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Abstract

Starting from the relationship between the Bouc model and the endochronic theory and by adopting some new intri
measures, the thermodynamic admissibility of the Bouc–Wen model is proved, in the univariate case as well as in the
one. Moreover, the proposed proof encompasses the cases where a strength degradation term appears.To cite this article:
S. Erlicher, N. Point, C. R. Mecanique 332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Admissibilité thermodynamique de modèles d’hystérésis de type Bouc–Wen. Partant de la relation entre le modèle
Bouc et la théorie endochronique et grâce à l’introduction de nouveaux temps internes, l’admissibilité thermodynam
modèle de Bouc–Wen est prouvée, aussi bien dans le cas scalaire que dans le cas tensoriel. De plus, la preuv
s’applique également s’il y a un terme prenant en compte la dégradation de la force maximale.Pour citer cet article : S. Erlicher,
N. Point, C. R. Mecanique 332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Among the smooth univariate hysteresis models, the Bouc model [1] and the Bouc–Wen model [2]
most popular in structural dynamics. They are employed, in particular, in seismic engineering as analytical
represent the cyclic behaviour of structural members, structural joints and isolation devices (see, among o
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and [4]). However, it is often argued that these models do not respect the Drucker’s postulate [5], while th
of their thermodynamic admissibility is faced only for some particular parameter choices [6–8]. The aim
Note is to prove the thermodynamic admissibility of the Bouc–Wen model in a more general framework,
tensorial formulation and taking into account the so-called strength degradation effect [9]. Our approach
use of ideas introduced by Valanis [10] in his endochronic theory of plasticity. The proposed proof is base
choice of suitable intrinsic time scales, more general than the ones usually adopted in the standard end
theory.

2. Bouc and Bouc–Wen type models

Among the different univariate models of hysteresis proposed by Bouc [1], the simplest one is:{
w(t) = A0u(t) + z(t)

z(t) = ∫ ϑ(t)

0 µ(ϑ(t) − ϑ ′) du
dϑ ′ dϑ ′ (1)

whereu andw are two time-dependent functions, with the role of input and output respectively. Moreover,A0 � 0
andµ = µ(ϑ) is the so-calledhereditary kernel. The time functionϑ is positive and non-decreasing, and it
namedinternalor intrinsic time. One of the definitions ofϑ proposed by Bouc is the total variation ofu:

ϑ(t) =
t∫

0

∣∣∣∣du

dτ

∣∣∣∣dτ or, equivalently, dϑ = |du|, with ϑ(0) = 0 (2)

This choice implies the existence almost everywhere of the derivative of the input functionu with respect toϑ and
the rate-independence ofϑ . As a result,z andw are in turn rate-independent.

Bouc defined the hereditary kernelµ as a continuous, bounded, positive and non-increasing function o
intervalϑ � 0, having a bounded integral. In particular, the special case of an exponential kernel has been d

µ(ϑ) = Ae−βϑ with A,β > 0 (3)

since, under the assumption (2), the following differential formulation of (1) can be deduced{
w = A0u + z

dz = Adu− βz|du| (4)

This is the most popular version of the Bouc model in the civil engineering field and, in particular, in s
structural engineering. The input has usually the meaning of a relative displacement between two s
elements, while the outputw plays the role of a structural restoring force, defined as the sum of a linear hard
term and a hysteretic termz. We observe that the forcez is confined to the interval(−zu, zu), where the limit value
zu is equal toA/β and represents a maximum strength value of the hysteretic model.

Bouc [11] also proposed a more general formulation of (4)2:

dz = Adu− βz|du| − γ |z|du with γ < β (5)

while Wen [2] suggested a further modification introducing the positive exponentn:

dz = Adu− (
β sign(zdu) + γ

)|z|n du (6)

Wen did not impose any condition on theγ value and assumed thatn is integer. Nevertheless, it is straightforwa
to prove that all the real positive values ofn are admissible. Baber and Wen [9] introduced the so-calledstiffness
andstrength degradation effectsin the Bouc–Wen model (6). Only the strength degradation case is considered

dz = Adu− ν
(
β sign(zdu) + γ

)|z|n du (7)
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whereν was defined in [9] as a positive and increasing function of the energy dissipated by the system. P
thatβ + γ > 0, the strength valuezu becomes in this case

zu =
(

A

ν(β + γ )

)1/n

and the degradation effect due toν is evident. A tensorial generalization of (6) was suggested by Karray
Bouc [8] for isotropic materials with elastic hydrostatic behaviour:{

σ d = A0εd + z

dz = Adεd − βz‖z‖n−2|z : dεd | − γ z‖z‖n−2(z : dεd )
(8)

whereεd andσ d are the deviatoric part of the small strain tensor and of the Cauchy stress tensor, respectivz is
the tensor defining the hysteretic part of the stress, while‖·‖ is the standardL2-norm. Casciati [5] discussed th
use of the model (8) in the framework of non-linear stochastic dynamics.

