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Abstract

The existence and propagation of the surface waves at a vacuum/porous medium interface are investigated i
frequency range. Two types of surface waves are shown to be possible: the generalized Rayleigh wave, which always
the Stoneley wave, which exists for a limited range of wave numbers. Moreover, within thek-domain of existence the Stonele
wave cannot appear for certain values of elastic parameters of the solid phase. The bifurcation behavior of both the
wave and the Biot (P2) bulk wave, depending on the wave number, is revealed. The asymptotic formulas for the phase
of the surface waves are derived.To cite this article: I. Edelman, C. R. Mecanique 332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur l’existence des ondes de surface basse fréquence en milieux poreux. La nature et la propagation des ondes de sur
engendrées par la surface libre d’un milieu poreux sont étudiées en basse fréquence : nous mettons en évidence
d’ondes de surface : l’onde de Rayleigh et l’onde de Stoneley. Cette dernière existe pour une gamme limitée de
d’onde. Le comportement de bifurcation de l’onde de Stoneley et de l’onde lente de Biot (P2) dépendant du nombre d
mis en évidence. Il est aussi prouvé qu’à l’intérieur du domaine d’existence du nombre d’onde, l’onde de Stoneley ne
apparaître pour certaines valeurs de paramètres élastiques de la phase solide. Les formules asymptotiques des vites
des ondes de surface sont également présentées.Pour citer cet article : I. Edelman, C. R. Mecanique 332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Lord Rayleigh discovered that at a free interface of an isotropic elastic half-space there is only one surfa
– the Rayleigh wave [1]. This wave is a nondispersive plane inhomogeneous wave, undamped in its dire
propagation along the surface, and damped normal to the boundary. At a solid-liquid interface two types of
waves may exist: the true Stoneley surface wave [2,3], propagating parallel to the boundary without atte
and being exponentially damped in both directions away from the interface; its velocity is lower than all th
velocities in the solid and in the liquid, and the generalized Rayleigh wave with a velocity higher than th
velocity in the fluid; it is attenuated along the propagation direction by ‘leaking’ energy into the fluid [3
many years, the analysis of surface waves has been widely developed. However, very few studies have d
a poroelastic solid (details of the current state of art can be found in [4,5]). These works are based on
frequency limit of the classical Biot model for fluid-saturated porous medium [6]. The model describes thre
waves in an unbounded fluid-saturated medium: shear (S), fast longitudinal (P1), and slow longitudina
the Biot) waves. The shear wave and the longitudinal wave of the first kind (P1) are similar to the wave
ordinary single phase, isotropic elastic medium. Biot found that in addition to the usual elastic waves ther
longitudinal wave of the second kind (P2) which is propagatory at high frequencies. It is obvious that due
presence of the P2 wave in a saturated porous medium, the number and properties of surface waves at in
porous solid in contrast to interfaces of elastic solid should be different.

The focus of this work is on the research of the existence and asymptotic behavior of the surface mod
free interface of a porous medium in the low frequency range. The asymptotic analysis presented in the
based on the mathematical model of saturated poroelastic materials, proposed in [7]. As in the classical Bio
it describes three bulk waves in an unbounded fluid-saturated medium (see [8] for the comparison of the
The existence of two surface modes are proven to be possible: the true Stoneley wave and the generalized
wave. The behavior of the surface modes depend crucially on the properties of the bulk waves. In the high fr
range there are not peculiarities in propagation of both bulk and surface waves: the velocities of bulk wa
almost constant and the true Stoneley and the generalized Rayleigh waves spread with speeds somewha
those of P2 and shear waves, respectively [9,5]. However, in the low frequency range the Biot slow wav
always propagatory: it is fully attenuated below some critical wave numberkcr which depends on the permeabili
of the media and viscosity of the fluid [10,8]. This critical wave number is the bifurcation point, above whi
P2 wave begins to propagate. Because of this complicated behavior of the P2 wave, the properties of low-f
surface modes are different in comparison with the high frequency range. In the low frequency range, simil
P2 wave, the Stoneley surface mode possesses a bifurcation in the vicinity ofkcr. Moreover, within thek-domain
of existence, the Stoneley wave cannot appear for certain values of elastic parameters of the solid phase. A
exists the generalized Rayleigh wave, which propagates almost without attenuation.

