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Abstract

We study a viscoelastic body, in a linear stress state with fractional derivative type of dissipation. The model was formulated
so that it takes into account, with a weighting factor, all derivatives of stress and strain between zero and one. We derive
restrictions on the model that follow from Clausius—Duhem inequality. Several known constitutive equations are derived as
special cases of the model proposed here. Two examples are disdussi¢elthisarticle: T.M. Atanackovic, C. R. Mecanique
331 (2003).
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Résumé

Sur un model de corps viscodlastique de dérivé distribué. Nous étudions un corps viscoélastique dans un état de tension
linéaire avec une sorte dissipation a la derivée fractionnelle. Le model a été formulé de fagon a ce qu'il prenne en compte, avec
le facteur de poids, toutes les derivées de la tension et des déformations entre zéro et un. Nous dérivons des restrictions posées
sur le model qui suivent de I'inégalite de Clausius—Duhem. Plusieurs équations constitutives connues sont derivées comme les
cas spéciaux du model proposé ici. Deux examples sont discB@esciter cet article: T.M. Atanackovic, C. R. Mecanique
331 (2003).
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1. Introduction

We shall analyze a model of a viscoelastic body proposed in [1]. We first recall few results from [1]. Suppose
that the stress () and its derivatives of real (not necessarily integer) order at time instar# linear stress state
depend on a straig(¢) and its derivatives of real order. Then, we may write

boo + b1V + -+ bpo @) = age + 16V + - + aye@V) (1)
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whereao, ...,an, bo, ..., by andad, ..., an are real constants and we us€8’ ando @ to denote thex-th
derivative ofe(r) ando (¢), respectively defined as (see [2])

t
o d 1 d
L= 4 £(6) 68 @
dre drl—a) ) (-85~
0
whereT is the Euler gamma function. For the case widgn=1, b; =0, i =1,...,.M, N=1, a1 =1 we

obtain Kelvin—Voigt model of viscoelastic body. Recently distributed order differential equations are introduced,
as a generalization of (1) (see [3-5] and references given there) that lead to the following sypesafelation
proposed in [1]

1

1
/ bo (Y)W dy = / ¢ () dy 3)
0 0

whereg, (y) andg, (v) are constitutive functions. Note that in the special case vh&n, 1) = §(y), wheres is
the Dirac distribution, (3) becomes

1
o) = / e (@) (1) dr 4)
0
with ¢, (o) given. Of course the stresscould depend on integer order derivatives, so that Eq. (4) may read
m 1
o(t) = Zaie(i) +/¢(oc)8(°‘)(t) dt (5)
wherem > 1.

The functionse, (v, t) and ¢.(y, t) in (3) characterize the material under consideration and must satisfy
restrictions that follow from the entropy inequality. We proceed now to derive those restrictions.

2. Therestriction on functions ¢, () and ¢.(y)
Constitutive equations must satisfy the restrictions that follow from the Second law of thermodynamics [7,8].

These restrictions require that the tangent of the mechanical loss angle is non-negative. By applying Fourier
transform to (3) we obtain

1 1
510 [ 600" dy =20 [ o201 oy (6)
0 0
wheres (iw) = F(o) = [fooo o (t) e 1! d¢ is the Fourier transform of (). From (6) we obtain
1 i) d
1§ bo () (iw)7 dy
Writing E*(iw) = E’' +1E" and usingliw)” = o (cos%y +isinZy) in (7) it follows
; C1Co+ 5152 ) " §1C2 — C152 (8)

T (C2)2+ (522 T (C2)2 + (52)2



T.M. Atanackovic / C. R. Mecanique 331 (2003) 687692

where

1 1
T g
C1= / ¢e ()" coszy dy; Co= /qba(y)a)y cos>y dy
0 0

1 1
. T . T
Sp=/¢ﬂymﬂﬂngydw &=i/¢AVMV$n§VdV
0 0

Therefore the tangent of the mechanical loss angle is
E"  $1Co—C15
E ~ CiCa2+ 515,
The restricition following from second law of thermodynamics implies

tans >0
and thatoth E’ and E” are positive for all values ab (see [7], p. 140). Thus
C1C2+851852>0; S1C2—C152>0; forall0<w <00,

We write the conditions (12) in expanded form by using definition$;0f. ., Co,

1 1
( / ¢ () cosgy dy) ( / ¢o (¥) cosgy dy)
0 0

1 1
+ (/ P (Y0¥ Sin%y dy) (/ O (y) Sin%y dy) >0; forall0<w< @
0 0

1 1
</¢Aymﬂsmgvdy)(/¢000wyuwgydy)
0 0

1 1
— (/ O (Y)” COS%)/ dy) (/ oo (Y Sin%y dy) >0 forall0<w<
0 0

We consider next several special cases of the restrictions imposed by (12).
1. Suppose that

o =38(y) +ad(y —a); $e =8(y) +b3(y — )

689

(9)

(10)

(11)

(12)

(13)

(14)

wherea, b and O< « < 1 are constants. This choice correspond to the generalized Zener madeb () =

e + be@ . By substituting (14) into (9) the condition (12) becomes

. T . T
bw®sin—a —aw*sin—a >0

<1 +bw® COS%(X) (1 +aw® COS%O[) —l—(bw“ Sin%a) (aa)“ sin %a) >0

From (15) it follows that
b>a>0

a well known result (see [7] and [8]).

