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Abstract

The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finit
of the Prandtl number,Pr. The transition in a vertical channel has already been studied for 0� P r � 100 with or without
the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs
spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. He
T. ASME 124 (2002) 635–642), we examine transition where the secondary flow takes the form of longitudinal rolls
which are independent of the steamwise direction, forPr = 7 and for a specific value of the angle of inclination of the fluid la
without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by pe
a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection poin
stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numeri
the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the
flow and show that the bifurcation can be either monotone or oscillatory.To cite this article: M. Nagata, S. Generalis, C. R.
Mecanique 332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Transition dans des écoulements cisaillés parallèles chauffés intérieurement. On présente une étude numérique de
stabilité d’écoulements parallèles cisaillés plans, chauffés intérieurement, dans le cas du nombre de PrandtlPr fini. On a déjà
étudié la transition dans un conduit vertical pour 0� P r � 100 avec ou sans application d’un gradient de pression extéri
quand l’écoulement secondaire prend la forme d’ondes progressives (TW), indépendantes de l’envergure de l’écoule
les publications de Nagata et Generalis). Dans le travail présent, contrairement aux résultats déjà rapportés (J. Hea
ASME 124 (2002) 635-642), on examine la transition pendant laquelle l’écoulement secondaire prend la forme des
longitudinaux (LRs), indépendants de la direction du flux, pourPr = 7 et pour une valeur spécifique de l’angle d’inclinais
de la couche fluide, sans application du gradient de pression extérieure. Nous trouvons les points de bifurcation po
l’écoulement secondaire en effectuant une analyse de stabilité linéaire permettant de déterminer la courbe neutre, s
l’écoulement de base peut présenter deux points d’inflexion, perdant sa stabilité. La stabilité linéaire de l’écoulement s
par rapport aux perturbations tri-dimensionnelles a été examinée également pour une valeur constante de l’angle d’in
à l’aide de la théorie de Floquet. On identifie les points de bifurcation possibles pour l’écoulement tertiaire ; on montre a
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1631-0721/$ – see front matter 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2003.10.011
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cette bifurcation peut être soit monotone, soit oscillatoire.Pour citer cet article : M. Nagata, S. Generalis, C. R. Mecanique
332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The objective of our study is to provide significant insights into the identification of the mechanism
instability and transition from laminar to turbulent state in flows with homogeneously distributed heat sou
this end we consider incompressible viscous flow in an inclined channel with an internal heat source. Suc
source may be produced, for example, through a mechanism in the nuclear fusion industry, where liquid
is used to cool the hot plasma, and therefore due to its nuclear safety issues the problem of internally hea
has recently attracted attention [4] (and references therein). In the present study we consider a Cartesian c
system positioned in the midplane of the fluid layer of width 2d bounded between two parallel plates of infin
extent withx, y, z the streamwise, spanwise and horizontal directions with unit vectorsî, ĵ, k̂ respectively. The two
plates are maintained at constant temperatureT = T0 (see Fig. 1). We apply the Boussinesq approximation
used , d2/ν andqd2/2κ Gr, whereGr = gδqd5/2κν2 is the Grashof number (the non-dimensional parameter
provides the strength of the internal heat source), as the units of length, time and temperature respective
obtain the following non-dimensional Navier–Stokes equations for the velocity vectoru and temperature variatio
T from the environment (q is the volume strength of the heat source that generates the basic flow,κ is the thermal
diffusivity, δ is the coefficient of thermal expansion,ν is the kinematic viscosity,γ is the angle of inclination o
the fluid layer andg is the acceleration due to gravity):

∂

∂t
u + u · ∇u = 2R + (

î sin(γ ) + k̂cos(γ )
)
T + ∇2u (1)

∂

∂t
T + u · ∇T = Pr−1(∇2T + 2Gr

)
(2)

∇ · u = 0 (3)