In should be noted that we investigate the propagation of the acoustic bulk waves through an infinite
medium in the absence of external forces. In this case one must set the wave numberk to be real and define th
frequencyω = ω(k), which can be complex, as a solution of the corresponding dispersion equation, i.e., w
the initial value problem.

2. The mathematical model

Let an infinite spaceΩ be occupied by a saturated porous medium. In dimensionless variables the b
equations describing the porous two-phase medium has the following general form (x ∈ Ω, t ∈ [0, T ]) [7,5]:

Mass conservation equations

∂ρF /∂t + div
(
ρF vF

)= 0, ∂ρS/∂t + div
(
ρSvS

)= 0 (1)
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Here,ρ is the mass density,v is the velocity vector and indicesF andS indicate fluid or solid phases, respective
The partial mass densities of the solid and fluid phasesρS andρF are connected with the true mass densitiesρSR

andρFR by the relations:ρS = (1− n)ρSR, ρF = nρFR, wheren denotes the porosity.
Momentum conservation equations

ρF
[
∂/∂t + (

vFj , ∂/∂xj
)]
vFi − ∂T F

ij /∂xj + π
(
vFi − vSi

)= 0 (2)

ρS
[
∂/∂t + (

vSj , ∂/∂xj
)]
vSi − ∂T S

ij /∂xj − π
(
vFi − vSi

)= 0 (3)

HereTF andTS are the partial stress tensors andπ = n0µ
F /K, wheren0 is the initial value of porosity,µF is the

viscosity of a liquid,K is the permeability of a porous medium.
Balance equation of porosity

∂n/∂t + (
vSi , ∂/∂xi

)
n + n0 div

(
vF − vS

)= −(n− n0) (4)

Constitutive relations for linear poroelastic materials

TF = −pF 1 − β(n− n0)1, pF = pF
0 + κ

(
ρF − ρF

0

)
(5)

TS = TS
0 + λS div uS1 + 2µS symgraduS + β(n− n0)1 (6)

HerepF is the pore pressure;pF
0 andρF

0 are the initial values of pore pressure and fluid mass density, respect
κ is the constant material parameter;β is the coupling coefficient of the components;TS

0 is a constant referenc
value of the partial stress tensor in the skeleton;λS andµS are the Lamé constants;uS is the displacement vecto
for the solid phase:vS = ∂uS/∂t .

3. Bifurcation of the Biot slow wave at low frequencies

Prior to exploring the existence of the surface modes, let us examine the propagation of the bulk waves
an unbounded fluid-filled porous medium. We focus on the Biot slow wave. To investigate the propagatio
longitudinal waves it suffices to study the 1D problem. Consider the propagation of the harmonic waves
frequency isω and wave number isk. Following standard procedure one obtains the dispersion equation [10

r
(
ω2 − c2

f k
2)(ω2 − k2)+ iωπ

(
(1+ r)ω2 − k2(1+ rc2

f

))= 0 (7)

wherer = ρF
0 /ρS

0 andcf = √
κ/

√
(λS + 2µS)/ρS

0 . If k is sufficiently large (high frequency range), the root of (

corresponding to the P2 wave, has the form (note that belowω̃ = ω/k andk̃ = k/π ):

ω̃P2 = ±cf − i

2r

1

k̃
− 1− c2

f (1+ 4r)

8r2(1− c2
f )(±cf )

1

k̃2
+ O

(
1

k̃3

)
(8)

It defines the velocity and attenuation of the forward- and backward-directed P2 waves. Ifk is small enough (low
frequency range), one obtains for the forward- and backward-directed P2 waves, respectively:

ω̃
f

P2 = −i
rc2

f

1+ rc2
f

k̃ − i
r3c4

f (1+ rc4
f )

