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Abstract

Baudelaire’s ‘les fleurs du mal’ refers to various new developments (‘les fleurs’) of themethod of arbitrary lines (mal), since
it was first published (in C. R. Acad. Sci. Paris, Sér. I, in 1991). Here we revisit the basic mal (semi-discretization) meth
for stationary convection–diffusion problems and develop an adaptive, wavelet-based solver that is capable of cap
thin layers that arise in such problems. We show the efficacy and high accuracy of the wavelet-mal solver by applyin
challenging 2D problem involving both boundary and interior layers.To cite this article: X. Ren, L.S. Xanthis, C. R. Mecanique
332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

« Les fleurs du MAL » – une méthode d’ondelettes adaptive de lignes arbitraires I : problèmes de convection–diffusio
« Les fleurs du MAL » font allusion aux quelques nouveaux développements (« les fleurs ») de laméthode des lignes arbitraires
(MAL), obtenus depuis la première publication (dans C. R. Acad. Sci. Paris, Sér. I, dans 1991). Ici nous rappelons les
la méthodologie MAL (semi-discrétisation) appliquée aux problèmes de convection–diffusion stationnaire. Nous déve
aussi un programme de résolution adaptatif, basé sur une analyse en ondelettes, capable de capter les situation
couches minces, apparaissant dans ce type de problèmes. Nous démontrons l’efficacité et la haute précision de ce
de résolution par ondelettes, en l’appliquant à un problème bidimensionnel qui pose un vrai défi, traitant à la fois les
limites et intérieures.Pour citer cet article : X. Ren, L.S. Xanthis, C. R. Mecanique 332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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MNEMOSYNE, DÆDALEAN MUSE

Sir George Cayley[1773–1857]
and his towering legacy to Aeronautic

on theCENTENNIAL of the
first powered flight on 17.12.190
by Wilbur andOrville Wright 1

Prolegomena

The method of arbitrary lines [1–5] yields the acronym,mal, whoseamphisemy, double-meaning, alludin
to its homoechon epithet,mal, featuring in the title of Baudelaire’s celebrated poetry,les fleurs du mal, we find
compelling to using, generically, metaphorically, in the title of this and several Notes to follow. These
some new developments,les fleurs, stemming from mal in various fields. They show that mal can cope q
naturally, and in an elegant and uniform fashion, with the high demands of problems exhibiting strong anis
behaviour (e.g., steep gradients, interior- and boundary-layers, moving fronts, localization of deformation
inter-laminar stress singularities in composites). In fact, such problems other standard numerical metho
maltreat, or require the construction of complicated andad-hoc recipes to achieve satisfactory results. Here
blossoms in the rough, challenging field of singularly perturbed, convection–diffusion problems, fertilized b
attractive properties of adaptive, wavelet methods. The consilience of mal with these fields, each with th
‘internal’ dynamics and vigorous international research, has nurtured the present ‘fleur du mal’.

1. Introduction

The method of arbitrary lines (mal) [1–5] constitutes a numerical dimensional reduction methodology,
uses semi-discretization to transform a general elliptic system in variational form, over arbitrary two- and
dimensional domains, into a system of ordinary differential equations (ODEs) solved (along lines) by a s
the-art solver. The distinguishing feature and strength of mal becomes evident when applied to problems i
strong anisotropic behaviour (e.g., thin layers, moving fronts, stress singularities) (see, e.g., [1–5]). This rec
the fact that high gradients in pluridimensional problems usually exhibit,locally, almost one-dimensional (1D
behaviour – that is more economical to simulate using 1D adaptation (we note that 1D theory is general
understood than 2D and 3D).

In this paper we focus on the important class of singularly perturbed, convection–diffusionproblems (1) –
model a diverse array of physical, chemical, biological and financial engineering processes. In the con
dominated case, these problems develop sharp, boundary- and interior-layers which, despite recent
research, they still pose formidable difficulties to all numerical methods – owing to the rapid variation
the thin, especially curved- and interior-layers (see, e.g., the books [6–8] and the recent reviews [9,10])
precisely one class of problems to show the advantages of the mal-methodology.