Fig. 1. Geometrical configuration exhibiting the basic flow profile with two inflection points in an inclined fluid layer heated interna
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wherePr = ν/κ is the Prandtl number andR = Umaxd/ν = −d3∇π/2ν2ρ is the Reynolds number that measu
the strength of the applied pressure gradient. HereUmax is the maximum laminar velocity for pure Poiseuille flo
[1] andπ is the pressure. The assumption of the Boussinesq approximation ensures that the densityρ is regarded as
constant except for the gravity term. Terms that can be written as gradients, have been combined into the e
for R. The boundary conditions are

u(z = ±1) = T (z = ±1) = 0 (4)

The basic solution of Eqs. (1)–(3) consists of a basic velocity profileu0 = U0(z)î and a basic temperatu
distributionT0(z) of the form [1,2]

U0(z) = ((
Gr sin(γ )/12

)(
z4 − 6z2 + 5

) + R
(
1− z2)) (5)

T0(z) = Gr
(
1− z2) (6)

The basic velocity profile of Eq. (5) has two inflection points if the Reynolds number satisfies− Gr /2 � R � 0
and so we can expect the steady basic state to be linearly unstable, although the Rayleigh instability cr
applicable only to inviscid cases. The effects of an applied pressure gradient on the transition of internally
flow were considered in [1]. In the present work we assume a vanishing value ofR (R = 0). In the following
section we derive the equations of disturbances and in Section 3 we investigate the linear stability of o
steady state (Eqs. (5), (6)) numerically using the method of [1,2] forPr = 7.

2. Mathematical model

In order to describe secondary solutions that bifurcate from the basic flow we follow [2] and we separ
velocity field deviationŝu (from the basic flow of Eq. (5)) and temperature deviations,θ (from the basic flow of
Eq. (6) into an average part (over thex andy coordinates)Ǔ , Ť , (see [2]), and a fluctuating partǔ, θ̌ (with a
vanishing average over thex andy coordinates):

û = Ǔ + ǔ (7)

θ = Ť + θ̌ (8)

where

ǔ = δφ + εψ = ∇ × (∇ × k̂φ) + ∇ × (k̂ψ) (9)

with the total mean flow and the total mean temperature given by

Û = U0 + Ǔ (10)

T̂ = T0 + Ť (11)

In Eq. (9)φ,ψ refers to the poloidal and toroidal part of the velocity fluctuations respectively [1–3], satis
φ̄ = ψ̄ = 0, where the overbar denotes thex − y average [1]. It is worth pointing out that the incompressibi
condition is satisfied automatically for the decomposition of Eq. (9) of the velocity field and can theref
eliminated from the rest of the analysis. By applying the operatorsδ· andε· (for simplicity of notation we drop thě
from the temperature fluctuationsθ̌ hereafter) we obtain the following equations for the poloidal and toroidal p
of the velocity fluctuations:

∂

∂t
∇2�2φ − ∇4�2φ + Û∂x∇2�2φ

= ∂2
z Û�2∂xφ + sin(γ )∂x∂zθ − cos(γ )�2θ − δ · {(δφ + εψ) · ∇(δφ + εψ)

}
(12)

∂

∂t
�2ψ − sin(γ )∂yθ − ∇2�2ψ = ∂zÛ�2∂yφ − Û∂x�2ψ − ε · {(δφ + εψ) · ∇(δφ + εψ)

}
(13)
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We can now rewrite the temperature equation as

∂

∂t
θ = −2Gr(r · k̂)�2φ + �2φ∂zŤ − Û∂xθ + Pr−1 ∇2θ − (δφ + εψ) · ∇θ (14)

where�2 ≡ ∂2
x + ∂2

y is the planform Laplacian. The mean flow and temperature,Ǔ(z, t) andŤ (z, t), satisfy

∂2
z Ǔ + sin(γ )Ť + ∂z�2φ(∂x∂zφ + ∂yψ) = ∂t Ǔ (15)

∂2
z Ť + Pr ∂z�2φθ = Pr ∂t Ť (16)

The no-slip and fixed temperature conditions on the plates forφ,ψ, θ, Ǔ andŤ are

φ = ∂φ

∂z
= ψ = θ = Ǔ = Ť = 0 atz = ±1 (17)

In the next section the linear stability of the basic flow and temperature profiles of Eqs. (5), (6) is examin
respect to infinitesimal perturbations.