(1+ rc2
f )

4
k̃3 + O

(
k̃4), ω̃b

P2 = −i
1+ r

r

1

k̃
+ i

r(r + cf )

(1+ r)2
k̃ + O

(
k̃2) (9)

The expansions (9) consist of the imaginary terms only, i.e., the phase velocity of the P2 wave equals z
the wave is fully attenuated. However, the asymptotics (9) are valid only if the wave numberk is less then som
critical valuekcr: kcr is the bifurcation point in a small neighborhood of which the corresponding solutio



46 I. Edelman / C. R. Mecanique 332 (2004) 43–49

evaluated

re

small
m

the
hysical

the

ccupies

rized
al stress
Fig. 1. Velocity of the P2 wave (left-hand side) and velocities of the Stoneley (dashed line) and P2 (solid line) waves (right-hand side),
in physical variables:kcr ≈ 70.22 m−1 (water-saturated sandstone [8]).

equation (7) splits into several branches. The critical wave numberkcr and the pertinent critical frequency a
defined asymptotically:

kcr ≈ cf
(
1+ 1/

(
2rc2

f

))
π, ωcr = −iπΩcr, Ωcr ≈ 1/(2r)+ 2c2

f

(
1+ 3rc2

f − 2c2
f

)
(10)

If k > kcr, then the P2 mode becomes propagatory. For any small parameterε and wave numberk = kcr(1+ε2k2)+
πO(ε3) the asymptotic expansion for its frequency has the form:

ωP2 = ωcr + εω1 + πO
(
ε2) ω1 = 2kcr

√
k2/A (11)

A= 1+ c2
f

c2
f

+ 1− c2
f

c2
f g(Ωcr)

√
g(Ωcr)

(−r3(1− c2
f

)3
Ω3

cr + 3r2(1− c2
f

)2(
1− rc2

f

)
Ω2

cr

− 3r
(
1− c2

f

)(
1+ r2c4

f

)
Ωcr +

(
1− rc2

f

)(
1+ rc2

f

)2)
> 0 (12)

g(Ω) = Ω2r2(1− c2
f

)2 − 2rΩ
(
1− c2

f

)(
1− rc2

f

)+ (
1+ rc2

f

)2
. (13)

Thus, the velocity of the forward-directed P2 wave in the low frequency range (more precisely, in a
neighborhood of the bifurcation point) equals Re(ωP2)/k. The bifurcation point describes the transition fro
the low to high frequency regimes of the propagation of the P2 mode. The asymptotic formula(10)1 demonstrates
thatkcr is directly proportional to the parameterπ and, consequently, the Biot wave behavior is dominated by
permeability of a medium. In Fig. 1 (left-hand side) the phase velocity of the P2 wave is evaluated in p
variables for water-saturated sandstone (see example in [8]).

4. Surface waves

Consider two semi-infinite spaces,Ω− andΩ+, having a common interfaceΓ . Let the regionΩ− be occupied
by a saturated porous medium and the regionΩ+ be occupied by the vacuum. System (1)–(4) describes
porous medium (x ∈ Ω−, t ∈ [0, T ]). Further, we linearize (1)–(4) about some equilibrium stateρF = ρF

0 , ρS =
ρS

0 , vF = 0, vS = 0, n = n0 and introduce the displacement vector for the fluid phaseuF . We investigate 2D
problem (xy plane) of the propagation of the surface waves along an interface of a porous medium, which o
the semi-infinite spacey > 0 (regionΩ−) and is bounded by the vacuum, which fills the semi-infinite spacey < 0
(regionΩ+). On the interfacey = 0, separating the porous medium and the vacuum, the following linea
boundary conditions have to be satisfied: the relative normal velocity must be equal to zero and the tot
vector must vanish:
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uF

2 − uS
2

)
/∂ t|y=0 = 0,

(
∂uS

1/∂ y + ∂uS
2/∂ x

)|y=0 = 0 (14)(
λS div uS + 2µS∂uS

2/∂ y − κ
(
ρF − ρF

0

))|y=0 = 0 (15)

Our goal is to prove that the boundary value problem (1)–(4), (15) and (16) has solutions in the form of
waves, i.e., solutions which decrease sufficiently fast as|y| → ∞. For this purpose we investigate the propaga
of a harmonic wave whose wave number isk ∈ R

1, frequency isω = ω(k), and whose amplitude depends ony.
Thus, Re(ω/k) defines the phase velocity of waves, while Im(ω) defines the attenuation.