We start with the formulation of (1) into the mal, ODE-setting (6), and then we address the main is
solving accurately, and efficiently, the resulting ODE system. We do this (in Section 5) by exploiting

1 Scholium. We invoke MNEMOSYNE [archetypal image of cultural and intellectual memory, mother of the nine Muses] to recor
homage to theDÆDALEAN MUSE [archetypal image of flight, inventiveness, ingenuity, arts and sciences, personified by the mythical D
the first (mortal) to create something out of nothing] who inspired the early aviation pioneers. The epic mission of mechanical flight,
with success 100 years ago at Kitty Hawk, North Carolina, USA, was a momentous event for the progress of civilization. Here we pay
tribute toSIR GEORGE CAYLEY, the most innovative of all aviation pioneers (who, paradoxically, is not as widely known by the general
as theWRIGHT brothers): « La plus haute figure technique, dans le premier tiers du XIXe siècle, est celle de Sir George Cayley, le
inventeur de l’aéroplane »– Charles Dollfus and Henri Bouché (France) 1932; “The principle of the airplane, as we know it now, that of
airplane, was first announced by Cayley” – Theodore von Kármán (USA) 1954. He also established in 1838 the (Royal, in 1839) Po
Institution, the predecessor of the University of Westminster.
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attractive properties of adaptive, wavelet approximation theory (see, e.g., [11–15]). We use the Deslaurie
interpolating wavelet expansion [16], and transform (6) into the (multiscale) mal-setting (10), for whic
construct an adaptive, wavelet-mal solver. We note that in the mal-framework, this solver represents a
generation’ development – for, due to the space refinement property of the wavelet approximations, the
eachline is naturally adaptedindependently of the rest.

As a numerical demonstration of the ability of the wavelet-mal methodology to capture boundary- and i
layers we solve the challenging, convection-dominated, test-problem proposed by Hemker [17–19] (Sectio
note that in treating such problems we need not knowa priori the location and width of the layers – unlike, e.
the layer-adapted, Shishkin-type methods, see, e.g., [9,10]). For mal even a rough idea of the layer-orien
sufficent to produce the desired results (see Section 4).

Finally, we mention that the wavelet-mal methodology offers the possibility of treating higher-dimen
problems in general domains that hitherto elude other, wavelet-based methods (see, e.g., [20,12]).

2. Convection–diffusion problem

We consider the (singularly perturbed) convection–diffusion problem (see, e.g., [6])

−ε�u+ β · ∇u+ σu= f in Ω
u= g onΓD

∇u · n = h onΓN
(1)

where the small parameterε > 0 is the diffusion coefficient,β = (β1, β2) is the given velocity field andσ � 0 is the
absorption coefficient. The domainΩ ⊂ R

2 has a piecewise analytic boundary∂Ω = ΓD ∪ ΓN andΓD ∩ ΓN = ∅;
n is the outward normal toΓN .

We defineH := {w ∈H 1(Ω): w = g onΓD} andH0 := {w ∈H 1(Ω): w = 0 onΓD}, whereH 1 is the standard
Sobolev space. Then the weak form of (1) can be written: findu ∈H such that

B(u, v) := (ε∇u,∇v)+ (β · ∇u+ σu, v)= (f, v)+
∫
ΓN

εhv dΓ =: F(v) ∀v ∈H0 (2)

where(ν,w)= ∫
Ω νw dx.

3. Mal semi-discretization

Here we reformulate (1) in the context of mal (cf. [1]). We partition the domainΩ into N curvilinear
quadrilateral non-overlapping elementsΩi , such thatΩ = ⋃N

i=1Ωi and B, F in (2) are sums of elemen
contributions, i.e.,B(u, v) = ∑N

i=1B
i(u, v) andF(v) = ∑N

i=1F
i(v). Under a mappingΦi , each elementΩi is

the image of the reference squarêΩ = (−1,1)2 with local coordinateŝx1 = ξ andx̂2 = η. The associated metri
tensor in{x̂i} is defined by the componentsgij = x,i x,j +y,i y,j , where( ),i = ∂/∂x̂i . In a mal-element, we refe
to ξ = const. andη= const. asfaces andlines, respectively.

With mal we semi-discretize (2) and obtain a system of ODEs solved alonglines. We first expressBi , F i in the
local coordinate system{x̂i}. Then we approximate the solutionu by (u|Ωi ◦Φi)(ξ, η) ∈ Vp(Ω̂), where

Vp
(
Ω̂

) :=
{

p∑
j=0

Xi
j (ξ)Pj (η): X

i
j ∈H 1(−1,1), j = 0, . . . , p

}
(3)

with Pj (η) denoting polynomials of degreep. Likewise(v|Ωi ◦Φi) is replaced by
∑p

j=0YjPj . Then we obtain

Bi(u, ν)= Bi(X,Y ), F i(ν)=F i (Y )
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where

Bi(X,Y )=
1∫

−1

(
Ẏ�AiẊ

i − Y�GiẊ
i − Ẏ�CiXi + Y�BiXi

)
dξ (4)

F i (Y )=
1∫

−1

Y�
1∫

−1

(f ◦Φi)P |J |dηdξ +
1∫

−1

Y�(ε h ◦Φi)
√
g11dξP |η=±1

+ Y�
1∫

−1

(ε h ◦Φi)P
√
g22dη|ξ=±1 (5)

with � being the transpose,̇( ) = d/dξ , |J | = |gij |1/2 is the Jacobian determinant ofΦi andAi , Bi , Ci , Gi are
(p+ 1)× (p+ 1) block matrices given below.