(15)

(16)



690 T.M. Atanackovic / C. R. Mecanique 331 (2003) 687-692

2. Suppose that
$e(y) =cpo(y), ¢>0 (7)

Then tard = 0 and we conclude that the body behaves as an elastic body.
3. Let us assume that

$o =38(y); $e = E(10)” (18)

whereE = const. andzg = const. are known constants. Thus, the constitutive equation read% fol(to))’s()’) dy
which is of the type (4). The condition (12) becomes

1 1
E/(roa))y Sin%y dy >0; E /(roa))V COS%)/ dy >0 (19)
0 0
or
E >0, 70> 0 (20)

4. Next we suppose that
¢ =08(y); -« = C(11)” (22)

whereC andr; are constants. The constitutive equation corresponding to (21) reads
1
C/(rl)”cr(”) dy =¢ (22)
0
The constants (9) are
1 1
Ci=1 C2=C /(tla))” COS%V dy; 8S1=0; S=C /(rla))” Sin%y dy (23)
0 0
so that (12) leads to
1 1
—C /(tla))” Sin%y dy >0; C /(tla))” COS%V dy >0 (24)
0 0

From (24) we conclude that (22) violates the second law of thermodynamics for any vailug 6f This is an
interesting fact and it generalizes the results of [7] and [8]; namely, suppose that we censidef”) = & + be®
with b =0, a > 0. This case is a special case of (21) with=38(y), ¢, =8(y) + ad(y — ). Thus, the result
(24) forbids the constitutive equation of the form+ ac® = ¢, a > 0. This is in agreement with (16) that was
obtained in [8] by using different arguments.

5. Consider the case when

o =8(y) +ad(y —a); ¢ = Eo[8(y) +bS(y —a) +cd(y — B)] (25)

wherea, b, ¢, « andg are constants with @ ¢ <1, 0 < 8 < 1. This choice correspond to the generalized model
o +ac@ = Eg[e +be@ + ceP] recently used in [6,13] and [14]. As a matter of fact in [13] a special case of (25)
was used where =%, b=1%, ¢ =1® with r = congt. (see Eq. (37) of [13]) while in [6] it was assumed that
c= rf with 7, = const., t, = const. From (9) and (26) we have

— — T
a=1tl, b=1§,
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1+ abw® + w®(a + b) COS%(X + co® COS%,B +aco*tP COS% B—a)=0

o*(b —a) Sin%a + coP Sin%a +aca®tP sin%(ﬁ —a)>0 (26)
together withEg > 0. Thus, the constants in (25) must satisfy

Eo>0;, b>a>0;, ¢>0 a<§ (27)
The conditions (27) contain, as a special case, the results presented in [6,13].

3. Applications
We use the constitutive equation (3) to formulate govering equations for two specific problems.
3.1. Application|

Consider a mechanical system consisting of a body of maggat moves translatory and is connected to one
end of a viscoelastic rod. The other end of the rod is fixed to unmovable wall. A foreé sins2¢, whereh and
£2 are constants, is also acting on the body. The action line of the force coincides with the rod axis. Suppose that
the initial (undeformed) length of the rodig In the deformed state the length is giveri & = lp + y(¢) where
y(¢) is the change of the length so that the straindisy/lo.
Suppose that the rod is made of a material described by (4), with (see [1])
#(a) = E(te)” (28)
whereE > 0, t, > 0 (see (20)) are constants. The equation of motion reads
E 1
my@ (1) + m /(tg)“y(“)(t) do = hsinf2t (29)
° 0
By applying Laplace transfori(f)(z) = [o- g2 f (1) dr = f(z) to (28) we obtain (withn = 1, Ip = 1)
1

_ 94 _
2%5(x) = hm —E /(rg)“z“y(z) do + yP(0) 4 zy(0) (30)
0
where we used the fact tha{y @] = p® f(p) — (I‘ﬁll—a) o {t(f)r‘)jof)tzo. The term( =z /o fz(i)f()jcf),zo vanishes
if y(¢) is bounded for — +0, so that from (30) follows
_ D) +zy(0) 2/(% - 2%
y(@) = . Y / (31)

22+ E(tez = 1)/IN(rez) 224 E(tez — 1)/In(z:2)
We shall not go into the problem of finding inverse Laplace transform of (31).

3.2. Application 11
On the basis of constitutive equation (3) we derive a moment curvature relation for a rod. Such relations may

be used for the study of motion and stability of viscoelastic rods (see [9,10] and [12]). Following the standard
procedure (plane cross section hypothesis), as was described in [11] we obtain

: : 1\ @)
[e:0r0m 0y =1 [ 0.0 r>(;) dy (32)
0 0
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where! is the moment of inertia of the rod’s cross-sectibnthat is/ = [, y2dA, wherey is the distance from
the neutral axis, angd is the radius of curvature of the rod axis.

Note that in the special case of elastic mategghy,?) = 8(y), ¢:(y,t) = ES(y) EqQ. (32) becomes
M = EI(1/p), i.e., the moment curvature relation of classical Bernoulli-Euler rod theory. If we chigose
3(y), ¢ = ES(y)+bd(y —a) Eq. (32) leads to

1 1\@
M:EI(;) +b1<;> (33)

The linearized version of (33) was used in [12].
For the cas@, =38(y) +ad(y —a); ¢ =8(y) +bS(y —a) + c8(y — B) (see (14)) we obtain

1 1 (@) 1 B
M—i—aM(“‘):I(—) +b1<—> +c1<—> (34)
P P P

The constitutive equation of the type (34) was used in [9,10] and [11].
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