A solution in the regionΩ− is sought in the following form:

uF = gradϕF + rotΨ F , uS = gradϕS + rotΨ S (16)

whereΨ F = (0,0,ψF ), Ψ S = (0,0,ψS) and

ϕF = AF(y)exp
(
i(kx − ωt)

)
, ϕS = AS(y)exp

(
i(kx −ωt)

)
(17)

ψF = BF (y)exp
(
i(kx −ωt)

)
, ψS = BS(y)exp

(
i(kx − ωt)

)
(18)

ρF − ρF
0 = AF

ρ (y)exp
(
i(kx − ωt)

)
, ρS − ρS

0 = AS
ρ(y)exp

(
i(kx − ωt)

)
(19)

n− n0 = A∆ exp
(
i(kx − ωt)

)
(20)

For the unknown amplitudesAF ,AS , andBS one gets (for the others one obtains algebraic relations):(
AF

AS

)
= C1

(
RF

1

RS
1

)
exp(−γ1y)+ C2

(
RF

2

RS
2

)
exp(−γ2y) (21)

BS = Cs exp(−γsy), γs =
√
k2 − ω2

c2
s

+ iπω2r

c2
s (ωr + iπ)

, cs =
√

µS

λS + 2µS
(22)

It should be emphasized that we are interested in the solutions in the form of surface waves, i.e., in the s
which attenuate withy. Thus, the solution (21), (22) bounded iny requires:

Reγs > 0, Reγj > 0, j = 1,2 (23)

Radicalsγj and vectors(RF
j ,RS

j )
T , j = 1,2, are defined from the construction of the asymptotic solution and

different structure in the high and low frequency ranges. Substituting (21), (22) into the boundary conditio
(15) one gets the system of equations forC1, C2, Cs . Requiring that the determinant of this system must va
yields the dispersion equation. Next consider two limit cases:

(1) |k| � 1, i.e., short waves or high frequency range. In this case [9,5]

γ̃1 = γ1/|k| =
√

1− ω̃2/c2
f , γ̃2 = γ2/|k| =

√
1− ω̃2, γ̃s = γs/|k| =

√
1− ω̃2/c2

s , ω̃ = ω/k

Also, (RF
1 ,RS

1 ) = (1,0), (RF
2 ,RS

2 ) = (0,1). The corresponding dispersion equation has two roots. One of
defines the true Stoneley surface wave, which propagates almost without attenuation. Its speed is les
velocities of all bulk waves in a porous medium and has the order O(cf ). Another one corresponds to th
generalized (leaky) Rayleigh wave. Its velocity is a bit bigger than that one of the classical Rayleigh wa
it attenuates while propagating. A part of its energy is absorbed by the P2 bulk wave.

(2) |k| � 1, i.e., long waves or low frequency range. In this case

γ̃1 =
√√√√1− i

ω̃

k̃

(
1+ 1

rc2
f

)
− ω̃2

c2
f

1+ rc4
f

1+ rc2
f

+ O
(√

k̃
)
,

(
RF

1
RS

1

)
=
(

1
−rc2

f

)(
1+ k̃ + O

(
k̃2)) (24)

γ̃2 =
√

1− ω̃2 1+ r

1+ rc2
f

+ O
(√

k̃
)
,

(
RF

2
RS

2

)
=
(

1
1

)(
1+ k̃ + O

(
k̃2)) (25)
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Remark 1. The expansions (25) are not valid in a neighborhood of the bifurcation pointkcr.

