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Abstract

This paper deals with the design of mathematical frameworks for the modeling of traffic flow phenomena by
developments of classical models of the kinetic theory. Various types of evolution equations are deduced, and
mathematical structures are proposed toward conceivable applications.To cite this article: M. Delitala, C. R. Mecanique 331
(2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modèles non-linéaires de trafic véhiculaire. Nouvelles structures de la théorie mathématique cinétique.Ce travail
est consacrè à la construction des structures mathématiques pour modéliser des phénomènes de traffic véh
utilisant des développements appropriés des équations classiques de la théorie cinétique. La dérivation de div
d’équations d’évolution et diverses structures mathématiques vers des applications appropriées sont proposées.Pour citer cet
article : M. Delitala, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The mathematical description of traffic flow phenomena can be obtained by methods of the mathematica
theory exploiting generalizations of the classical models of the kinetic theory of gases toward modelin
complex systems of interacting objects-individuals, [1,2]. The generalization of the Boltzmann equation to
flow modeling was first proposed by Prigogine and Hermann [3], and then developed by various autho
interested reader can recover the pertinent literature in various reviews, among others Helbing [4], and B
Coscia and Delitala [5], which provide the background for the contents of this paper.

E-mail address:delitala@calvino.polito.it (M. Delitala).
1631-0721/$ – see front matter 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2003.09.008
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As known, the Boltzmann equation applied to traffic flow modeling shows some contradictions which li
effective applicability. For instance, particles in a gas move in all directions in the space, while vehicles m
one direction only. This means that perturbations are transmitted only in the direction of the motion. Mo
the Boltzmann equation is a model for a diluted gas, while relevant traffic flow phenomena are observed
traffic flow conditions, as carefully analyzed by Kerner and coworkers [6]. Additional criticisms can be rec
in various papers, e.g., [7,8], which motivate a deep insight into the design of the structure of equations w
be effectively used toward modeling. Suitable modifications of the classical Boltzmann or Vlasov equatio
generate new classes of models, hopefully closer to physical reality.

The aim of this paper consists in suggesting some developments of the above mentioned classical m
the kinetic theory in order to obtain a description of traffic flow phenomena suitable to overcome, at l
part, the above contradictions. The contents are developed through three sections which follow this Intro
Section 2 deals with the modeling of microscopic interactions. Section 3 defines the frameworks, the
kinetic equations used toward modeling; the derivation of evolution equations is essentially based on d
ways of modeling the microscopic interactions. The last section develops some reasoning about new appr
mathematical modeling.

2. Modeling microscopic interactions

Consider the one dimensional flow of vehicles along a road with length�. The microscopic state of vehicle
is assumed to be identified, at each instant of time, by dimensionless position and velocity of each
Dimensionless quantities are obtained dividing the physical variables by suitable characteristic ones. Cons
it can be defined:

– x = xR/�: the dimensionless space variable which identifies the position of the vehicle located in the poxR.
– v = vR/vM : the dimensionless velocity of each vehicle referred tovM , wherevR is the real velocity of the

single vehicle andvM is the maximum mean velocity which may be reached by vehicles in the empty
Considering that a fast isolated vehicle can reach velocities larger thanvM , a limit velocity can be defined a
follows: v� = (1 + µ)vM, with µ > 0. BothvM andµ may depend on the characteristics of the lane, s
country lane or an highway, as well as to the type of vehicles, say slow and fast cars.

– t = tR/T : the dimensionless time variable referred toT , wheretR is the real time andT is the characteristic
time, generally assumed to be the time necessary to cover the whole road length at the maximum mean
vM (T = �/vM ).

In the kinetic (Boltzmann) description, the microscopic state of each element of the system is still identifie
position and velocity; however the identification of the whole system refers to a suitable probability distr
function over the above microscopic state:f = f (t, x, v), wheref dx dv is the number of vehicles which at th
time t are in the phase domain[x, x + dx]× [v, v+ dv]. Macroscopic observable quantities can be obtained, u
suitable integrability assumptions, as momenta of the distributionf . The distribution function can be divide
by uM , the maximum density corresponding to bump-to-bump traffic jam. In this way, the first order mom
of the distribution function, the densityu = u(t, x), results to be dimensionless.

As known in kinetic theory, the derivation of evolution equations needs the modeling of pair interactions
microscopic level. Let consider pair interactions between atestvehicle with state{x, v} and afield vehicle with
state{y,w}. Following two classical models of the kinetic theory, see, e.g., [9], different types of interaction
be distinguished:localized interactions, referred to the Boltzmann or Enskog equation, which occur when
vehicles are at a minimal distance, andmean interactions, referred to the Vlasov equation, which occur when
field vehicle is within the interaction domainDx of the test vehicle. The size ofDx depends on the “visibility area
of the test driver.
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The microscopic models may be defined by the following quantities:

• η(v,w) is theencounter rate, the number of interactions between pair of vehicles per unit time in the
volume.

