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Abstract

Complex systems that can be described at the macroscopic level in terms of bilinear ODEs or bilinear reaction–
equations are considered. The corresponding microscopic description at the level of stochastically interacting entities i
The mathematical relationships between these two descriptions are formulated. The solutions of bilinear macroscopic
are approximated by stochastic (linear) semigroups and the order of approximation is given.To cite this article: M. Lachowicz,
C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

De la description microscopique à la description macroscopique des systèmes complexes. Nous considérons ici de
systèmes complexes descrits au niveau macroscopique par des EDOs bilinéaires ou par des équations de réactio
bilinéaires. La description microscopique correspondante est définie. Les relations mathématiques entre les deux d
sont formulées. Les solutions des équations macroscopiques bilinéaires sont approximées par des semigroupes st
(linéaires) et l’ordre d’approximation est donné.Pour citer cet article : M. Lachowicz, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Macroscopic description

In the present paper complex systems that at the macroscopic level admit description by either a s
bilinear ODEs or a system of bilinear reaction–diffusion equations are considered. The present approach
is more general, in fact one may consider at the macroscopic level more complicated systems than bilinear
small perturbation methods (cf. [1]).
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1631-0721/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
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In the present paper we state the link between two possible descriptions: at microscopic level of stoch
interacting entities (particles, cells, individuals,. . .) in terms of continuous linear semigroups of Markov opera
(continuous stochastic semigroups); at macroscopic level of densities of interacting entities (in terms of dy
systems related to bilinear equations either spatially homogeneous or inhomogeneous with weak diffusion

We consider the following system of equations

ρ̇j =
r∑

k=1

αj,kρk + ρj

r∑
k=1

βj,kρk, j = 1,2, . . . , r (1)

whereαj,k , βj,k are real constants (they can be positive, negative or zero),αj,k (j �= k) are non-negative constant
ρj = ρj (t); t � 0 is the time variable,̇ρj = d

dt ρj .
Eq. (1) such thatαj,k = 0,βj,kβk,j < 0 (for all j �= k) andβj,j = 0 (∀j = 1, . . . , r) is called the Lotka–Volterra

system whereas such thatαj,k = 0,βj,kβk,j < 0 (for all j �= k) andβj,j < 0 (∀j = 1, . . . , r) is called the Verhulst–
Volterra system. Eq. (1) such thatαj,k = 0 (for all j �= k), βj,k � 0 (∀j, k = 1, . . . , r) and for anyj = 1, . . . , r
there isk = 1, . . . , r such thatβj,k < 0 is called the competitive system. The parametersαj,j are intrinsic growth
or decay rates of thej -subpopulation, andβj,k are the interaction rates (positive, negative or zero) betwee
j -th andk-th subpopulations.

Next we consider the following (spatially inhomogeneous) system with diffusion

∂t�j − σj��j =
r∑

k=1

αj,k�k + �j

r∑
k=1

βj,k�k, j = 1,2, . . . , r (2)

whereαj,j , βj,k are real constants;αj,k (j �= k), σj (j ∈ {1,2, . . . , r}) are non-negative constants;�j = �j (t, x);
t � 0 is the time variable andx ∈ T

d is the space variable,T
d is thed-dimensional torus,d � 1; � = ∑d

i=1 ∂
2
xi

.

2. Microscopic description

Following [2] a (large) numberN of entities of severalr + 2 populations is considered. Every entityn
(n ∈ {1, . . . ,N}) is characterized byun = (jn, un, xn) ∈ Ω , wherejn ∈J = {0,1, . . . , r +1} is its population,un ∈
[0,R] – its (inner) state (its “activity”), R > 0, andxn ∈ T

d – its position (center of mass),Ω = J × [0,R] × T
d .

The populations labeled by 0 andr + 1 play an auxiliary rôle. Then-entity interacts with them-entity and the
interaction take place at random times. After the interaction both entities may change their populations and
states.

The rate of interaction between the entity of thej -th population with stateu at pointx and the entity of thek-th
population with statev at pointy is given by the (measurable) functiona = a((j,u, x), (k, v, y)); a :Ω2 → R+.

The transition into thej -th population with stateu at pointx due to the interaction of entities of thek-th
population with statev at pointy with entities of thel-th population with statew at pointz is described by the
(measurable) functionA = A((j,u, x); (k, v, y), (l,w, z)); A : Ω3 → R+.

The following particular (conservative) case is assumed∫
Ω

A(u; v,w)dµ(u)= 1, for µ-a.a.v, w in Ω such thata(v,w) > 0 (3)

whereµ is a measure onΩ . We adhere to the obvious convention that the sum on the setJ is expressed by th
integral with respect to the counting measure.

