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Abstract

A family of polyhedra possessing unusual deformation properties is found. On one hand, models of these polyhed
free continuous large reversible bending without visible distortions of the material. On the other hand, the polyhedra th
are rigid and do not admit continuous bending in the sense of the Cauchy definition. The found polyhedra are calle
flexors in order to distiguish them from theoretical flexsors of Connelly. Bendings of the models are asymptotically
approximated by linear bendings of polyhedra. They represent a nonrigid, soft or slow, loss of stability that corresp
the loss of stability in small accordingly to Euler. This new phenomenon in mechanics of deformable solid bodies
considered as an original geometric machine of catastrophe.To cite this article: A.D. Milka, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Flexions linéaires des pyramides etoilées. On exhibe une famille de polyèdres qui possèdent des propriétés inhabit
de déformations. D’une part, les modèles de ces polyèdres admettent des flexions libres continues, grandes, réver
distorsions visibles du matériel. D’autre part, les polyèdres sont rigides et n’admettent pas des flexions continues da
de la définition de Cauchy. Les polìedres décris sont appelés des flexors modèles pour les distinguer des flexors
de Connelly. Des flexions de ces modèles sont approximées asymptotiquement par des flexions linéaires des polyè
représentent une perte de stabilité, douce, qui correspond à la perte de stabilité « in small » conformement à la définitio
Ce nouveau phénomène dans la mécanique de corps solides déformables peut être considéré comme l’origine d’un
de catastrophe géométrique.Pour citer cet article : A.D. Milka, C. R. Mecanique 331 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. General representation of results

In 1978 the American mathematician Connelly discovered a nonrigid polyhedron, a flexor – a simple
polyhedron which admits a continuous bending in the sense of the classical definition given by Cauchi [
physical polyhedral model of this polyhedron admits a free geometrical bending without visible distorti
material. Naturally, a reason for the model to admit such free bending is that the polyhedron admits a c
mathematical bending. In 2000 the author discovered a curious family of rigid polyhedra, star-like bipyram
Alexandrov and Vladimirova [2], calledmodel flexors[3–5]. A model flexor is a polyhedron which is rigid, i.e.
does not admit any continuous bending in the sense of Cauchi’s definition; however its physical polyhedra
admits free bendings without visible distortions of material, as well as Connelly’s model. In this case the
for the physical model to be flexible is the existence of mathematicallinear bendingsof the polyhedron. A linea
bending of a polyhedron is its isometric continuous deformation in the class of polyhedra with change o
and forms of some faces. Such kind of isometric deformations of polyhedra was introduced earlier by the
Zalgaller and Burago, Bleeker (1994–1996). The linear bending of bipyramids may be qualified in terms
theory of dynamical systems as a nonrigid, soft or slow, loss of stability with large supercritical deformatio

In this Note we present the construction of model flexors and carry out geometrical, analytical, numeri
graphic descriptions of linear bendings of star-like pyramids with sliding of boundary edges in a plane. Re
of deformations of physical models of bipyramids with the mechanics of deformations of thin shells are
out at a level of asymptotically exact mathematical simulations and based on known general principles p
in wide technical practice and in numerous laboratory experiments. Accordingly to the geometrical theor
deformations are numerically identified with continuous bendings of mean surfaces of shells [7]. Consid
a two-parametrical dynamic system, the linear bending of a star-like pyramid represents an original geo
machine of catastrophe supplementing the well studied physical models of Ziman and Poston [8].

It should be noticed that the result of Connelly denies the Euler hypothesis about the non-existence of co
bendings of surfaces such as spheres and of their models, in certain classes of regularity. On the other
discussed results of the author confirm Euler’s hypothesis that the general type of loss of stability of a
and of its model may be viewed as a transition to statically possible equilibrium forms indefinitely cl
initial ones. Expanding Connelly’s discovery, these results establish a new phenomenon in the theory
supercritical deformations of solid bodies and represent a significant interest for geometry, theory of dy
systems, mechanics, for various applications, technical and geophysical ones in particular.

