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Abstract

Two approaches are proposed for the modelling of problems with small geometrical defects. The first approach is
the theory of self adjoint extensions of differential operators. In the second approach function spaces with separated as
and point asymptotic conditions are introduced, and the variational formulation is established. For both approaches the
estimates are derived. Finally, the spectral problems are considered and the error estimates for eigenvalues are givTo cite
this article: S.A. Nazarov, J. Sokolowski, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Extensions autoadjointes d’opérateurs différentiels et application à l’optimisation de forme. On propose deux approche
permettant de modéliser des problèmes avec des singularités géométriques. La première approche repose sur des
autoadjointes d’opérateurs différentiels avec conditions asymptotiques. Dans la seconde approche, on introduit de
fonctionnels avec développements asymptotiques séparés puis on établit la formulation variationnelle. On ob
estimations montrant que la même précision est atteinte pour ces deux approches. Enfin, on considère des problème
et on donne des estimations pour les valeurs propres.Pour citer cet article : S.A. Nazarov, J. Sokolowski, C. R. Mecanique 331
(2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

It seems that in the literature on shape optimisation there is a lack of a general numerical method or te
that can be applied in the process of optimisation of an arbitrary shape functional (SF) for simultaneous b
and topology variations. In the paper [12] (see also [13]) the so-called topological derivative (TD) of an ar
SF is introduced. TD usually determines whether a change of topology by nucleation of a small hole, or in
setting of a small inclusion at a given pointx ∈ Ω , would result in improving the valueJ (Ω) of a given SF or
not. In the note theinternal topology variationsare considered for mixed boundary value problem for Pois
equation. The singular perturbations of the geometrical domainΩ are defined by small openingsω1

ε , . . . ,ωJ
ε of

the diameters O(ε). We have selected such a model problem taking into account the particular features of so
with respect to small parameterε. First of all, atε = 0 the openings disappear, and no Dirichlet boundary cond
remains, so the limit Neumann problem looses the uniqueness of solutions. This allows for unbounded grow
ε → 0+, of the solutionu(ε, x) of the singularly perturbed problem. Beside that, the dependence of the so
u(ε, x) on the geometrical parameter is quite complicated: even far from the boundaries∂ω

j
ε , where the influence

of boundary layers can be neglected, the solution is approximated, with the precision O(ε1−δ), δ > 0, by a rational
function of large parameter lnε. Finally, the leading terms of asymptotics, which are easily determined, do co
no information either on the openingsω

j
ε or on the interaction of the openings. All those properties make diffi

the proper definition of topological derivatives and the appropriate derivation of necessary optimality con
for minimization of specific shape functionals. Therefore, we restrict ourselves to the energy shape functio
to the modelling of topological variations.

We propose two efficient approaches to the modelling of topological variations. The first approach is dev
in the framework of the selfadjoint extensions of differential operators, the second uses the function spaces
separated asymptotics. In both cases, the main idea consists in modelling of small defects or inhomogen
concentratedactions, the so-called potentials of zero-radii. In this way, the solutionu(ε, x) with singularbehaviour
for ε → 0+ is replaced by a function with the singularities at the centresP 1, . . . ,P J of the defects. Such a
approach is known in modelling of phisical processes in materials with defects, we refer the reader, e.g
The modern framework of analysis of elliptic boundary value problems in non smooth domains [8] allo
the relatively complete theory of singular solutions and provides the techniques of derivation of error es
in weighted spaces for asymptotic approximations. We can use the known results in this field for the s
of shape and topology optimization problems in aninverse order. First, the localization and integral attribut
of openings are determined, followed by the appropriate changes of the topology of geometrical doma
proposed two different approaches to topology optimization have some positive features. The first approa
with selfadjoint operators, so can be extended to the evolution boundary value problems. The second a
based on thegeneralized Green’s formulae, results in the variational problem formulation with the solution giv
by a stationary point of an auxiliary functional close in its form to the energy functional.

