of the second kindBM [φ] = d(M) with d(M) = CM [∇φ ·n] prescribed. The computation of tangential derivati
of φ onS thus gives the needed vector∇φ − (∇φ · n)n, i.e. (use (2)) the required gradient∇φ on the surfaceS;

(ii) finally, selectψ = φ,m and thus deduce the normal flux∇(φ,m) · n on S from the previous calculation o
φ,m on the surface by solving the Fredholm boundary-integral equation of the first kindCM [∇(φ,m) · n] = dm(M)

with dm(M) = BM [φ,m] given by the previous step (i).
The numerical implementation resorts to aNn-node mesh of 6-node triangular and curvilinear bound

elements on each surfaceSn [6,8]. Each discretized counter-part of the previously mentioned boundary-in
equations results in a linear system ofN ′ × N ′, dense and non-symmetric matrix (withN ′ = N1 + N2 or
N ′ = 3(N1 +N2)), which is solved by a standard LU factorization algorithm. Each tangential derivative ofφ onS

is accurately evaluated by applying a refined fourth-order finite difference scheme to the computed valuesφ.

4. Numerical results for 2-sphere clusters

This section presents our very first numerical results for 2-sphere clusters. More precisely,Pn is a sphere o
radiusan and centerOn with (see Fig. 1)O2O1 = O1O2e3, a2 � a1 and we take as length scalea = a1. For a
2-sphere cluster onlyΩ(1)

3 andΩ
(2)
3 are found to be non-zero if bothE andB are aligned with the same vectorei .

By superposition, we thus confine our attention to three cases

Case 1:(E′,B′) = (e3, e2), Case 2:(E′,B′) = (e2, e3), Case 3:(E′,B′) = (e1, e2) (16)

with |E||B| �= 0,E′ = E/|E| andB′ = B/|B|. For those settings we look at the non-zero mobilitiesu
(n)
j (λ) and

w
(n)
j (λ) such that

u
(n)
j (λ) = µU

(n)
j

σsa2EB
, w

(n)
j (λ) = µΩ

(n)
j

σsaEB
, 0 � λ = a1 + a2

O1O2
< 1 (17)

whereλ denotes the separation parameter.
As illustrated in Table 1 fora2 = 2a1 = 2a andλ = 0.1 orλ = 0.9 in Case 2, the use ofN = N1 = N2 collocation

points onSn for a2 � 2a1 ensures a 3-digit and a 4-digit accuracy foru
(n)
j andw

(n)
j respectively ifN = 530 for

λ � 0.4 andN = 1058 otherwise. Using these values ofN, two clusters of equal(a2 = a1) and different(a2 = 2a1)
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Table 1
Computed non-zero mobilitiesu(n)1 andw(n)

2 in Case 2 for different numbersN = N1 = N2 of collocation points,λ = 0.1, λ = 0.9 and inequal
spheres(a2 = 2a1 = 2a)

Tableau 1
Influence du nombreN = N1 = N2 de points de collocation pour les mobilités non nullesu

(n)
1 etw(n)

2 dans le Cas 2 pourλ = 0,1, λ = 0,9 et
deux sphères différentes(a2 = 2a1 = 2a)

(N,λ) (242,0.1) (530,0.1) (1058,0.1) (242,0.9) (530,0.9) (1058,0.9)

u
(1)
1 −0.15703 −0.16323 −0.16620 −0.36356 −0.36519 −0.36560

w
(1)
2 0.00128 0.00118 0.00112 0.13596 0.13574 0.13574

u
(2)
1 −0.66146 −0.66471 −0.66643 −0.69862 −0.69927 −0.69962

w
(2)
2 −0.00022 −0.00017 −0.00014 −0.01652 −0.01634 −0.01633

Fig. 2. Non-zero mobilities for two equal spheres: (a) functions−u
(1)
1 = −u

(2)
1 in Case 1 (!), u(1)1 = u

(2)
1 in Case 2 (1) andu

(1)
3 = u

(2)
3 in

Case 3 (E); (b) functionsw(1)
2 = −w

(2)
2 in Case 1 (!) and Case 2 (1).

