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Abstract

The existence and propagation of the surface waves at a vacuum/porous medium interface are investigated in the low
frequency range. Two types of surface waves are shown to be possible: the generalized Rayleigh wave, which always exists, and
the Stoneley wave, which exists for a limited range of wave numbers. Moreover, withirdiimain of existence the Stoneley
wave cannot appear for certain values of elastic parameters of the solid phase. The bifurcation behavior of both the Stoneley
wave and the Biot (P2) bulk wave, depending on the wave number, is revealed. The asymptotic formulas for the phase velocities
of the surface waves are derivéiih cite thisarticle: |. Edelman, C. R. Mecanique 332 (2004).
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Résumé

Sur I’ existence des ondes de surface basse fréquence en milieux poreux. La nature et la propagation des ondes de surface
engendrées par la surface libre d’'un milieu poreux sont étudiées en basse fréquence : nous mettons en évidence deux types
d'ondes de surface : I'onde de Rayleigh et 'onde de Stoneley. Cette derniére existe pour une gamme limitée de nombres
d’onde. Le comportement de bifurcation de I'onde de Stoneley et de I'onde lente de Biot (P2) dépendant du nombre d’onde est
mis en évidence. Il est aussi prouvé qu'a I'intérieur du domaine d’existence du nombre d’onde, I'onde de Stoneley ne peut pas
apparaitre pour certaines valeurs de parameétres élastiques de la phase solide. Les formules asymptotiques des vitesses de phase
des ondes de surface sont également présemaasciter cet article: |. Edelman, C. R. Mecanique 332 (2004).
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1. Introduction

Lord Rayleigh discovered that at a free interface of an isotropic elastic half-space there is only one surface wave
— the Rayleigh wave [1]. This wave is a nondispersive plane inhomogeneous wave, undamped in its direction of
propagation along the surface, and damped normal to the boundary. At a solid-liquid interface two types of surface
waves may exist: the true Stoneley surface wave [2,3], propagating parallel to the boundary without attenuation
and being exponentially damped in both directions away from the interface; its velocity is lower than all the bulk
velocities in the solid and in the liquid, and the generalized Rayleigh wave with a velocity higher than the wave
velocity in the fluid; it is attenuated along the propagation direction by ‘leaking’ energy into the fluid [3]. For
many years, the analysis of surface waves has been widely developed. However, very few studies have dealt with
a poroelastic solid (details of the current state of art can be found in [4,5]). These works are based on the high
frequency limit of the classical Biot model for fluid-saturated porous medium [6]. The model describes three bulk
waves in an unbounded fluid-saturated medium: shear (S), fast longitudinal (P1), and slow longitudinal (P2 or
the Biot) waves. The shear wave and the longitudinal wave of the first kind (P1) are similar to the waves in an
ordinary single phase, isotropic elastic medium. Biot found that in addition to the usual elastic waves there exists
longitudinal wave of the second kind (P2) which is propagatory at high frequencies. It is obvious that due to the
presence of the P2 wave in a saturated porous medium, the number and properties of surface waves at interfaces of
porous solid in contrast to interfaces of elastic solid should be different.

The focus of this work is on the research of the existence and asymptotic behavior of the surface modes at the
free interface of a porous medium in the low frequency range. The asymptotic analysis presented in the paper is
based on the mathematical model of saturated poroelastic materials, proposed in [7]. As in the classical Biot model,
it describes three bulk waves in an unbounded fluid-saturated medium (see [8] for the comparison of the models).
The existence of two surface modes are proven to be possible: the true Stoneley wave and the generalized Rayleigh
wave. The behavior of the surface modes depend crucially on the properties of the bulk waves. In the high frequency
range there are not peculiarities in propagation of both bulk and surface waves: the velocities of bulk waves are
almost constant and the true Stoneley and the generalized Rayleigh waves spread with speeds somewhat less than
those of P2 and shear waves, respectively [9,5]. However, in the low frequency range the Biot slow wave is not
always propagatory: it is fully attenuated below some critical wave nuip@rich depends on the permeability
of the media and viscosity of the fluid [10,8]. This critical wave number is the bifurcation point, above which the
P2 wave begins to propagate. Because of this complicated behavior of the P2 wave, the properties of low-frequency
surface modes are different in comparison with the high frequency range. In the low frequency range, similar to the
P2 wave, the Stoneley surface mode possesses a bifurcation in the vicikity dbreover, within thek-domain
of existence, the Stoneley wave cannot appear for certain values of elastic parameters of the solid phase. Also there
exists the generalized Rayleigh wave, which propagates almost without attenuation.