• A(v∗,w∗; v) is thetransition probability densitythat a vehicle with velocityv∗ interacting with a vehicle with
velocityw∗ ends up into the velocityv. The densityA must be equal to zero forv � 1 + µ. Interactions are
localized either in the pointx of the test vehicle or at a fixed distance on its front.

• F(x, y, v,w∗) is thepositional accelerationapplied to the vehicle inx with velocity v by the one iny with
velocityw∗.

• ϕ(x, y) models theweight of the actionon the driver of the test vehicle inx due to the interactions with th
field vehicle iny within the “visibility area”Dx = [x − �r,x + �f ] of the test vehicle, where�r and�f

are respectively the rear and frontal visibility distance of the test vehicle. Fory ∈ Dx the weightϕ(x, y) must
be such that|x − y| ↑⇒ ϕ ↓ and its integral indy over the domainDx is equal to 1. Considering that front
stimuli are relatively more relevant then rear ones, the approximation�r � 0 can be possibly adopted.

In the above description, the microscopic interactions are the same for all vehicles. On the other h
observed in [7], different types of drivers-vehicles have to be considered: fast, aggressive, slow, shine
on. The simplest way of modeling this aspect consists in assuming that the specificity of drivers is rela
certain random variableω in a suitable domainDω linked to a suitable probability densityP(ω). Microscopic
interactions depend also on the valuesω andω∗ of the interacting pair. In this case the distribution function ha
be parameterized, while the averaged distribution is:

f (t, x, v) =
∫

Dω

f (t, x, v;ω)P(ω)dω. (1)

3. Mathematical frameworks toward kinetic modeling

In the kinetic approach, traffic flow models are derived, exploiting the microscopic modeling, by suitable b
relations in the phase-space volume dx dv, which are obtained equating the total derivative of the distribu
function to the difference between the inlet and the outlet of vehicles in the said volume. Therefore the deve
of a proper mathematical methodology for different classes of models may be useful.

3.1. Boltzmann-like models with binary interactions

Boltzmann-like models with binary interactions are deduced referring to the microscopic modeling of
interactions between test and field vehicles, as described by the termsη and A defined in Section 2. If the
interactions are localized in the pointx for both field and test vehicles, then the formal structure of the evolu
equation writes as follows:

∂f

∂t
+ v

∂f

∂x
=

1+µ∫

0

1+µ∫

0

η(v∗,w∗)A(v∗,w∗; v)f (t, x, v∗)f (t, x,w∗)dv∗ dw∗

− f (t, x, v)

1+µ∫

0

η(v,w∗)f (t, x,w∗)dw∗ (2)

where on the right-hand side there is the difference between the inflow (gain) and outflow (loss) of vehicle
control volume of the phase space. These terms are generally integral operators onf .
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The above description may lead to good results in homogeneous traffic flow situations; of course the de
is satisfactory if the microscopic modeling is correct. Stationary solutions and fundamental diagram can
fitted. On the other hand, non-homogeneous traffic flow situations generate technical problems: traffic flow
have only positive velocities, and backwards propagation of a perturbation is not described, in evident cont
the real traffic flow in which a jam moves also backwards.

3.2. Models with Enskog-like interactions

Enskog-like models have a structure analogous to the Boltzmann-like models with binary interactions. T
difference is that the effects of the finite size of the vehicles are taken into account. Namely, in the Boltzma
approach, to obtain a closed equation forf (t, x, v), the chaos approximation is made for the joint distribut
function of the test vehicle and the field one. It is assumed the statistical independence: the number of pa
vehicle with velocityv at the positionx and field vehicle iny with velocityw is simply the product of the singl
vehicle distribution functions. Of course, this assumption is reasonable only for low density of traffic, wh
drivers behave independently. At higher densities, the velocities of the cars must be correlated.

Several different approaches have been proposed, here we report the one proposed in [10]. The joint di
function, denoted byf (2), is assumed to be:

f (2)(t, x, v, y,w) ∼ c
(
di(v,w)

)
f (t, y,w)f (t, x, v)/u(x) (3)

where the functionc = c(di(v,w)) is the correlation function between test and field vehicle depending,
phenomenological way, on the reaction thresholdsdi of the driver, at least braking and accelerating thresho
Interactions of the test vehicle are assumed to happen only when a threshold distance is crossed, and are
to be localized with a field vehicle in the positionyi = yi(v,w) = x + di(v,w).

The framework (2) can be rewritten in the following form:

∂f

∂t
+ v

∂f

∂x
=

2∑
i=1

1+µ∫

0

1+µ∫

0

η(v∗,w∗)Ai(v
∗,w∗; v)f (2)(t, x, v∗,

(
x + di(v

∗,w∗)
)
,w∗)dv∗ dw∗

−
2∑

i=1

1+µ∫

0

η(v,w∗)f (2)(t, x, v, (x + di(v,w
∗)

)
,w∗)dw∗ (4)

which allows backwards propagation of the information.