In the low frequency range the dispersion equation has two approximations depending on the region
numbers. First consider the regionk � kcr, where the Biot bulk wave does not propagate. One can prove, th
this region the dispersion equation has a unique root, corresponding to the generalized Rayleigh surface
asymptotic expansion has the form:

ω̃R′ = cR + εΩ1 + O
(
ε2) (26)

wherecR is the speed of the classical Rayleigh wave in an elastic half-space,ε ≡ r, andΩ1 is defined by

Ω1
PR(ω̃)

dω̃

∣∣∣∣
ω̃=cR

=
(

1− c2
R

2c2
s

)(
3c2

R − 2c2
s c

2
f

)+
√

1− c2
R

√
1− c2

R/c
2
s

(
1− c2

R

c2
s − c2

R

− c2
R − c2

f

1− c2
R

)
PR(ω̃) =

(
2− ω̃2

c2
s

)2

− 4
√

1− ω̃2
√

1− ω̃2/c2
s

As is easily verified, the provisos (23) are fulfilled for (26). Thereby, the solution (21), (22) indeed has the st
of a surface wave. It follows from (26) that the generalized Rayleigh wave propagates almost without atte
in the regionk � kcr.

Next consider the surface modes which can appear in a small neighborhood of the bifurcation pointkcr, where
k > kcr and the P2 bulk wave is propagatory. One can prove that in this region the dispersion equation has o
root, which corresponds to the Stoneley surface mode. The bifurcation behavior of the Biot slow wave dicta
the Stoneley wave must also possess a bifurcation. Indeed, this surface mode exists for a limited range
numbers. For the wave numberk = π

2rcf
(1+ ε2k2 + · · ·) the asymptotic expansion of the root, which defines

Stoneley surface mode, has the form:

ω̃St = −iε +√
2(k2 − 2r) ε2 + O

(
ε3) (27)

whereε ≡ cf . Obviously, RẽωSt �= 0 if the expression under the square root in (27) is positive. Thus, similar t
P2 wave, the Stoneley mode has a bifurcation behavior in a neighborhood of the point

kcr ≈ π

2rcf

(
1+ c2

f k2
)
, wherek2 = 2r (28)

Therefore, ifk2 � 2r, i.e.,k � kcr, then the Stoneley wave does not propagate: it is fully attenuated. Otherw
k2 > 2r, i.e.,k > kcr, it begins to emerge with a velocity very close to the speed of the P2 wave. Fig. 1 (righ
side) shows the velocities of the P2 and of the Stoneley waves in water-saturated sandstone as functio
wave number. One sees that in the vicinity ofkcr the speed of the Stoneley wavecSt = Reω̃St is very close to,
but somewhat less than, the speedcP2 of the P2 wave. Further deviation ofcSt from cP2 results from the fact tha
only one term of the asymptotic expansion tocSt was taken into account (see (27)). Unlike what occurs in the
frequency limit [9,5], the Stoneley surface mode is strongly attenuated at low frequencies (leaky mode).

Let us verify whether the conditions (23) hold true for (27), i.e., whether the solution (21), (22) indeed h
form of a surface wave. It is easily seen that Reγs > 0 and Reγ2 > 0. Solution forγ̃1 in a vicinity of kcr has the
form γ̃1 = Γ1ε

2 + Γ2ε
3 + · · ·, where

Γ1 = r(4c2
s − 1)(2(1+ 2r) − 1/(2c2

s )(1− 2r))

(1+ 2r)(1− c2
s )

(29)

For example, ifr = 0.1 (water-saturated sandstone [8]), thenΓ1 < 0 and, consequently, Reγ1 < 0, if 0.41< cs <

0.5. Thereby, the solution (21), (22) is not a surface wave and at low frequencies the Stoneley mode cann
at the free interface of the porous medium if the elastic moduli of its solid skeleton are such that the rati
speeds of the shear and longitudinal wavescs ∈ (0.41,0.5).
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