Fig. 2. Mobilités non nulles pour deux sphères identiques : (a) fonctions−u
(1)
1 = −u

(2)
1 dans le Cas 1 (!), u(1)1 = u

(2)
1 dans le Cas 2 (1) et

u
(1)
3 = u

(2)
3 dans le Cas 3 (E) ; (b) fonctionsw(1)

2 = −w
(2)
2 dans les Cas 1 (!) et 2 (1).

spheres are addressed. For symmetry reasons, in each above Cases 1–3 identical spheres(a2 = a1) adopt opposite
angular velocities(Ω(1) + Ω(2) = 0) and equal translational velocities(U(1) = U(2)), i.e., move with a constan
center-to-center spacingd = O1O2 > 2a1. The associated non-zero mobilitiesu

(n)
j (λ) andw

(n)
j (λ) are displayed

in Fig. 2 versus the separation parameterλ = 2a1/d.

Of course, asλ → 0 (d large) one recovers the solution (1) for a single sphere of radiusa = a1. For any Cases
1–3 the 2-sphere cluster translates parallel toE ∧ B and faster than a single sphere. As shown in Fig. 2(a)
non-zero mobilitiesu(n)

j increase in magnitude as sphere approach (asλ → 1) and for a given separation parame
λ admit the largest and smallest values for Cases 3 and 2 respectively. The spheres are free from rotation
and rotate parallel toe2 at opposite angular velocities in other cases. As revealed by Fig. 2(b),w

(1)
2 increases from

zero withλ in Case 2 and remains negative and of weak magnitude whateverλ in Case 1.
The cluster consisting of different spheres(a2 = 2a1) exhibits a less simple behavior: this time the translatio

velocitiesU(1) andU(2) differ and the center-to-center distanced = O1O2 will then change as the cluster move
More precisely (see Fig. 3), the solution (1) still holds forλ = 0 and, as depicted in Fig. 3(a), each sphere a
translates in any Case 1–3 parallel toE∧B, faster than when isolated and faster or slower than in Case 1 in Ca
and 2 respectively. However, the small sphere mobilityu

(1)
j (λ) may strongly differ from the mobilityu(1)

j (0) of

the single sphere asλ increases: in Cases 1 and 3 one obtains|u(1)
j (λ)/u

(1)
j (0)| ∼ 4 asλ → 0.9. By contrast, the
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Fig. 3. Non-zero mobilities for two inequal spheres witha2 = 2a1 = 2a: (a) functions−u
(1)
1 (!) and−u

(2)
1 (") in Case 1;u(1)1 (1) andu

(2)
1

(2) in Case 2;u(1)3 (E) andu(2)3 (F) in Case 3; (b) functionsw(1)
2 (!) andw(2)

2 (") in Case 1;w(1)
2 (1) andw

(2)
2 (2) in Case 2.

Fig. 3. Mobilités non nulles pour deux sphères différentes aveca2 = 2a1 = 2a : (a) fonctions−u
(1)
1 (!) et −u

(2)
1 (") dans le Cas 1 ;u(1)1 (1)

et u(2)1 (2) dans le Cas 2 ;u(1)3 (E) et u(2)3 (F) dans le Cas 3 ; (b) fonctionsw(1)
2 (!) et w(2)

2 (") dans le Cas 1 ;w(1)
2 (1) et w(2)

2 (2) dans le
Cas 2.

big sphere mobilityu(2)
j (λ) weakly depends uponλ and 1� |u(2)

j (λ)/u
(2)
j (0)| � 1.1 in any instance. It is als

worth noting that, as the reader may easily check, the relative velocityU(1) − U(2) decreases in magnitude
spheres approach. Finally (see Fig. 3(b)), the only non-zero velocity componentsΩ

(n)
2 exhibit the same trends a

the translational velocities components: non-negligible mobilitiesw
(n)
2 (λ) increase in magnitude withλ, the small

sphere rotates faster than the big one in Cases 1 and 2 and the small rotation of the big sphere weakly dep
both the selected case and the separation parameterλ.

5. Concluding remarks

As illustrated by our numerical results, sphere-sphere interactions always and eventually dramatically s
each sphere. A 2-sphere cluster will then catch up other single spheres in a separation process. Note th
consisting of two insulating ellipsoids centered atO1 andO2 should experience a (global) rotation of the vec
O1O2 (if at least one particle is non-spherical). Particle–particle interactions in such challenging and more in
cases are under current investigation.
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