In the case of systems related to Eq. (1) we use a simpler space homogeneous model – independent of
variablesx, y, z as well asJ = {0,1, . . . , r}.

In the space homogeneous case letJ = {0,1, . . . , r}; Ω = J × R+;
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a
R
(j,u, k, v) = a∗(j, u, k, v)χ(u � R)χ(v � R) (4)

a∗(j, u, k, v) =



bj,kv for j, k = 1, . . . , r

bj,0 for j = 1, . . . , r, k = 0

0 for j = 0, k = 0, . . . , r

bj,k � 0 (j, k = 0, . . . , r), whereR � R0 > 0,χ(true) = 1,χ(false) = 0;

AR(j,u; k, v, l,w) =A(R)
j,k,l (u, v)χ(u � R)χ(v � R)χ(w � R) (5)

for j, k, l = 0, . . . , r,

A(R)
j,k,l(u, v) = Aj,k,l(u, v)∑r

j ′=1

∫ R

0 Aj ′,k,l(u′, v)du′

andAj,k,l � 0 satisfies

r∑
j ′=1

R0∫
0

Aj ′,k,l(u, v)du � c1 > 0,
r∑

j ′=1

∞∫
0

Aj ′,k,l(u, v)du = 1,

∞∫
0

uAj,k,l(u, v)du = Bj,k,lv

for all v > 0, j, k, l = 0, . . . , r, wherec1 is a constant;R0 > 0 is fixed andR > R0; Moreover,A0,k,l ≡ 0 (∀k,
l = 0, . . . , r), Aj,k,l ≡ 0 (if j �= k, j, k, l = 1, . . . , r).

In the space inhomogeneous case letJ = {0,1, . . . , r + 1}; Ω = J × R+ × T
d ; ε > 0; κd

ε = εd

d
|Sd−1|;

S
d−1 = {η ∈ R

d : |η| = 1}; |Sd−1| = ∫
Sd−1 dη;

aR,ε(j, u, x, k, v, y)= a∗(j, u, x, k, v, y)χ(u� R)χ(v � R) (6)

a∗(j, u, x, k, v, y)=




1
κd

ε3
χ

(|y − x| < ε3
)
bj,kv for j, k = 1, . . . , r

bj,k for j = 1, . . . , r, k = 0, r + 1

0 for j = 0, r + 1, k = 0, . . . , r + 1

AR,ε(j, u, x; k, v, y, l,w, z)= 1

κd
ε3

χ
(|y − x| < ε3)A(R)

j,k,l(u, v)χ(u � R)χ(v � R)χ(w � R) (7)

j, k = 0, . . . , r + 1, l = 0, . . . , r, whereA(R)
j,k,l(u, v) is given by (3) forj, k, l = 0, . . . , r,

A(R)
r+1,k,l ≡ 0, ∀k, l = 0, . . . , r + 1

AR,ε(j, u, x; k, v, y, r + 1,w, z) = δj,k

κd
ε

χ
(|y − x| < ε

)
A(R)

j (u, v)χ(u � R)χ(v � R)χ(w � R)

for j, k = 1, . . . , r, δj,j = 1, δj,k = 0 (j �= k),

A(R)
j (u, v) = Aj (u, v)∑r

j ′=1

∫ R

0 Aj ′(u′, v)du′

andAj � 0 satisfies

r∑
j ′=1

R0∫
0

Aj ′(u, v)du � c2 > 0,
r∑

j ′=1

∞∫
0

Aj ′(u, v)du = 1,

∞∫
0

uAj (u, v)du= v, ∀v > 0

for all j = 1, . . . , r, wherec2 is a constant.
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Let the system be initially distributed according to the probability densityFN ∈ L1,N , whereL1,N is the space
equipped with the norm‖f ‖L1,N = ∫

ΩN |f (u1, . . . ,uN)|dµ(u1) · · ·µ(uN). The time evolution is described by

∂tfN = Λ∗
NfN ; fN |t=0 = FN (8)

where

Λ∗
Nf (u1,u2, . . . ,uN) = 1

N

∑
1�n,m�N

n�=m

(∫
Ω

A(un; v,um)a(v,um)f (u1, . . . ,un−1,v,un+1, . . . ,uN)dµ(v)

− a(un,um)f (u1, . . . ,uN)

)

The operatorΛ∗
N for A = AR, a = aR or A = AR,ε, a = aR,ε is a bounded linear operator in the spaceL1,N .

