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Abstract

We study a viscoelastic body, in a linear stress state with fractional derivative type of dissipation. The model was for
so that it takes into account, with a weighting factor, all derivatives of stress and strain between zero and one. W
restrictions on the model that follow from Clausius–Duhem inequality. Several known constitutive equations are de
special cases of the model proposed here. Two examples are discussed.To cite this article: T.M. Atanackovic, C. R. Mecanique
331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur un model de corps viscoélastique de dérivé distribué. Nous étudions un corps viscoélastique dans un état de te
linéaire avec une sorte dissipation à la derivée fractionnelle. Le model a été formulé de façon à ce qu’il prenne en com
le facteur de poids, toutes les derivées de la tension et des déformations entre zéro et un. Nous dérivons des restrict
sur le model qui suivent de l’inégalite de Clausius–Duhem. Plusieurs équations constitutives connues sont derivées c
cas spéciaux du model proposé ici. Deux examples sont discutées.Pour citer cet article : T.M. Atanackovic, C. R. Mecanique
331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

We shall analyze a model of a viscoelastic body proposed in [1]. We first recall few results from [1]. Su
that the stressσ(t) and its derivatives of real (not necessarily integer) order at time instantt in a linear stress stat
depend on a strainε(t) and its derivatives of real order. Then, we may write

b0σ + b1σ
(α1) + · · · + bMσ (αM) = a0ε+ a1ε

(α1) + · · · + aNε(αN) (1)

E-mail address: atanackovic@uns.ns.ac.yu (T.M. Atanackovic).
1631-0721/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/j.crme.2003.08.003
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Fourier
wherea0, . . . , aN , b0, . . . , bM andα1, . . . , αN are real constants and we usedε(α) andσ (α) to denote theα-th
derivative ofε(t) andσ(t), respectively defined as (see [2])

dα

dtα
ε(t)= ε(α) = d

dt

1


(1 − α)
t∫

0

ε(ξ)dξ

(t − ξ)α (2)

where
 is the Euler gamma function. For the case whenb0 = 1, bi = 0, i = 1, . . . ,M, N = 1, α1 = 1 we
obtain Kelvin–Voigt model of viscoelastic body. Recently distributed order differential equations are intro
as a generalization of (1) (see [3–5] and references given there) that lead to the following type ofσ − ε relation
proposed in [1]

1∫
0

φσ (γ )σ
(γ ) dγ =

1∫
0

φε(γ )ε
(γ ) dγ (3)

whereφσ (γ ) andφε(γ ) are constitutive functions. Note that in the special case whenφσ (γ, t)= δ(γ ), whereδ is
the Dirac distribution, (3) becomes

σ(t)=
1∫

0

φε(α)ε
(α)(t)dt (4)

with φε(α) given. Of course the stressσ could depend on integer order derivatives, so that Eq. (4) may read

σ(t)=
m∑
i=0

aiε
(i) +

1∫
0

φ(α)ε(α)(t)dt (5)

wherem� 1.
The functionsφσ (γ, t) and φε(γ, t) in (3) characterize the material under consideration and must sa

restrictions that follow from the entropy inequality. We proceed now to derive those restrictions.

2. The restriction on functions φσ (γ ) and φε(γ )

Constitutive equations must satisfy the restrictions that follow from the Second law of thermodynamic
These restrictions require that the tangent of the mechanical loss angle is non-negative. By applying
transform to (3) we obtain

σ̂ (iω)

1∫
0

φσ (γ )(iω)γ dγ = ε̂(iω)
1∫

0

φε(γ )(iω)γ dγ (6)

whereσ̂ (iω)=F(σ )= ∫∞
−∞ σ(t)e

−iωt dt is the Fourier transform ofσ(t). From (6) we obtain

E∗(iω)=
∫ 1

0 φε(γ )(iω)
γ dγ∫ 1

0 φσ (γ )(iω)
γ dγ

(7)

Writing E∗(iω)=E′ + iE′′ and using(iω)γ = ωγ (cosπ2 γ + i sin π2 γ ) in (7) it follows

E′ = C1C2 + S1S2

(C2)2 + (S2)2
; E′′ = S1C2 −C1S2

(C2)2 + (S2)2
(8)
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where

C1 =
1∫

0

φε(γ )ω
γ cos

π

2
γ dγ ; C2 =

1∫
0

φσ (γ )ω
γ cos

π

2
γ dγ

S1 =
1∫

0

φε(γ )ω
γ sin

π

2
γ dγ ; S2 =

1∫
0

φσ (γ )ω
γ sin

π

2
γ dγ (9)