2. Problem formulation

Let Ω andω1, . . . ,ωI be bounded domains inR2 with the smooth boundaries∂Ω and∂ω1, . . . , ∂ωI . For fixed
pointsP 1, . . . ,P I insideΩ the following sets are introduced

ωi
ε = {

x ∈ R
2: ξ i := ε−1xi ∈ ωi

}
, xi = x − P i, i = 1, . . . , I ; Ω(ε) = Ω \ {

ω1
ε ∪ · · · ∪ ωI

ε

}
(1)

Choose a smallε ∈ (0, ε0] such thatωi
ε ⊂ Ω, i = 1, . . . , I , andωi

ε ∩ ω
j
ε = ∅ for i �= j . The setsωi

ε imply holes, or
openings, in the geometrical domainΩ(ε). Let us consider the functional

J (u; ε) =
∫

Ω(ε)

J
(
x;u(ε, x)

)
dx (2)
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defined for functionsu ∈ Lq(Ω(ε)) for a givenq ∈ [1,+∞). Furthermore, we assume that for allu,v ∈ Lq(Ω(ε))

andε ∈ [0, ε0] the following inequality holds∣∣J (u; ε) −J (v; ε)
∣∣ � c

∥∥u − v;Lq

(
Ω(ε)

)∥∥(∥∥u;Lq

(
Ω(ε)

)∥∥q−1 + ∥∥v;Lq

(
Ω(ε)

)∥∥q−1) (3)

where the constantc depends onΩ , but it is independent ofε ∈ [0, ε0] and ofu,v while Ω(0) = Ω . Functional
(2) has twofold dependence on the small parameterε, first of all, by the domain of integrationΩ(ε), and also by
means of the integrand which depends on the solution to the mixed boundary value problem

−�u(ε, x) = f (x), x ∈ Ω(ε) (4)

∂nu(ε, x) = 0, x ∈ ∂Ω, u(ε, x) = 0, x ∈ ∂ωi
ε, i = 1, . . . , I (5)

Heref ∈ L2(Ω) is a given function, independent of the parameterε, and∂n stands for the normal derivative in th
direction of the outward normal vectorn. Problem (4), (5) admits the unique solutionu(ε, ·) ∈ H 2(Ω(ε)) for any
ε ∈ (0, ε0] such that‖u(ε, ·);H 2(Ω(ε))‖ � c(ε)‖f ;L2(Ω(ε))‖, where the constantc(ε) depends on the doma
Ω(ε), i.e., the parameterε, but it is not dependent on the right-hand sidef . In general the solutionu(ε, ·) to
problem (4), (5) admits no limit asε → 0+. For ε → 0+ the functional (2) may also have unbounded grow
since it behaves like the integral∫

Ω

J

(
x,

1

2π
|ln ε|

∫
Ω

f (x) dx
)

dx (6)

Using the methods developed in [1–3] asymptotic expansions can be constructed for solutionsu(ε, x) with the
prescribed precision O(εN). However, such expansions are relatively complex and, therefore, of small pra
interest for the analysis of functional (2). There are some particular features of the problem under consid
Beside the presence of boundary layers near the openings, the coefficients of asymptotic expansions ar
functions of the large parameter|ln ε|. The latter property is established for the first time in [4]. Instead
constructing asymptotics there are presented two approaches for the modelling of problem (4), (5) and, as
to the modelling of functional (2).