In should be noted that we investigate the propagation of the acoustic bulk waves through an infinite porous
medium in the absence of external forces. In this case one must set the wave kumberreal and define the
frequencyw = w(k), which can be complex, as a solution of the corresponding dispersion equation, i.e., we solve
the initial value problem.

2. The mathematical model

Let an infinite space2 be occupied by a saturated porous medium. In dimensionless variables the balance
equations describing the porous two-phase medium has the following generakfarsa (¢ € [0, T']) [7,5]:
Mass conservation equations

ap” /ot +div(pfvF) =0, apS /ot +div(pSv) =0 (1)
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Here,p is the mass density,is the velocity vector and indices andS indicate fluid or solid phases, respectively.
The partial mass densities of the solid and fluid phaseandp’ are connected with the true mass densitigd
andp™R by the relationsp’ = (1 —n)p=R, p¥ =np™R, wheren denotes the porosity.
Momentum conservation equations
pf /0t + (vF.0/0x;) o] =T jox; +m (v] —vf) =0 )
ps[8/8t + (vf, 8/8xj)]vis — 8Ti§/8xj — n(v»F — vls) =0 3)

1

HereT? andT? are the partial stress tensors ane: nou” /KC, whereng is the initial value of porosity.” is the
viscosity of a liquid [ is the permeability of a porous medium.
Balance equation of porosity

an/at + (v, 3/3x;)n + nodiv(vF —v¥) = —(n — ng) 4)
Congtitutive relations for linear poroelastic materials

TF=—pf1-Bn—nol,  p" =p§ +x(” - pf) ()

TS =T5 4+ 25 divuS1 4 2,5 symgradu® + B(n — no)1 (6)

Herep! is the pore pressurag andpg are the initial values of pore pressure and fluid mass density, respectively;
K« is the constant material parametgris the coupling coefficient of the componenT% is a constant reference
value of the partial stress tensor in the skeletohandu’ are the Lamé constants?® is the displacement vector

for the solid phaserS = gu’/ar.

3. Bifurcation of the Biot slow wave at low frequencies

Prior to exploring the existence of the surface modes, let us examine the propagation of the bulk waves through
an unbounded fluid-filled porous medium. We focus on the Biot slow wave. To investigate the propagation of the
longitudinal waves it suffices to study the 1D problem. Consider the propagation of the harmonic waves whose
frequency iso and wave number is. Following standard procedure one obtains the dispersion equation [10,8]:

r(wz — c?kz) (a)2 — k2) +iwmw ((1 +rw? — k2(1+ rc?)) =0 @)

wherer = ,oOF/,og andcy = ik /,/ (A5 + ZMS)/pg. If k is sufficiently large (high frequency range), the root of (7),
corresponding to the P2 wave, has the form (note that b&leww/ k andk = k/):

i1 1-cf1+4n 1 +o<1)
2rk  82(1—ch)(£ep) k2 k3

wpr = *cr — (8)
It defines the velocity and attenuation of the forward- and backward-directed P2 wakés sthall enough (low
frequency range), one obtains for the forward- and backward-directed P2 waves, respectively:

2 3.4 A

< _ res ]g_ir cf(1+rcf)];3 o4 ~b __i1+r1. r(r+cy)