We nameBouc–Wen type modelsthe hysteresis models defined by Eqs. (4)–(8). All of them were origin
defined without any thermodynamic analysis. Moreover, the link between the differential formulations of the
Wen type models (5)–(8) and the original integral formulation (1) due to Bouc, as well as the admissibility i
for theγ parameter, are not discussed in the aforementioned papers. These topics will be studied in the f
sections, where it will be proved that both scalar and tensorial Bouc–Wen type models can be formulate
the thermodynamic framework of the endochronic theory.

3. Thermodynamic principles and thermodynamic potential

Under the assumptions of isothermal conditions and small transformations, the first principle of thermody
and the Helmholtz free energy density can be written as (see, among others, [12]):

Ė = σ : ε̇, Ψ = Ψ (ε,χ1,χ2, . . . ,χN) (9)

where the superposed dot indicates the time derivative;E is the internal energy density;ε is the small strain tenso
σ is the Cauchy stress tensor; whileχ i , i = 1, . . . ,N , are internal variables.

The Helmholtz free energy densityΨ has the role of thermodynamic potential. A quadratic convexΨ function
is considered here, depending on the strain tensorε and on a single internal variableχ of tensorial character:

Ψ = 1

2
ε : C : ε + ε : B : χ + 1

2
χ : D : χ (10)

whereC, B andD are symmetric fourth order tensors. By assuming an isotropic behaviour, one can set:

C = C11 ⊗ 1 + C2I, B = B11 ⊗ 1 + B2I, D = D11 ⊗ 1 + D2I (11)

where1 is the second order identity tensor;I is the fourth order identity tensor; and⊗ represents the tensor produ
The convexity conditions forΨ can be written as follows:

C1,D1,C2,D2 > 0, B2
1 � C1D1, B2

2 � C2D2 (12)

In order to have coupling between the deviatoric parts of the strain and the internal variables, it is also a
B2 �= 0. By virtue of (11), the thermodynamic potential (10) becomes:

Ψ = C0

2
tr(ε)2 + C2

2
εd : εd + B0 tr(ε) tr(χ) + B2εd : χd + 1

2
D0 tr(χ)2 + 1

2
D2χd : χd (13)

whereεd andχd indicate the deviatoric parts of the strain tensorε and of the internal variable tensorχ , while
C0 = C1 + C2/3,B0 = B1 + B2/3 andD0 = D1 + D2/3.
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The classical expression of the second principle for small isothermal transformations is:

Φ1(t) = σ : ε̇ − Ψ̇ � 0 (14)

and it states that theintrinsic (or mechanical) dissipationΦ1 has to be non-negative.
By substituting (9)2 in the inequality (14) and knowing thatΨ depends by assumption on a single inter

variable, it follows that:

Φ1(t) = −∂Ψ

∂χ

dχ

dt
= −τ : χ̇ � 0, σ = ∂Ψ

∂ε
, τ = ∂Ψ

∂χ
(15)

where Eq. (15)2 is the so-called state equation, while Eq. (15)3 defines the thermodynamic forceτ associated to
the internal variableχ . Under the assumption (13), the state equation can be written as

σ = tr(σ )

3
1 + σ d = (

C0 tr(ε)+B0 tr(χ)
)
1 + C2εd + B2χd (16)

while the thermodynamic force becomes

τ = tr(τ )

3
1 + τ d = (

B0 tr(ε)+D0 tr(χ)
)
1 + B2εd + D2χd (17)

The quantitiesτ andχ̇ have to be correlated, otherwise a particular evolution ofχ could exist which violates
the inequality (15)1. Therefore, some additionalcomplementarity ruleshave to be introduced. A classical meth
is to assume the existence of a convex positive functionϕ(χ̇), called pseudo-potential, which is zero at the orig
and to associate to it anormality condition,namely that the opposite of the thermodynamic forceτ belongs to the
sub-differential ofϕ(χ̇):

τ ∈ −∂ϕ(χ̇)

4. Intrinsic time and endochronic theory

Valanis [10] proposed a theory of viscoplasticity without a yield surface, suggesting for it the na
endochronic theory. The basic concept of the Valanis’ theory is the existence of the so-calledintrinsic time scaleor
simply intrinsic time,i.e., an ordering variable other than clock-time which governs the behaviour of the ma
The intrinsic timeϑ � 0 is defined as a non-decreasing function, which directly depends on the strain and
stress tensors.