2. Analogies in classical mechanics

It is known that the rigidity of the middle surface of a thin elastic shell is accepted as a criterion of the s
of the shell itself. In building mechanics this principle of rigidity of shell-like forms is formulated for polyhe
models by a group of Canadian mathematicians and architects in 1978 [9]. The discovery of model flexor
that the principle of rigidity of shell-like forms is insufficient; we should also take into account how a shel
lost its stability. Intuitively this conclusion seems to have been known by Connelly in 1974. Relying on a sta
similar to a Gluck theorem, Connelly in fact stated and discussed a hypothesis about the existence of mod
[10,11]. For regular shells, a similar conclusion was made by Goldenveizer in 1979 [12]. The matter is
classical mechanics, where small deformations of shells are examined, a theorem of non-existence of ben
considered as a principle of rigidity. This principle stated that if a surface is rigid, i.e. if it does not admi
trivial infinitesimal bending, then its physical model is a rigid shell. However, contrary to the stated principle
non-convex flexible shells, such as torii and bent pipes, with rigid mean surfaces were discovered. The
for such interesting phenomenon, which is inconsistent for the given class of shells, is thetangential bendingof
surfaces which has been missed by mechanics. Called apseudo-bending, it is accompanied by the loss of continui
either for displacement fields, or for rotation fields, along some lines. The phenomenon of pseudo-bend
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studied by Goldenveizer’s school with help of mathematical simulations, by geometrical methods and in
of the mathematical theory of stability of elastic shells. Essential amendments were brought into the th
particular a new fundamental notion,a physically nonrigid shell, i.e. a mathematically rigid shell which adm
a pseudo-bending, was introduced. It was also found that analogous shells have been already applied
time in technics as various equalisers of deformations. The notion of model flexors introduced by the au
characterise supercritical deformations of an elastic shell is an analogue of the notion of physically nonrig
applied by Goldenveizer for the characterisation of pre-critical deformations. From the geometric point of vi
two kind of bending, which correspond to the discussed unusual deformations of shells, were provided b
Vossen in the theory of surfaces, when he specially allocated the bendings with lines of discontinuity a
singular floating edges. Probably these variants of deformation of shells with singularities, caused by the
stability, were meant also by Euler to be what the formulation of his well-known hypothesis testifies: “the
spatial figure does not suppose changeswhile it is not torn... ”.

3. Geometry and dynamics of bendings of pyramids

The discussed flexors-bipyramids are constructed with the help of right star-like pyramids which do no
classical continuous bending, with sliding of boundary edges in a plane. Now we will present the precise des
of model flexsors. For this aim, particular star-like pyramids and their special isometric deformations
the class of the polyhedra, linear bendings, are examined. Each of the pyramids represents a cyclic-s
polyhedron with a right star as the base.

Consider a cyclically repeating element of the star, referred to asa petal of the star; it is a convex quadrangl
made of two equal triangles. For every component triangle, the inner and exterior doubled angles adjace
boundary of star are equal toπ/2 − α andπ/2 + α, whereα is the angle of the triangle at the center of the s
Star-like pyramids with such particular bases were investigated for the first time by Aleksandrov and Vlad
in order to construct classical discret bendings of polyhedra. A petal of the pyramid is also formed from tw
triangles, faces of the pyramid. A face of the pyramid is orthogonally projected onto a component triangle
star. Letβ andγ stand for the angles of the face which correspond under orthogonal projection to the aα

and to another acute angle of the component triangle. Denote byH the height of the pyramid and byη the angle
between a concave edge and the axis of the pyramid. Fig. 1 represents the base star of a triangular pyram
is normalized to avoid the homothety, the lengths of sides of the component triangle are indicated. The
formulae concern an arbitraryn-angular normalized pyramid, the corresponding angle isα = π/n. The considered
star-like pyramid admits the following linear bending. The top vertex of the pyramid is displaced vertically
the axis. Other vertices, i.e. the vertices of the base star, are displaced along the fixed rays going out from t
of the star. The faces of the pyramid are broken along ‘floating’ edges as is shown in Fig. 1 where the proje
edges of break are marked by dashed lines. Each petal of the pyramid contains two ‘floating’ edges which
‘floating’ point of break in the original edge of petal. During the bending the point of break runs all the edge
petal and always remains in the corresponding plane of symmetry of this petal. Cyclic symmetry of the p
during deformation is naturally preserved too. We designateu the displacement of the top vertex of the pyram
supposing that it is positive when the displacement is toward the base star. Letz be the deviation of the point o
break from the axis of the pyramid; it is assumed to be positive in the case when the broken original edge
cross the axis. Lets denote the length of a piece of the broken edge between the top vertex and the point o
andν stand for the inclination angle between other piece of the broken edge and the base star plane; it is ta
positive if the point of break is above the base star plane. Take the variableu as a parameter of the deformation. F
different values ofu correspond different polyhedra, each of which is an isometrical deformation of the or
star-like pyramid. Thus we obtain a continuous sequence of isometric polyhedra, the variableu being considered
as a parameter of this sequence. Remark thatu varies within an interval where the angleν as a function ofu is
well-defined, without taking into account whetherν is positive or negative.
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Fig. 1. The base of a triangular star-like normalized
pyramid.