Integrating (4) and (5) by parts yields the following elemental ODE system together with the bou
conditions

−AiẌ
i − (Ȧi +Gi −Ci)Ẋ

i + (Ċi +Bi)X
i = Fi, ξ ∈ (−1,1)

AiẊ
i −CiX

i = (qi)
±, ξ = ±1 (6)

where

Ai(ξ)=
1∫

−1

εPP�|J |−1g22dη

Bi(ξ)=
1∫

−1

[
εP ′P ′�|J |−1g11 + (β1y,1 − β2x,1)PP

′� + σPP�|J |]dη

Ci(ξ)=
1∫

−1

εPP ′�|J |−1g12dη, Gi(ξ)= C�
i +

1∫
−1

(β1y,2 − β2x,2)PP
� dη

Fi(ξ)=
1∫

−1

(f ◦Φi)|J |P dη+ √
g11(εh ◦Φi)P |η=±1

(qi)
± =

1∫
−1

(εh ◦Φi)
√
g22P dη|ξ=±1 for Φi(±1, η) ∈ ΓN

whereP ′ = dP/dη.
Finally, by satisfying the inter-element continuity conditions [1] and assembling the elemental ODE (6) o

elements, a global ODE system is obtained, which we formally write in the matrix form{
AẌ(ξ)+BẊ(ξ)+ CX(ξ)=F , ξ ∈ (−1,1)
GẊ(ξ)+HX(ξ)=P, ξ = ±1

(7)
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4. Mal-mesh design

To account for the anisotropic (basically 1D) nature of the thin layers we positionlines approximately normal to
the layers. Thus, the more difficult part of the solution (with lower regularity) is accurately captured alonglines by
an adaptive ODE solver, whereas for the smoother (regular) part, standard (hp-) finite elements are suffic
note that, generally, the location of the thin (especially interior) layers is unknown a priori, but the physics
problem usually suggests their orientation – otherwise, a simple computational test can provide such infor

5. Adaptive wavelet-mal approximation

Here we briefly describe the wavelet collocation method [20] that we employ for solving the resulting
system (7).

We adopt the Deslauries–Dubuc interpolating wavelets defined by the auto-correlation function
Daubechies compactly supported scaling functionϕ(y) (with L filter coefficients),φ(ξ)= ∫ ∞

−∞ ϕ(y)ϕ(y − ξ)dy
(see, e.g., [16,21,22]). The functionφ(ξ) is modified to retain the property of interpolation at boundaries for
interval [−1,1] [23]. Then, the expansion in the spaceVj0 = span〈φkj0

(ξ) = φ(2j0ξ − k), k = −2j0, . . . ,2j0〉 and

a sequence of the complementary spaceWj = span〈ψk
j (ξ) = ψ(2j ξ − k), k = −2j , . . . ,2j 〉 forms a multiscale

representation for X(ξ) ∈ Vj = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · ⊕Wj−1

X(ξ)= Ij0X(ξ)+
∑
j�j0

2j∑
k=−2j

αkjψ
k
j (ξ) (8)

whereψk
j (ξ)= φ2k+1

j+1 (ξ) andIj0X(ξ)= ∑2j0
k=−2j0 X(ξkj0

)φkj0
(ξ) (ξkj0

= k · 2−j0).
This representation expresses X(ξ) in terms of the coarsest approximation in the spaceVj0 and detail correction

in the complementary spaceWj . Moreover,αkj = X(ξ2k+1
j+1 )− IjX(ξ2k+1

j+1 ), provides a (transparent) local meas
of the quality of the approximation of X(ξ) by IjX(ξ) [16]. Then we can adaptively define the grids (or ba
functions) based on the magnitude of wavelet coefficients at various scales, i.e., we begin with an appr
solution (8) spanned by wavelets inVj and generate new non-uniform grids for the solution inVj+1

Gj+1 = {
ξkj0

} ∪ {
ξ2k+1
j+1 , (j, k) ∈Λj

}
(9)

whereΛj ⊂ {(j, k), j � j0, −2j � k � 2j } is a subset of dyadic points composed of points selected by remo
points (for |αkj | < δ−) and adding neighbouring points (for|αkj | > δ+), with δ− < δ+ being the prescribe
tolerances.