The typical definition of the intrinsic time increment is:

dϑ = √
dε : p : dε (18)

wherep = p(σ ,ε) is a positive definite fourth order tensor. Assuming an isotropic behaviour, the hydrosta
the deviatoric responses can be uncoupled, leading to intrinsic time definitions as, for instance, the followi

dϑ = √
dεd : p : dεd with p = p(σ d ,εd) positive definite (19)

where ϑ depends only on deviatoric tensors. In both cases, the intrinsic time definitions possess th
independence property.

According to the Valanis’ formulation, the second principle inequality (15)1 is rewritten by introducingϑ :

Φ1(t) = −τ : dχ

dϑ

dϑ

dt
= −τ : χ̂ dϑ

dt
� 0 (20)

The non-negativity of dϑ has been imposed by definition. Therefore, in order to satisfy the inequality (20)
sufficient to assume the existence of a positive convex dissipation potentialϕ = ϕ(χ̂), with χ̂ = dχ

dϑ , and a normality
condition:

dϑ

dt
� 0, ϕ = ϕ(χ̂) � 0, ϕ(0) = 0, τ ∈ −∂ϕ(χ̂) (21)
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The hypotheses (21) have the role of complementarity rules for the endochronic theory, in the sense that
sufficient to ensure that the second principle is fulfilled.

We assume that the hydrostatic parts ofσ andτ have an elastic behaviour and that the deviatoric part of
dissipation potential depends quadratically onχ̂ :

ϕ = ϕ(χ̂) = I0
(
tr(χ̂)

) + b2

2
‖χ̂d‖2 with b2 > 0 and I0

(
tr(χ̂)

) =
{

0 if tr(χ̂) = 0

∞ elsewhere
(22)

whereI0(tr(χ̂)) is the indicator function of the setE = {χ̂ | tr(χ̂) = 0}.
We should emphasize that this pseudo-potential is rate independent, even though it is not a homo

function of order 1, as in classical plasticity. The rate-independence is ensured by the use of the inter
derivativeχ̂ instead ofχ̇ .

The dual dissipation potentialϕ∗ is obtained by the Legendre–Fenchel transformation ofϕ:

ϕ∗(τ ) = sup
χ̂

(
τ : (−χ̂) − I0

(
tr(χ̂)

) − b2

2
‖χ̂d‖2

)
= sup

χ̂d

(
τ d : (−χ̂d) − b2

2
‖χ̂d‖2

)
= ‖τ d‖2

2b2
(23)

while thedualnormality conditions can be written as:

tr(χ̂) = 0, −χ̂d = τ d

b2
(24)

The first condition implies that the hydrostatic part of the internal variable remains constant: it is equal to
it is assumed that tr(χ(0)) = 0. Therefore, referring to (17), one has tr(τ ) = 3 B0 tr(ε), which describes an elast
hydrostatic response. The linear relation (24)2 betweenχ̂d andτ d simply derives from the quadratic form of th
deviatoric part ofϕ∗.

From the deviatoric part of (17) one obtains

τ d = B2εd + D2χd (25)

The positivity condition assumed in (19) means thatεd is continuous as a function of the intrinsic timeϑ and that
its derivative exists almost everywhere. Hence, by deriving (25) and substituting (24)2 in the obtained expressio
the following differential equation is found:

τ̂ d = B2ε̂d − D2

b2
τ d (26)

If τ d(0) = 0, then the solution of (26) has the form:

τ d = B2

ϑ∫
0

e−β(ϑ−ϑ ′) ∂εd(ϑ
′)

∂ϑ ′ dϑ ′ with β = D2

b2
> 0 (27)

Hence, by substituting Eqs. (25) and (27) in (16), the following expression for the deviatoric stress te
obtained:

σ d =
(
C2 − B2

2

D2

)
εd + B2

D2
τ d =

(
C2 − B2

2

D2

)
εd + B2

2

D2

ϑ∫
0

e−β(ϑ−ϑ ′) ∂εd (ϑ
′)

∂ϑ ′ dϑ ′ (28)

The term proportional toεd introduces a linear hardening effect, whereas the integral term corresponds to a
hysteretic behaviour, typical of the endochronic theory.
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5. Endochronic theory and Bouc–Wen type models

In order to investigate the relationship between the endochronic theory and the Bouc–Wen type mod
following parameters are introduced:

A0 = C2 − B2
2

D2
� 0 and A = B2

2

D2
> 0 (29)

The corresponding inequalities are related to the convexity conditions (12). The expression (28) becomes

σ d = A0εd + B2

D2
τ d = A0εd +

ϑ∫
0

µ(ϑ − ϑ ′)∂εd(ϑ
′)