Therefore the tangent of the mechanical loss angle is

tanδ = E
′′

E′ = S1C2 −C1S2

C1C2 + S1S2
(10)

The restricition following from second law of thermodynamics implies

tanδ � 0 (11)

and thatboth E′ andE′′ are positive for all values ofω (see [7], p. 140). Thus

C1C2 + S1S2 � 0; S1C2 −C1S2 � 0; for all 0� ω � ∞. (12)

We write the conditions (12) in expanded form by using definitions ofS1, . . . ,C2,( 1∫
0

φε(γ )ω
γ cos

π

2
γ dγ

)( 1∫
0

φσ (γ )ω
γ cos

π

2
γ dγ

)

+
( 1∫

0

φε(γ )ω
γ sin

π

2
γ dγ

)( 1∫
0

φσ (γ )ω
γ sin

π

2
γ dγ

)
� 0; for all 0 � ω� ∞

( 1∫
0

φε(γ )ω
γ sin

π

2
γ dγ

)( 1∫
0

φσ (γ )ω
γ cos

π

2
γ dγ

)

−
( 1∫

0

φε(γ )ω
γ cos

π

2
γ dγ

)( 1∫
0

φσ (γ )ω
γ sin

π

2
γ dγ

)
� 0 for all 0� ω� ∞ (13)

We consider next several special cases of the restrictions imposed by (12).
1. Suppose that

φσ = δ(γ )+ aδ(γ − α); φε = δ(γ )+ bδ(γ − α) (14)

wherea, b and 0< α < 1 are constants. This choice correspond to the generalized Zener modelσ + aσ (α) =
ε + bε(α). By substituting (14) into (9) the condition (12) becomes

bωα sin
π

2
α− aωα sin

π

2
α � 0(

1+ bωα cos
π

2
α

)(
1+ aωα cos

π

2
α

)
+
(
bωα sin

π

2
α

)(
aωα sin

π

2
α

)
� 0 (15)

From (15) it follows that

b > a > 0 (16)

a well known result (see [7] and [8]).
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2. Suppose that

φε(γ )= cφσ (γ ), c > 0 (17)

Then tanδ = 0 and we conclude that the body behaves as an elastic body.
3. Let us assume that

φσ = δ(γ ); φε =E(τ0)γ (18)

whereE = const. andτ0 = const. are known constants. Thus, the constitutive equation readsσ =E ∫ 1
0 (τ0)

γ ε(γ ) dγ
which is of the type (4). The condition (12) becomes

E

1∫
0

(τ0ω)
γ sin

π

2
γ dγ � 0; E

1∫
0

(τ0ω)
γ cos

π

2
γ dγ � 0 (19)

or

E > 0; τ0> 0 (20)

4. Next we suppose that

φε = δ(γ ); φσ = C(τ1)γ (21)

whereC andτ1 are constants. The constitutive equation corresponding to (21) reads

C

1∫
0

(τ1)
γ σ (γ ) dγ = ε (22)

The constants (9) are

C1 = 1; C2 = C
1∫

0

(τ1ω)
γ cos

π

2
γ dγ ; S1 = 0; S2 = C

1∫
0

(τ1ω)
γ sin

π

2
γ dγ (23)

so that (12) leads to

−C
1∫

0

(τ1ω)
γ sin

π

2
γ dγ � 0; C

1∫
0

(τ1ω)
γ cos

π

2
γ dγ � 0 (24)

From (24) we conclude that (22) violates the second law of thermodynamics for any value ofC 
= 0. This is an
interesting fact and it generalizes the results of [7] and [8]; namely, suppose that we considerσ +aσ (α) = ε+bε(α)
with b = 0, a > 0. This case is a special case of (21) withφε = δ(γ ), φσ = δ(γ )+ aδ(γ − α). Thus, the resul
(24) forbids the constitutive equation of the formσ + aσ (α) = ε, a > 0. This is in agreement with (16) that wa
obtained in [8] by using different arguments.