Therefore the Cauchy problem (8) has the unique solutionfN (t) ∈ L1,N for all t � 0. Moreover, by standar
argument, we see that the solution is non-negative and theL1,N -norm is conserved∥∥fN(t)

∥∥
L1,N

= ‖FN‖L1,N = 1, for t > 0 (9)

Thus exp(tΛ∗
N) defines a continuous linear semigroup of Markov operators (continuous stochastic semigr

cf. [3].
Thes-individual marginal density (1� s < N ) is defined by

fN,s(u1, . . . ,us ) =
∫

ΩN−s

fN (u1, . . . ,uN)dµ(us+1) · · ·dµ(uN) (10)

andfN,N = fN . We assume that the process starts with chaotic (i.e., factorized) probability density and we c
initial data

FN,s = (F )s ⊗ = F ⊗ . . .⊗ F︸ ︷︷ ︸
s×

, s = 1, . . . ,N (11)

i.e.,s-fold outer product of a probability densityF defined onΩ .
In the limitN → ∞ the linear equation (8) results [2] in a bilinear system of Boltzmann-like integro-differe

equations in the form proposed in [4].
Various Boltzmann-like equations in the context of biological systems were considered by various

(see, e.g., [4–9] and references therein). In the literature the Boltzmann-like equations are referred to
– Generalized Kinetic (Boltzmann) Models (cf. [6]). They can be related to mesoscopic description.

The relationships between the GKM and some hydrodynamic systems were discussed in [9].

3. Links

We may state the asymptotic result in the space homogeneous case (all functions are assumed to be in
of the position variables).

Theorem 3.1. Given parametersαj,k , βj,k (j, k ∈ {1,2, . . . , r}) and(ρ(0)
1 , . . . , ρ

(0)
r ) ∈ R

r+. Then there exista
R
, AR

satisfying(4), (5) with R > R0; t1 > 0; F being a probability density onJ × R+ such that(�F(1), . . . , �F(r)) =
(ρ

(0)
1 , . . . , ρ

(0)
r ) ∈ R

r+; the unique non-negative solution(ρ1, . . . , ρr ) of Eq.(1) corresponding to the initial datum

(ρ
(0)
1 , . . . , ρ

(0)
r ); such that for sufficiently largeN andR

sup
t∈[0,t1]

r∑
j=1

∣∣f̄N,1(t, j)− ρj (t)
∣∣ � c1

Nη1
+ c2

R
(12)
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where the non-negative functionfN ∈ L1,N is the unique solution of Eq.(8) with a = a
R
, A = A

R
and

corresponding to the initial datumFN⊗; η1, c1 are positive constants that depend onR; c2 is a constant; and
f̄ = ∫ R

0 uf (u)du.

The analog of Theorem 3.1 in the space inhomogeneous case with weak diffusion can be written as fol

Theorem 3.2. Given parametersαj,k , βj,k , σ ∗
j (j, k ∈ {1,2, . . . , r}) and(�(0)

1 , . . . , �
(0)
r ) ∈ C3(Td ;R

r+). Then there
exist

(i) aR,ε, AR,ε satisfying(6), (7)with R >R0 andε > 0;
(ii) t2 > 0;
(iii) F being a(smooth) probability density onΩ , such that(�F(1, ·), . . . , �F(r, ·)) = (�

(0)
1 , . . . , �

(0)
r );

(iv) the unique classical non-negative solution(�1, . . . , �r ) of Eq. (2) with σj = ε2σ ∗
j and initial data (�

(0)
1 ,

. . . , �
(0)
n );

such that for sufficiently largeN , R and smallε > 0

sup
t∈[0,t2]

r∑
j=1

∫
Td

∣∣f̄N,1(t, j, x)− �j (t, x)
∣∣dx � c3

Nη2
+ c4

R
+ c5ε

3 (13)

where the non-negative functionfN ∈ L1,N is the unique solution of Eq.(8) with a = aR,ε, A = AR,ε and
corresponding to the initial datumFN⊗; η2 andc3 are positive constants that depend onR andε; c4 is a positive
constant that depends onε; c5 is a constant.

Theorems 3.1 and 3.2 show that the conservative (i.e., satisfying (3)) linear equation (8) can result (in p
chosen limits) in the nonlinear equations (1) and (2) in the space homogeneous and inhomogeneo
respectively, which need not be conservative. The proofs follow two steps: the transition from the micro
level (Eq. (8)) to the mesoscopic level and then from mesoscopic level to the macroscopic level (Eqs. (1) a
The detailed proofs of the first step will appear in [2] (where the idea of [10] will be used) and of the seco
in the forthcoming paper [11]. A simpler case of competitive systems was discussed in [12].

In the general case, Theorems 3.1 and 3.2 have a local in time character, but for a large class of Eqs. (1
for which the global existence results hold the global (on any compact time interval) result is possible.
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