Pr2T T2 7 & +OK).  @ho= T 1412
reg (1+rcf) rok d+r)

k+0(k?) 9)

The expansions (9) consist of the imaginary terms only, i.e., the phase velocity of the P2 wave equals zero and
the wave is fully attenuated. However, the asymptotics (9) are valid only if the wave nunibérss then some
critical valuek: k¢ is the bifurcation point in a small neighborhood of which the corresponding solution of
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Fig. 1. Velocity of the P2 wave (left-hand side) and velocities of the Stoneley (dashed line) and P2 (solid line) waves (right-hand side), evaluated
in physical variablesker ~ 70.22 m~1 (water-saturated sandstone [8]).

equation (7) splits into several branches. The critical wave numbend the pertinent critical frequency are
defined asymptotically:
ker & Cf(l + 1/(2;»(*?))7[’ wer = —im 2cr, Qcr ~ 1/(2}") -+ 2(]% (1 + 3rc§ — 2(?) (10)

If k > ker, then the P2 mode becomes propagatory. For any small paransstdmvave number = ker(1+€2ko) +
7 0(e3) the asymptotic expansion for its frequency has the form:

@p2 = Wer + 01+ ”0(62) w1 = 2kcr\/m (12)
1 + 02- 1 — C2
f f 3 2 3 3 2 2 2 2 2
= + —r°(1—c5)"R2+3r°(1—c¢ 1—rc2\0
cf C§-g(9cr)m( (1=ch) e (1—c7)( 7))
-3 (1= )1 Ae) 2+ (1 1) (14 7)) = O 2
62 =221 &) - 221 ) a-rd) + (14 ) 9

Thus, the velocity of the forward-directed P2 wave in the low frequency range (more precisely, in a small
neighborhood of the bifurcation point) equals(Rg2)/k. The bifurcation point describes the transition from

the low to high frequency regimes of the propagation of the P2 mode. The asymptotic feli®yldemonstrates
thatke, is directly proportional to the parameterand, consequently, the Biot wave behavior is dominated by the
permeability of a medium. In Fig. 1 (left-hand side) the phase velocity of the P2 wave is evaluated in physical
variables for water-saturated sandstone (see example in [8]).

4. Surfacewaves

Consider two semi-infinite space®,” and2*, having a common interfacg. Let the region2 ~ be occupied
by a saturated porous medium and the regih be occupied by the vacuum. System (1)—(4) describes the
porous mediumx € 27, ¢ € [0, T1). Further, we linearize (1)—(4) about some equilibrium stdte= pl", p5 =
ps, vI'=0, vS =0, n =ng and introduce the displacement vector for the fluid phaéeWe investigate 2D
problem y plane) of the propagation of the surface waves along an interface of a porous medium, which occupies
the semi-infinite space > 0 (regions2~) and is bounded by the vacuum, which fills the semi-infinite spaee
(region 27). On the interfacey = 0, separating the porous medium and the vacuum, the following linearized
boundary conditions have to be satisfied: the relative normal velocity must be equal to zero and the total stress
vector must vanish:
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d(uf —u3)/dtly=0=0, (du3/dy +du3/dx)|ly—0 =0 (14)
(5 divus +2u50us /0 y — k(0" — pl))ly=0 =0 (15)

Our goal is to prove that the boundary value problem (1)—(4), (15) and (16) has solutions in the form of surface
waves, i.e., solutions which decrease sufficiently fasyas> co. For this purpose we investigate the propagation
of a harmonic wave whose wave numbekis R1, frequency isw = w(k), and whose amplitude depends pn
Thus, Réw/ k) defines the phase velocity of waves, while(dsh defines the attenuation.
A solution in the region2 ~ is sought in the following form:

uf = gradp” +rotw?,  uS =gradp’ + rotw* (16)
wherew ¥ = (0,0, ), w5 = (0,0, ¥5) and

of = AT expitkx —wn), 95 =AS(y) explitkx — 1)) 17

vF = BY () explitkx —wn)), 5 =B (y) exp(i(kx — wr)) (18)

pf —pb = Ag(y) exp(i(kx — wt)), oS — pg = Ai(y) exp(i(kx — wt)) (19)

n—no=Aexp(itkx — wt)) (20)