∂ϑ ′ dϑ ′ with µ(ϑ) = Ae−βϑ (30)

It is the tensorial generalization of (1) for the case of an exponential kernel. Therefore, the previous analys
that the exponential form of the hereditary kernel can be determined in a consistent thermodynamic frame
addition, ifz denotes the integral term in the previous equation, the following differential form of (30) is obta{

σ d = A0εd + z

dz = Adεd − βz dϑ
(31)

One can remark that the choice of the internal time increment dϑ in Eq. (31) is still open. This additional degre
of freedom can be exploited to link the endochronic formulation (31) and the Bouc–Wen type models. The s
choicep = I in (19) leads to dϑ = ‖dεd‖. Hence, by substituting in (31)2, one obtains

dz = Adεd − βz‖dεd‖ (32)

which is the standard endochronic model [13]. In an univariate structural modelling framework, the cha
variablesεd → u, z → z andσ d → w can be made and the Bouc formulation (4)2 is found again.

Moreover, the differential formulation (31)2 is still valid when the tensorp, which defines the intrinsic tim
increment dϑ according to (19), is positive definite in a non-strict sense. Therefore, the assumptionp = a ⊗ a, with
a = a(σ d,εd ) second order tensor different from zero almost everywhere, is admissible. In this case, one h

dϑ = √
dεd : a ⊗ a : dεd or, equivalently, d̃ϑ := a : dεd , dϑ := |dϑ̃| (33)

where dϑ is zero not only for dεd = 0, but also when dεd⊥ a anda = 0. The definition (33) can be generalized
follows:

dξ̃ := a : dεd with a = a(σ d,εd ) �= 0 a.e.

dϑ = f
(
sign(dξ̃ )

)|dξ̃ | with f � 0
(34)

By assuming in (34)

dξ̃ := (z : dεd )‖z‖n−2 with z = σ d − A0εd

dϑ = f
(
sign(dξ̃ )

)|dξ̃ | with f = 1+ γ
β

sign(dξ̃ ) � 0
(35)

with n,β > 0, then the following expression of the intrinsic time increment is obtained:

dϑ =
(

1+ γ

β
sign(z : dεd )

)
|z : dεd |‖z‖n−2 with − β � γ � β (36)

The inequalities involving theγ parameter are sufficient to guarantee the non-negativity of dϑ . On the other
hand, it can be proved that they are necessary to fulfil the second principle inequality (14). By substitu
expression (36) in Eq. (31)2, the formulation (8)2 of the Karray–Bouc–Casciati model is obtained, which redu
to the Bouc–Wen model (6) in the univariate case. The thermodynamic formulation provided here for the
hysteretic models constitutes a proof of their thermodynamic admissibility, in the sense that they fulfil the
principle inequality. These results extend those concerning the caseγ = 0, discussed in [7] for the univariate Bou
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model and in [6] for the Karray–Bouc–Casciati model. Moreover, the analysis developed in [8] concerning t
γ = β is supplemented.

An even more general class of hysteresis models can be defined by extending the intrinsic time definiti
in (34):

dξ̃ := a : dεd with a = a(σ d,εd ) �= 0 a.e.

dϑ = ν(η)f
(
sign(dξ̃ )

)|dξ̃ | with f � 0 andν � 0

dη = f1(σ d ,εd)dϑ with f1 � 0

(37)

whereη is an intrinsic time variable governing the strength degradation, whileν is a positive and increasin
function ofη. In particular, one can set

dξ̃ := (z : dεd )‖z‖n−2 with z = σ d − A0εd

dϑ = ν(η)f
(
sign(dξ̃ )

)|dξ̃ | with f = 1+ γ
β

sign(dξ̃ ) � 0
(38)

and

dη := z : dεp = β z : z
A0 + A

dϑ = f1(εd ,σ d)dϑ � 0 with dεp := dεd − dσ d

A + A0
(39)

In this case the quantityη is the dissipated hysteretic energy. With the assumptions (38) and (39) for the in
time increment dϑ , Eq. (31)2 can be written in the form

dz = Adεd − ν(η) z(z : dεd)
(
γ + β sign(z : dεd )

)‖z‖n−2 (40)

which defines a generalized Karray–Bouc–Casciati model with an additional strength degradation termν = ν(η).
In the univariate case Eq. (7) is retrieved and the thermodynamic admissibility of the related hysteretic m
proved.

6. Conclusions

A general proof of thermodynamic admissibility of the Bouc–Wen type models has been proposed
encompasses the cases where a strength degradation term appears, and provides the interval of thermod
consistent values of theγ parameter for both univariate and tensorial models. Work is in progress to exte
proof to the cases with more than one internal variable and with a stiffness degradation term.
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