3. Self adjoint extensions

The approach renewed in this section was initiated in [6] (see also the bibliography in review [7]).
introduce theunboundedoperatorA0 in L2(Ω) with the differential expression−� and with the domain which
includes smooth functions, vanishing near the pointsP 1, . . . ,P I ,

D(A0) = {
v ∈ C∞

0

(
Ω \ {

P 1 ∪ · · · ∪ P I
})

: ∂nv = 0 on∂Ω
}

(7)

We emphasize that the inclusionv ∈ D(A0) provides that the functionv is smooth inΩ , satisfies the Neuman
boundary conditions on∂Ω and equals zero in vicinity ofP i , the latter condition imitates the Dirichlet bounda
condition (5). The adjointA∗

0 for the operatorA0 are given by the differential expression−�, with the domains of
definition:

D
(
A∗

0

) =
{

v: v(x) =
I∑

i=1

χi(x)

{
− 1

2π
ai ln|xi | + bi

}
+ v0(x),

v0 ∈ D(A0); a = (a1, . . . , aI )�, b = (b1, . . . , bI )� ∈ R
I

}
(8)

whereχj ∈ C∞
0 (Ω) are cut-off functions such thatχj (x) = 1 nearP j andχj χk = 0 for j �= k.
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Proposition 3.1. LetS = S(ε) := (2π)−1(L−|ln ε|I) be a diagonal(I ×I)-matrix, negative definite forε ∈ (0, ε0].
HereI is the unit matrix,L = diag{l1, . . . ,LI } the matrix with the entriesLj equal to logarithmic capacities of th
setsωj (see, e.g.,[5]).

(i) The restrictionA of the operatorA∗
0 on the linear space

D(A) = {
v ∈D

(
A∗

0

)
: b = Sa

}
(9)

is a self adjoint extension of the operatorA0.
(ii) For anyf ∈ L2(Ω), there exists a unique solutionv ∈ D(A) of the equation

Av = f ∈ L2(Ω) (10)

Theorem 3.2. If u andv are solutions to the problems(4), (5)and(10), respectively, with the same right-hand si
f ∈ L2(Ω), then∥∥u − v;Lq

(
Ω(ε)

)∥∥ � c!ε|ln ε|!+5/2
∥∥f ;L2(Ω)

∥∥ (11)

For the functional(2) we have the relation∣∣∣∣J (u; ε) −
∫
Ω

J
(
x; v(lnε, x)

)
dx

∣∣∣∣ � C!µq(ε)
∥∥f ;L2(Ω)

∥∥q (12)

where! is arbitrary positive but the constantsc!, C! are independent off andε ∈ (0, ε0], and

µq(ε) = ε|ln ε|q(!+5/2) for q ∈ [1,2] andµq(ε) = ε2/q for q > 2 (13)

Remark 1. The energy functional

E(v;f ) = 1

2
(Av, v)Ω − (f, v)Ω (14)

associated to the self adjoint operatorA given in Proposition 3.1 is an approximation of the energy functiona
problem (4), (5)

Eε(u;f ) = 1

2
(∇u,∇u)Ω(ε) − (f,u)Ω(ε) = −1

2
(f,u)Ω(ε) (15)

Due to the latter representation, functionals (14) and (15) are in relation (12) withq = 1.

4. Function spaces with separated asymptotics

We introduce the Hilbert function space

D =
{

v: v(x) =
I∑

i=1

χi(x)

{
− ai

2π
ln

(
xi

) + bi

}
+ v0(x),

v0 ∈ H 2(Ω), v0(P 1) = · · · = v0(P I ) = 0, a = (a1, . . . ,aI )�, b = (b1, . . . ,bI )� ∈ R
I

}
(16)

equipped with the norm‖v;D‖ = (‖v0;H 2(Ω)‖2 + ‖a;R
I‖2 + ‖b;R

I‖2)1/2. For a functionv in space (16) we
setπ+v = b, π−v = a, whilst π± :D �→ R

I are projections.
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Lemma 4.1. For functionsv,w ∈ D the generalized Green’s formula

(−�v,w)Ω + (∂nv,w)∂Ω − (v,−�w)Ω − (v, ∂nw)∂Ω = 〈π+v,π−w〉 − 〈π−v,π+w〉 (17)

is valid, where〈a,b〉 = a�b is the scalar product inRI .