3. Linear stability analysis – Longitudinal Roll (LR) type disturbances

In order to study the linear stability characteristics of the LR type disturbances we ignore the nonlinea
of Eqs. (12)–(14), the mean flow and mean temperature of Eqs. (15), (16) and we set∂x = 0, thus considering th
stability of the parallel flow in the spanwise direction [2]. Additionally we expand the temperature fluctuatio
the poloidal and toroidal parts of the velocity fluctuations in terms of orthogonal functions [2]

φ =
N∑

n=−N, n�=0

L∑
l=0

anl exp{ınβy}(1− z2)2
Tl (18)

ψ =
N∑

n=−N, n�=0

L∑
l=0

bnl exp{ınβy}(1− z2)Tl (19)

θ =
N∑

n=−N, n�=0

L∑
l=0

cnl exp{ınβy}(1− z2)Tl (20)

The factors(1− z2)2 and 1− z2 in Eqs. (18)–(20) are necessary in view of the boundary conditions (Eq. (17)anl ,
bnl , andcnl are unknown complex coefficients,β is the wave number of the LR disturbance andTl is thel-th order
Chebyshev polynomial. Similar expansions for the fluctuations are employed when considering travellin
(TW) disturbances with wave numberα in the streamwise direction (andβ = 0) with the phase velocity of th
TW disturbances as an additional parameter [1]. The stability of the streamwise (TW) disturbances was e
in [2]. For the linear analysis of this section only one mode in the spanwise direction is retained. In order t
the linear stability characteristics of the LR disturbances we therefore write:

φ =
L∑

l=0

al exp{ıβy + σ t}(1− z2)2
Tl

ψ =
L∑

l=0

bl exp{ıβy + σ t}(1− z2)Tl

θ =
L∑

l=0

cnl exp{ıβy + σ t}(1− z2)Tl
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Fig. 2. Critical Grashof number as a function of the angle of inclination for LRs (α = 0, continuous curve). The dash-dotted, disconnec
curves represent the critical Grashof number for TWs (β = 0) [2]. The upper dash-dotted curve merges with the lower dash-dotted cu
γ ≈ 0.9◦. Pr = 7, R = 0.

where the real part of the complexσ , σr , defines the rate of damping or amplification of the perturbations. We
employ the Chebyshev collocation point method of [1,2] to obtain a generalized algebraic eigenvalue prob

Ax = σBx (21)

wherex = (a10, . . . , a1L,b10, . . . , b1L, c10, . . . , c1L)T with A,B complex matrices. The QZ method was utiliz
to solve the eigenvalue problem of Eq. (21) with the use of the NAG subroutine F02GJF. In order to a
numerical accuracy of the results a high enough truncation number must be chosen. It was found that for
Pr = 7, L � 13 was satisfactory. We note here that for all values ofγ examined the imaginary part of the leadi
eigenvalueσ1 for LR disturbances is always zero [2]. In Fig. 2 the critical Grashof numbers as functions of the
of inclination are given. In the same figure we have also superimposed the curve that provides the critical
number for TW disturbances [2]. The reason for the apparent discontinuity atγ ≈ 0.9◦ of the dash-dotted curv
(TW disturbances) is given in [2]. As is evident from Fig. 2 our basic flow becomes unstable to TW distur
for much lowerGr values than LR perturbations for values ofγ ≈ 90◦, while for almost all other values ofγ
it becomes unstable to LR disturbances. In the horizontal configuration, however, both LR and TW distu
share the same value of the critical Grashof number. In the following section we study the nonlinear second
that bifurcate from the neutral curves of Fig. 2 forγ = 60◦.