3.3. Boltzmann models with averaged binary interactions

In the kinetic (Boltzmann) models with averaged binary interactions, binary microscopic interactio
weighted in the visibility area of the test vehicle. Then, the structure defined in (2) can be used with the intro
of the weight functionϕ(x, y) defined in Section 2 as follows:

∂f

∂t
+ v

∂f

∂x
=

∫

Dx

1+µ∫

0

1+µ∫

0

ϕ(x, y)η(v∗,w∗)A(v∗,w∗; v)f (t, x, v∗)f (t, y,w∗)dv∗ dw∗ dy

− f (t, x, v)

∫

Dx

1+µ∫

0

ϕ(x, y)η(v,w∗)f (t, y,w∗)dw∗ dy (5)

It is immediate to show that Eq. (5), assumingϕ(y) = δ(y − x) whereδ denotes Dirac’s delta function, gives
localized interaction model. Analogous reasoning can be applied to Enskog-type models.
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3.4. Mean field kinetic models

Mean field models are derived under quite different ideas. Similarly to Vlasov type models, it is defined
field action on the test vehicles due to the field vehicles, in principle more than one. The structure of the e
equation is as follows:

∂f

∂t
+ v

∂f

∂x
+ ∂

∂v

(
A[f ]f ) = 0 (6)

whereA[f ] is the acceleration/deceleration due to the interactions with the field vehicles which affect the te
The mean field description givesA[f ] by means of a suitable interaction term which generates the action

A[f ](t, x, v) =
∫

Dx

1+µ∫

0

F(x, y, v,w∗)f (t, y,w∗)dy dw∗ (7)

whereF , according to the definition given in Section 2, is the positional acceleration applied by the field v
in y with velocityw∗ to the test one inx with velocityv.

3.5. Discrete velocity models

Discrete velocity models in kinetic theory are based on the assumption that particles can attain a finite nu
velocities. The interest of applied mathematicians to the above class of models is documented in the book
Bellomo and Gatignol [11] and in various recent papers, e.g., D’Almeida and Gatignol [12] on moving bo
problems, and Bellouquid [13] on the asymptotic theory toward macroscopic models.

Developing discrete velocity models in kinetic theory appears to be particularly interesting consideri
vehicles are often observed to move along highways with group velocities, thus creating “clusters” of v
related to certain sets of velocities. Technically, developing a discrete velocity model of traffic flow means se
a discrete number of velocitiesIv = {v0 = 0, . . . , vi , . . . , vn+1 = v�} and linking to each velocity a densi
fi = fi(t, x) for i = 0,1, . . . , n + 1, such thatf0 = fn+1 = 0. The mathematical model is a set of evolut
equations for the densities which can be formally written as follows:

∂fi

∂t
+ vi

∂fi

∂x
= Gi [f ] − Li[f ], i = 1, . . . , n (8)

wheref = {f1, . . . , fn} and where the collision term has been split into gain and loss terms. Specific models
obtained by suitable modeling of microscopic interactions within a specialization of the frameworks we ha
above.

3.6. Models with stochastic interactions

We have seen in Section 2 that the specific behavior of drivers can be represented by a random variableω linked
to a suitable probability densityP(ω): this aspect can be related to each one of the above mathematical frame
thus avoiding the hypothesis that all drivers behave in the same way.

This aspect can be related to each one of the above frameworks. For instance, it can be referred t
with localized interactions and, supposing that the above distribution is not modified by interactions, the ev
equation writes:

∂f

∂t
+ v

∂f

∂x
=

∫

Dω

1+µ∫

0

1+µ∫

0

η(v∗,w∗)A(v∗,w∗; v|ω,ω∗)f (t, x, v∗,ω)f (t, x,w∗,ω∗)dv∗ dw∗ dω∗
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∫

Dω

1+µ∫

0

η(v,w∗)f (t, x,w∗,ω∗)dw∗ dω∗. (9)

4. Perspectives

This paper has analyzed some conceptual aspects which are preliminary to the modeling of traf
phenomena. It has been shown how microscopic modeling can generate various classes of models. Ac
all of them have been exploited yet, therefore the contents of this paper provides a background toward m
which is broader than the one available in the literature.

A crucial aspect is the selection of the specific framework. The choice has to be based not only
interpretation of the phenomenology of the system, but also on the effective possibility of modeling micro
interactions. Moreover, additional frameworks can be developed: the introduction of stochastic interaction
discrete velocities framework is not only a method to reduce computational complexity, but also a way to d
interesting phenomena (clustering of vehicles), and taking into account the specificity of the drivers.

The author is aware that the specific models need to be based on further technical developmen
mathematical frameworks offered in the above brief presentation. Nevertheless, the essential message
this paper is that modeling of traffic flow phenomena needs substantial development (and modifications
classical equations of the mathematical kinetic theory. Various proposals in this direction have been give
paper.
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