For the unknown amplitudes”, AS, andBS one gets (for the others one obtains algebraic relations):

<AF>_—C (Rf)exp( )+ C (R£>exp(— ) (21)
1 —yLy 2 Y2y
AS R} RS

@2 i w?r nS
s EXP(—ysy) vs \/ c? + c2(wr +im) o AS +2us #2

It should be emphasized that we are interested in the solutions in the form of surface waves, i.e., in the solutions
which attenuate witly. Thus, the solution (21), (22) boundedyinmequires:

Rey; > 0, Rey; >0, j=12 (23)

Radicalsy; and vectorgR?, RJS)T, Jj =1, 2, are defined from the construction of the asymptotic solution and have
different structure in the I(migh and low frequency ranges. Substituting (21), (22) into the boundary conditions (14),
(15) one gets the system of equationsd@at Co, C,. Requiring that the determinant of this system must vanish
yields the dispersion equation. Next consider two limit cases:

() |kl > 1, i.e., short waves or high frequency range. In this case [9,5]

n=vi/lkl=\J1-@%/c5, Ta=ra/lkl=V1-&? 7s=vy/lkl=\J1-@%/c2, B=w/k

Also, (RF, Rf) =(1,0), (RZF, Rg) = (0,1). The corresponding dispersion equation has two roots. One of them
defines the true Stoneley surface wave, which propagates almost without attenuation. Its speed is less that the
velocities of all bulk waves in a porous medium and has the order;)O Another one corresponds to the
generalized (leaky) Rayleigh wave. Its velocity is a bit bigger than that one of the classical Rayleigh wave and
it attenuates while propagating. A part of its energy is absorbed by the P2 bulk wave.

(2) |k| « 1, i.e., long waves or low frequency range. In this case

~ ~21+rct
hzll_i%(Hiz)_w_ij(ﬁ), (5)=(_L )asivom@ o
) 1

res s 1+rc§ —rcy
) o 1+r ~ REF 1 L
= [1-a2 o(V#). <2)=()1 i+ O(k? 25
V2 w1+r6§+( ) RS 1) (1+k+0(k%) (25)
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Remark 1. The expansions (25) are not valid in a neighborhood of the bifurcation pgint

In the low frequency range the dispersion equation has two approximations depending on the region of wave
numbers. First consider the regidr< k¢r, where the Biot bulk wave does not propagate. One can prove, that in
this region the dispersion equation has a unique root, corresponding to the generalized Rayleigh surface wave. Its
asymptotic expansion has the form:

Br = cp + €214+ 0(c?) (26)

wherecy, is the speed of the classical Rayleigh wave in an elastic half-space, ands21 is defined by

~ 2 2
Pr(@) C]ZQ 2 22 > 2, 2 012? CR —C¥
Sy dcr <1_ 222 (3ck — 2¢5c7) +\/1_CR\/1_LR/CS o -2 1-c2

~2\ 2
Pr(@) = <2— %) —a1-R f1-a2/e2

As is easily verified, the provisos (23) are fulfilled for (26). Thereby, the solution (21), (22) indeed has the structure
of a surface wave. It follows from (26) that the generalized Rayleigh wave propagates almost without attenuation
in the regionk < k.