Let f ∈ L2(Ω), g ∈ H 3/2(∂Ω) and h ∈ R
J . We consider the boundary value problem withasymptotic

conditionsat the pointsP 1, . . . ,P J (cf. [9])

−�v(x) = f (x), x ∈ Ω \ {
P 1 ∪ · · · ∪ P I

}
, ∂nv = g(x), x ∈ ∂Ω, Sπ−v − π+v = h (18)

After selecting the symmetric nonsingular(I × I)-matrix S, relation (17) is adapted to problem (18) in t
following way:

(−�v,w)Ω + (∂nv,w)∂Ω + 〈Sπ−v − π+v,π−w〉
= (v,−�w)Ω + (v, ∂nw)∂Ω + 〈π−v, Sπ−w − π+w〉 (19)

Green’s formulae (17) and (19) exhibit the hierarchy of integrals on the plane: two-, one-, and zero-dime
integrals appear as scalar products inL2(Ω), L2(∂Ω), andR

J , respectively. To the symmetric generalised Gree
formula (19), there corresponds the following energy functional on the Hilbert spaceD providing the variationa
formulation of problem (18),

E(v; f,g,h)

= 1

2
(−�v,v)Ω + 1

2
(∂nv,v)∂Ω + 1

2
〈Sπ−v − π+v,π−v〉 − (f,v)Ω − (g,v)∂Ω − 〈h,π−v〉 (20)

Proposition 4.2. The functionv is a solution to problem(18) if and only if it is a critical point of the functional(20).

Theorem 4.3. If f ∈ L2(Ω),g = 0, h = 0 and the matrixS in the point asymptotic conditions is chosen in the sa
way as in(9), then a solutionv ∈ D of problem(18) coincides with the solutionv ∈ D(A) of Eq.(10). Therefore,
the assertions of Theorem3.2 and Remark1 remain valid forv and E(v;f ) replaced withv and E(v;f,0,0),
respectively.

5. Spectral problems

The eigenvalue sequence 0< Λ1(ε) < Λ2(ε) � · · · � Λn(ε) � · · · → +∞ is written for the equation

−�u(ε, x) = Λ(ε)u(ε, x), x ∈ Ω(ε) (21)

supplied with the boundary conditions (5). The convention on repeated multiply eigenvalues is adopte
paper. Asymptotic expansions of eigenvalues for mixed boundary value problem (21), (5) can be constru
justified by employing the procedures developed in [10] and [1]. Our aim is the comparison of the se
{Λn(ε), n = 1,2, . . .}, with the spectrum

σ(A) = {
λ1(ε), λ2(ε), . . . , λn(ε), . . .

}
(22)

of the self adjoint operatorA defined in Proposition 3.1. In view of Theorem 4.3, (22) also implies the s
eigenvalues of the spectral problem with point conditions

−�v(x) = λ(ε)v(x), x ∈ Ω \ {
P 1, . . . ,P I

}
, ∂nv(x) = 0, x ∈ ∂Ω, Sπv − π+v = 0∈ R

J (23)

The space (16) is compactly embedded intoL2(Ω), hence the eigenvaluesλk(ε) are of finite multiplicity, with the
only accumulation point of set (22) at the infinity. The operatorA is not positive, it is only the case for the matrixS
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in (9) positive definite. Thus, spectrum (22) can deviate from the positive semi-axisR+. Nevertheless, using th
approach proposed in [11] the following assertion is proved.

Theorem 5.1. For anyT > 0 there existsεT > 0 such that all eigenvaluesλ1(ε), . . . , λN(T )(ε) ∈ σ(A) ∩ (−T ,T ),
for ε ∈ (0, εT ], become positive and satisfy the estimates∣∣λn(ε) − Λn(ε)

∣∣ � cn,!µ2(ε) (24)

whereµ2(ε) is defined in(13)and the constantcn,! depends on the eigenvalue numbern = 1, . . . ,N(T ) and! > 0
but it is independent ofε ∈ (0, εT ].
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