5. Consider the case when

φσ = δ(γ )+ aδ(γ − α); φε =E0
[
δ(γ )+ bδ(γ − α)+ cδ(γ − β)] (25)

wherea, b, c, α andβ are constants with 0< α < 1, 0< β < 1. This choice correspond to the generalized mo
σ +aσ (α) =E0[ε+bε(α)+ cε(β)] recently used in [6,13] and [14]. As a matter of fact in [13] a special case of
was used wherea = τα, b = τα, c= τ (β), with τ = const. (see Eq. (37) of [13]) while in [6] it was assumed th
a = ταε , b = τασ , c= τβσ with τσ = const., τε = const. From (9) and (26) we have
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one

ose that

ns may
andard
1+ abω2α +ωα(a + b)cos
π

2
α + cωβ cos

π

2
β + acωα+β cos

π

2
(β − α)� 0

ωα(b− a)sin
π

2
α + cωβ sin

π

2
α + acωα+β sin

π

2
(β − α)� 0 (26)

together withE0> 0. Thus, the constants in (25) must satisfy

E0> 0; b � a > 0; c > 0; α < β (27)

The conditions (27) contain, as a special case, the results presented in [6,13].

3. Applications

We use the constitutive equation (3) to formulate govering equations for two specific problems.

3.1. Application I

Consider a mechanical system consisting of a body of massm that moves translatory and is connected to
end of a viscoelastic rod. The other end of the rod is fixed to unmovable wall. A forceF = hsinΩt, whereh and
Ω are constants, is also acting on the body. The action line of the force coincides with the rod axis. Supp
the initial (undeformed) length of the rod isl0. In the deformed state the length is given asl(t)= l0 + y(t) where
y(t) is the change of the length so that the strain isε = y/l0.

Suppose that the rod is made of a material described by (4), with (see [1])

φ(α)=E(τε)α (28)

whereE > 0, τε > 0 (see (20)) are constants. The equation of motion reads

my(2)(t)+ E
l0

1∫
0

(τε)
αy(α)(t)dα = hsinΩt (29)

By applying Laplace transformL(f )(z)= ∫∞
0 eitzf (t)dt = f̄ (z) to (28) we obtain (withm= 1, l0 = 1)

z2ȳ(z)= h Ω

z2 −Ω2 −E
1∫

0

(τε)
αzαȳ(z)dα+ y(1)(0)+ zy(0) (30)

where we used the fact thatL[y(α)] = pαf̄ (p)− ( 1

(1−α)

∫ t
0
y(τ )dτ
(t−τ )α

)
t=0. The term

( 1

(1−α)

∫ t
0
y(τ )dτ
(t−τ )α

)
t=0 vanishes

if y(t) is bounded fort → +0, so that from (30) follows

ȳ(z)= y(1)(0)+ zy(0)
z2 +E(τεz− 1)/ln(τεz)

+ h Ω/(z2 −Ω2)

z2 +E(τεz− 1)/ln(τεz)
(31)

We shall not go into the problem of finding inverse Laplace transform of (31).

3.2. Application II

On the basis of constitutive equation (3) we derive a moment curvature relation for a rod. Such relatio
be used for the study of motion and stability of viscoelastic rods (see [9,10] and [12]). Following the st
procedure (plane cross section hypothesis), as was described in [11] we obtain

1∫
0

φσ (γ, t)M
(γ ) dγ = I

1∫
0

φε(γ, t)

(
1

ρ

)(γ )
dγ (32)
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whereI is the moment of inertia of the rod’s cross-sectionA, that isI = ∫
A
y2 dA, wherey is the distance from

the neutral axis, andρ is the radius of curvature of the rod axis.
Note that in the special case of elastic materialφσ (γ, t) = δ(γ ), φε(γ, t) = Eδ(γ ) Eq. (32) become

M = EI(1/ρ), i.e., the moment curvature relation of classical Bernoulli–Euler rod theory. If we chooseφσ =
δ(γ ), φε =Eδ(γ )+ bδ(γ − α) Eq. (32) leads to

M =EI
(

1

ρ

)
+ bI

(
1

ρ

)(α)
(33)

The linearized version of (33) was used in [12].
For the caseφσ = δ(γ )+ aδ(γ − α); φε = δ(γ )+ bδ(γ − α)+ cδ(γ − β) (see (14)) we obtain

M + aM(α) = I
(

1

ρ

)
+ bI

(
1

ρ

)(α)
+ cI

(
1

ρ

)(β)
(34)

The constitutive equation of the type (34) was used in [9,10] and [11].
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