Next consider the surface modes which can appear in a small neighborhood of the bifurcatidg, painére
k > kor and the P2 bulk wave is propagatory. One can prove that in this region the dispersion equation has one more
root, which corresponds to the Stoneley surface mode. The bifurcation behavior of the Biot slow wave dictates that
the Stoneley wave must also possess a bifurcation. Indeed, this surface mode exists for a limited range of wave
numbers. For the wave number = zfcf (14 €%ky + - - ) the asymptotic expansion of the root, which defines the
Stoneley surface mode, has the form:

Bst= —ie€ + /2(ko — 2r) €2 + O(e3) (27)

wheree = ¢ y. Obviously, Réost # 0 if the expression under the square root in (27) is positive. Thus, similar to the
P2 wave, the Stoneley mode has a bifurcation behavior in a neighborhood of the point

T 2
ke~ —(1 ko), whereky; =2 28
cr 2rCf( +Cf 2) 2 r (28)

Therefore, ifky < 2r, i.e.,k < ker, then the Stoneley wave does not propagate: it is fully attenuated. Otherwise, if
ko > 2r,i.e.,k > k¢, it begins to emerge with a velocity very close to the speed of the P2 wave. Fig. 1 (right-hand
side) shows the velocities of the P2 and of the Stoneley waves in water-saturated sandstone as functions of the
wave number. One sees that in the vicinitykgf the speed of the Stoneley wave; = Rews; is very close to,
but somewhat less than, the speed of the P2 wave. Further deviation of; from cp> results from the fact that
only one term of the asymptotic expansiorrtpwas taken into account (see (27)). Unlike what occurs in the high
frequency limit [9,5], the Stoneley surface mode is strongly attenuated at low frequencies (leaky mode).

Let us verify whether the conditions (23) hold true for (27), i.e., whether the solution (21), (22) indeed has the
form of a surface wave. It is easily seen thatyRe- 0 and Re» > 0. Solution fory; in a vicinity of k¢r has the
form 71 = e+ Ie3 + -, where
r(4c2 — 1)L +2r) — 1/(2c2) (1 - 2r))

1+2r)(1-c?)

For example, if- = 0.1 (water-saturated sandstone [8]), thén< 0 and, consequently, Re < 0, if 0.41 < ¢, <
0.5. Thereby, the solution (21), (22) is not a surface wave and at low frequencies the Stoneley mode cannot appear

at the free interface of the porous medium if the elastic moduli of its solid skeleton are such that the ratio of the
speeds of the shear and longitudinal wawes (0.41, 0.5).

In= (29)



|. Edelman / C. R. Mecanique 332 (2004) 43-49 49

Acknowledgement

Support by the Alexander von Humboldt Foundation is gratefully acknowledged.

References

[1] Lord Rayleigh, On waves propagated along the plane surface of an elastic solid, Proc. London Math. Soc. 17 (1885) 4-11.
[2] R. Stoneley, Elastic waves at the surface of separation of two solids, Proc. Roy. Soc. London Ser. A 106 (1924) 416-428.
[3] L.M. Brekhovskikh, Waves in Layered Media, Academic Press, New York, 1960.
[4] P.B. Nagy, Acoustics and ultrasonics, in: Experimental Methods in the Physical Sciences, Academic Press, 1999, pp. 161-221.
[5] I. Edelman, K. Wilmanski, Asymptotic analysis of surface waves at vacuum/porous medium and liquid/porous medium interfaces,
Continuum Mech. Thermodyn. 14 (1) (2002) 25-44.
[6] M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33 (4) (1962) 1482—-1498.
[7] K. Wilmanski, Lagrangean model of two-phase porous material, J. Non-Equilib. Thermodyn. 20 (1995) 50-77.
[8] I. Edelman, Bifurcation of the Biot slow wave in a porous medium, J. Acoust. Soc. Am. 114 (1) (2002) 90-97.
[9] I. Edelman, Waves on boundaries of porous media, Phys. Dokl. 46 (2001) 517-521.
[10] I. Edelman, On the bifurcation of the Biot slow wave in a porous medium, WIAS, Preprint 738 (§002).

2 WIAS-Preprints are easily available from the webpage http://www.wias-berlin.de/publications/preprints as pdf- or ps-files.