4. Secondary longitudinal rolls

4.1. Numerical method

In this section we calculate the two-dimensional nonlinear equilibrium solutions that are created at the
curves forγ = 60◦, as predicted by the linear analysis discussed in the previous section (see Fig. 2). Here
∂x = 0 and additionally retain the non-linear terms of Eqs. (12)–(14) and the mean flow and mean temp
of Eqs. (15), (16). Finally we note that Eqs. (12)–(16) are subject to the homogeneous boundary cond
Eq. (17). For the mean flow and mean temperature distortions of Eqs. (15), (16) we write:

Ǔ =
L∑

l=0

Cl

(
1− z2)Tl (22)
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Fig. 3. Total mean flow (̌U ) profile for a fixed wave numberβ = 2.0 and for various Grashof numbers as indicated. Curves marked w
represent the contributions of Eq. (5). The dashed curve represents the basic flow contribution forGrc = 166.62919. HerePr = 7, R = 0,
γ = 60◦.

Ť =
L∑

l=0

Dl

(
1− z2)Tl (23)

The factor 1− z2 has been introduced in the expansions ofǓ and Ť , so that the conditions of Eq. (17) a
satisfied. When Eqs. (18)–(20) and Eqs. (22), (23) are substituted in Eqs. (12)–(16) the non-linear se
equilibrium solutions are obtained with the aid of the Chebyshev collocation point method and the N
Raphson iterative method outlined in [2], for some high enough truncation parametersN , L. Supercritical LR
solutions have been obtained for a variety of values of the Grashof number, spanwise wave number and
inclination, but in this work we restrict our attention to the case wherePr = 7 andγ = 60◦.

4.2. Results

Well-converged supercritical secondary solutions have been obtained forL � 13,N = 5. These two paramete
values were therefore retained for this work and for consistency with the linear analysis of the previous se
Fig. 3 we show the total mean supercritical flow of Eq. (10) plotted against the channel width, for the no
equilibrium state characterized byβ = 2.0 for various values ofGr and for the casePr = 7 andγ = 60◦. A more
detailed analysis of the characteristics of the secondary flow forγ = 60◦ as well as for 0◦ � γ � 89◦, will be
presented separately. In the following section we examine the stability of the secondary solutions obtaine
section.

5. Stability of secondary LRs

We now study the linear stability of the secondary flow of the previous section, in order to identify po
bifurcation points for the tertiary flow forγ = 60◦. We superimpose three-dimensional (solenoidal) infinites
disturbances on the secondary floŵU i + ǔ and temperaturêT + θ in the form

ũ = δφ̃ + εψ̃, θ̃ = θ̃ (24)

and we seek to numerically evaluate their growth ratesσ . Disturbances withσr < 0 will indicate a stable seconda
solution, while forσr = 0 we have neutral stability and possibility of bifurcation for the tertiary flow. Poss



M. Nagata, S. Generalis / C. R. Mecanique 332 (2004) 9–16 15

mputed

ution
re no
ralized

tion
cation
part
bility
ions

4
to the

he term
inology
ounds the
ere

a given
(29) as a
large
bifurcation points of three-dimensional solutions (that bifurcate from the secondary neutral curves) are co
via linear secondary stability theory [1,2], as described briefly in the following section.

5.1. Numerical method

Applying the Floquet theory, we set, [1,2]:

φ̃ =
N∑

n=−N

L∑
l=0

ãnl exp
{
ınβy + ı(dx + by) + σ t

} × (
1− z2)2

Tl(z) (25)

ψ̃ =
N∑

n=−N

L∑
l=0

b̃nl exp
{
ınβy + ı(dx + by) + σ t

} × (
1− z2)Tl(z) (26)

θ̃ =
N∑

n=−N

L∑
l=0

c̃nl exp
{
ınβy + ı(dx + by) + σ t

} × (
1− z2)Tl(z) (27)

for the complex disturbances{φ̃, ψ̃, θ̃} that satisfy the boundary conditions:

φ̃ = ∂φ̃

∂z
= ψ̃ = θ̃ = 0 atz = ±1 (28)

In order to derive the corresponding equations for the disturbance field{φ̃, ψ̃ , θ̃}, we follow [2], and we replaceφ,
ψ , θ in Eqs. (12)–(14) byφ + φ̃, ψ + ψ̃ , θ + θ̃ , respectively and we subtract the equations for the steady sol
φ, ψ , θ . As the value ofd2 + b2 will be assumed to be different from zero for the rest of the analysis, there a
contributions to the mean flow and temperature. Following the method outlined in [1,2] the following gene
algebraic eigenvalue problem results:

Ax̃ = σBx̃ (29)

in the unknown complex variables{ãnl, b̃nl, c̃nl} represented bỹx. The 3(L + 1)(2N + 1) matricesA,B are
functions of the real parametersd , b, Gr, Pr, γ , the wave numberβ and the amplitudes of the steady state solu
{anl, bnl, cnl,Cl,Dl}. Eqs. (29) are solved with the use of the NAG subroutine F02GJF. The same trun
level was used in this section as that retained for the steady solutions of the previous section. The realσ1r

of the leading eigenvalueσ1 determines the rate of damping or amplification of the disturbance. The sta
boundary is obtained by the conditionσ1r = 0. Finally we note that in all cases examined the symmetry relat
σ1r (b, d) = σ1r (b,±d) = σ1r (±b, d) were always confirmed. The results of our studies for the caseγ = 60◦ are
briefly described below.

5.2. Results

In Fig. 4 we present the stability range of LRs for the casePr = 7, andR = 0. As can be seen from Fig.
the boundary is formed by Eckhaus and Hopf bifurcation curves. The term Hopf bifurcation usually refers
crossing of the imaginary axis by two complex eigenvalues. In the context of the present work, however, t
Hopf bifurcation is used when only one complex eigenvalue is active in the bifurcation process. This term
has been used before and has been accepted in the literature [1–3,5]. For the Eckhaus curve, which b
area of the stable LRs towards larger and lower wave numbers,d = 0. Several values of the Grashof number w
studied and the maximum real part of the leading eigenvalueσ1 was evaluated. The value ofGr, which determines
the boundary of the curve, was calculated by interpolation. In order to determine such boundaries for
value of the Grashof number that characterizes a secondary solution, we determine the eigenvalue of Eq.
function of the parametersb, d . We examined a variety of combinations of the relevant parameters, where a
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Fig. 4. Instability boundaries of secondary LRs for the casePr = 7, R = 0. For the Eckhaus curve (indicated by E)d = 0 andσ1i = 0. For the
Hopf bifurcation curve (indicated by H)d �= 0 andσ1i �= 0. The secondary LRs are stable within the shaded region. The dashed curve rep
the linear stability curve.

number of eigenvalues was investigated for wave numbers in the range 1.5 � β � 3.0. In order to determine th
value ofd for which the maximum growth rate of the leading eigenvalue,σ1r , will occur, we fix the value ofd
to the one for which the maximum value ofσ1r was observed for a given value ofb, and we then examineσ1r

as a function ofb. For the Eckhaus curve at the zero growth rate point(σ1r = 0) we observed thatσ1i = 0. Our
calculations have also shown that ford = 0 maximum growth rate was observed when 0.3 � b/β � 0.5 (with a
symmetric peak at 0.5 � b/β � 0.7). For the Hopf bifurcation curve at the zero growth rate point(σ1r = 0) we
observed thatσ1i �= 0 and therefore a Hopf bifurcation takes place. This occurrence combined with the unde
two-dimensional steady solution shows that a bifurcation to a spatially periodic tertiary flow appears.

6. Concluding remarks

In this work we presented stability analysis of flows in an inclined channel uniformly heated witho
imposition of a constant pressure gradient. Linear stability analysis forPr = 7, R = 0 showed that our basic flow
becomes unstable to LR disturbances forγ = 60◦, [2]. Next, non-linear secondary LR type equilibrium states w
obtained numerically with the aid of the Chebyshev collocation point method and the Newton–Raphson
method for the same value ofγ . We identified that these secondary equilibrium states bifurcate supercritically
the basic state. Non-linear properties of the secondary flow, such as the total mean flow, were also presente
we studied the stability of the secondary flow, by applying the Floquet theory. We superimposed the genera
three-dimensional perturbations on the secondary equilibrium states. Traces of the Eckhaus and Hopf bi
curves were identified and our calculations showed that transition to a periodic tertiary flow can occur de
on the values of the parametersd , b. The extension of the current work to include various values of the ang
inclination is currently under way and will be reported separately.
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