Finally, by satisfying (7) at the selected dyadic collocation pointsξc ∈ Gj+1, we obtain the following linear
wavelet-mal system

2j0∑
−2j0

X
(
ξnj0

)
λnj0

(ξc)+
∑
j�j0

∑
n

αnj λ
2n+1
j+1 (ξc)=F(ξc), ξc ∈ (−1,1)

2j0∑
−2j0

X
(
ξnj0

)
µnj0

(ξc)+
∑
j�j0

∑
n

αnj µ
2n+1
j+1 (ξc)= P(ξc), ξc = ±1 (10)

where

λnj0
(ξc)= A(ξc)22j0φ̈nj0

(ξc)+B(ξc)2j0φ̇nj0
(ξc)+ C(ξc)φnj0

(ξc)

λ2n+1
j+1 (ξc)= A(ξc)22(j+1)φ̈2n+1

j+1 (ξc)+B(ξc)2(j+1)φ̇2n+1
j+1 (ξc)+ C(ξc)φ2n+1

j+1 (ξc)
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µnj0
(ξc)= G(ξc)2j0φ̇nj0

(ξc)+H(ξc)φnj0
(ξc)

µ2n+1
j+1 (ξc)= G(ξc)2(j+1)φ̇2n+1

j+1 (ξc)+H(ξc)φ2n+1
j+1 (ξc)

Remark 1. Thespace refinement property of wavelet approximations (see, e.g., [24]) enables the grid on eac
to benaturally adaptedindependently of the rest – thus rendering a more efficient mal solver.

Remark 2.Due to the hierarchical nature of wavelet bases, there are less computations involved in the reass
of matrices at each level of refinement (we need compute only the entries in the rows and columns corres
to the new grid points). Further, since the functionφ(ξ) is compactly supported, suppφ = [−L+ 1,L− 1], the
summation overn in (10) needs to be taken only for the grid pointsξnj ∈ suppφnj (ξc).

6. Numerical example: The Hemker test-problem

Here we show the efficacy and high accuracy of the wavelet-mal methodology applied to anon-trivial model
problem proposed in 1996 by Hemker [17] (see also [18,19]).

This model describes the convection-dominatedflow around a cylinder and calls for the solution of the sin
perturbed, convection–diffusion equation (1). By symmetry, we model only the half-space, exterior to t
circleΩ = {(x, y): x2 + y2 � 1}, truncated atA(−4,0),B(0,4), C(6,0), with the boundary conditions, as show
in Fig. 1. This problem exhibits both boundary- and interior-layers; whenε = 0.04, β = (1,0), σ = 0, f = 0;
the analytic solution (numerically evaluated) is known [17]. Fig. 1 shows 7 mal-elements, each with poly
degreep = 3; the thick lines illustrate the boundary- and interior-layers. We use transfinite blending to mo
geometry. For the adaptive wavelet approximation we use:L= 10,j0 = 4, δ− = 10−6, δ+ = 10−5 (see Section 5)
Fig. 2 shows the non-uniform wavelet-mal grids. Fig. 3 portrays the excellent agreement between the
solution [17] and the wavelet-mal solution (at scalej = 7).

Fig. 1. Model problem. Flow around cylinder (darker line depicts
boundary- and interior-layers).

Fig. 2. Non-uniform wavelet-mal grids.

(a) (b) (c)

Fig. 3. Typical wavelet-mal solution on (a)Γ1, (b)Γ2 and (c)Γ3.
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7. Epilegomena

Finally, we remark that this model has engaged (or perhaps discouraged!?) a number of researchers
different numerical schemes without as yetanyone rendering a (published) method that isrobust with respect toε
(see, e.g., [18,19]). Is this because this goal is unattainable, leading to anaporia, in which case one must pursu
alternative goals – as the authors in [18], p. 354, seem to ponder? Here Baudelaire offers (as Hemker wi
a powerful verse for reflection (“Le Voyage” in: “ Les fleurs du mal”):

Singulière fortune où le but se déplace,
Et n’étant nulle part, peut être n’importe où !
Où l’Homme, dont jamais l’espérance n’est lasse,
Pour trouver le repos court toujours comme un fou !

We address such issues in a forthcoming communication where we also present comprehensive numeri
that establish the reliability of the wavelet-mal methodology.
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