Fig. 2. The phase plane for the linear bending of
the triangular pyramid.

Lemma 3.1. The inclination angleν, the phasez and the lengths for the normalized pyramid are represented
term of the parameteru by the following expressions:

sin2 ν = (H 2 + p2)sin2 β − (p2 + v)sin2 α

a2 − (p2 + v)sin2 α
, z = Q − (√

H 2 + q2 − s
)
cosν

s2 = (
Q − (√

H 2 + q2 − s
)
cosν

)2 + (
H − u − (√

H 2 + q2 − s
)
sinν

)2

where

sin2 β = 1− (
H 2 + 2

)2
/
((

H 2 + p2)(H 2 + q2)), v = H 2 − (H − u)2

Q =
√

p2 + v cosα +
√

a2 − (p2 + v)sin2 α

H 4/
(
H 2 + q2) � (H − u)2 � H 2 + p2.

Note that these formulae and the geometrical description of the constructed linear bending of the pyra
still valid for the degenerate case when the height vanishes,H = 0. In Fig. 2, in the phase plane(u, z) it is shown
the phase curve of deformation,z = z(u), for the triangular star-like pyramid withH = 1 when the break poin
appears near the top vertex of the pyramid. The interval 0< u < ũ = 0.2483. . . corresponds to the period of th
slow loss of stability when the flexed pyramid has butterfly-like self-crossings along the concave edges. T
line represents the complet phase curve.

In Fig. 3, the plane of managing parameters(H,α) for the family of normalized pyramids is presented. T
separatrixS, i.e. the line of bifurcation given byβ = η, is shown; it separates two classes of pyramids which
distinguished by the kind of the slow loss of stability. The dashed line shows another separatrix which i
by β = γ . It separates another two classes of pyramids whose physical model may be distinguished acc
to how the linear bending starts, either at the top vertex or at the vertices of the base star. The formula
separatrices, for the point of phase change,ũ, and for the corresponding lengths̃ are:

1/H 2 = q2/4− 1, H 2/4 = q2/4− 1,

√
H 2 + p2 cosβ = H − ũ

(√
H 2 + q2 − (H − ũ)

)
s̃ = sinα

(
ṽ sinα + 2−

√
(ṽ sinα + 2)2 − ṽ2

)
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Fig. 3. The plane of managing parameters for the
family of linearly flexible normalized star-like pyra-
mids.

Fig. 4. The base of a complex model flexor with elements
of triangular bipyramid and hexagonal ones.

4. Elementary physical models

The mathematical rigidity of the considered star-like pyramids and a sufficiently free flexibility of their ph
models, the so-called model flexors, can be easily verified for the triangular star-like bypiramids form
pyramids of equal heights. Their physical models are optimal in the sense that they have onlyeightvertices. For
constructing two concrete models, let us take the following length of edges, in mm; the deviations do not
0.1 mm:

87,36,100 and 87,26,97.

At the starting position, the heights of the pyramids are equal to 25 mm and 00 mm respectively. The mode
free bendings, with large amplitude and without apparent distortions of the material. Another substantial e
of freely flexible model is the hexagonal star-like bipyramid with zero height. Real models of these bipyramid
constructed by the author from a carton of high quality with thickness 0.25 mm. The first of these models
withstood hundreds of bending cycles, is working well during 5 years. In Fig. 3 the three pyramids mentio
marked by dark dots. During the deformations, each of the big edges of the pyramids are one-point bro
the small ones are not broken. In a first period, the soft deformation, the lengths of a piece of broken edge an
the deviation of break points from the axis,z, are of the second order with respect to the deflectionu of the top
vertex. The slow loss of stability corresponds to deformations with a reduction by quarter of the height of py
in the first case, and with an increase from zero to 13 mm of the heights of pyramids in the second ca
relative changes of the lengths of edges during the deformations of the bipiramids does not exceed 0.0
0.00137 respectively. For the examples given, these relative changes are comparable with the basic char
of construction materials, such as metals and their alloys. Formally, roughly speaking, bending similar to
slow loss of stability are typical for all star-like bipyramids examined, and for more complicated polyhedral m
constructed with help of star-like pyramids; an example is shown in Fig. 4.

5. Conclusion

The results presented are based on geometrical beginnings, following Minkowski; they develop c
mathematical and physical results by Aleksandrov and Connelly, Arnold, Pogorelov and Goldenveize
determine a priority direction of theoretical and applied study for the process of bending of surfaces a
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models. They also stimulate non-standard research on the widespread, and frequently inexplicable, pro
the destruction of thin elastic shells at large deformation, connecting phenomena of nonrigid and rigid
stability.
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