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Abstract

For the first time, the multi-frame shadow visualization technique coupled with a laser stroboscopic source of light h
used to obtain data on the dynamics of irregularly shaped bodies in the flow behind shock wave. A procedure for det
body acceleration from body trajectory is proposed, which, together with the diagnostic technique used, represents
contactless aerodynamic balance. Drag data for spheres and irregularly shaped bodies in the flow behind shock
Mach number of 0.5 to 1.5 and Reynolds number of 105 are reported.To cite this article: V.M. Boiko, S.V. Poplavski, C. R.
Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

La dynamique des corps de forme irrégulière dans un écoulement derrière une onde de choc. On a utilisé pour la
première fois, la technique de visualisation en ombre multi-repère couplée avec une source de lumière laser strobosco
d’obtenir des données sur la dynamique des corps solides irréguliers plongés dans un écoulement derrière une ond
On propose une procédure originale pour déterminer l’accélération du corps à partir de sa trajectoire. Cette procédu
technique du diagnostic utilisée, représente une sorte de balance aérodynamique évitant le contact. Les données sur
des sphères et des corps de forme irrégulière ont été obtenues pour les écoulements derrière les ondes de choc corres
nombres de Mach entre 0,5 et 1,5, et pour le nombre de Reynolds égal à 105. Pour citer cet article : V.M. Boiko, S.V. Poplavski,
C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Shock waves, the inevitable consequence of all explosion processes, display in two-phase media som
features. For instance, the momentum transfer between the phases in the course of phase velocity rel

E-mail address:s.poplav@itam.nsc.ru (S.V. Poplavski).
1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2003.11.008
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directly related with the aerodynamic properties of condensed-phase particles. The question in which me
particle shape affects these properties is especially topical for phytogenic and mineral organic dusts si
particles are shaped as irregular crystals with a random number and shape of crystal faces. No experim
on the drag of such particles were published in the literature. In reported numerical studies of two-phas
particles were assumed to be smooth spheres. The question to which extent this approximation is ad
particular actual cases has not so far been addressed, nor did this question even arose since even fo
particles no drag data for unsteady-flow conditions were reported.

In this connection, it is of interest to examine the dynamics of irregularly shaped bodies in the flow behind
wave in the regimes characteristic of dust explosions, to determine their drag coefficient for a few mode
taken as an example, and, comparing their dynamics with that of sphere, to reveal the effect of particle s
their drag.

2. Experimental

In the present study, the dynamics of irregularly shaped particles was examined by the example of a 5×5×5 mm
cube. The choice of cubic shape (with its distinct edges and faces, typical of organic-dust particles) was m
by the desire to have reproducible experimental conditions considering body shape. Nonetheless, e
a simple body displays a substantial from-test-to-test scatter in its dynamics depending on its initial orie
with respect to the direction of the flow. Fig. 1 shows two sets of pictures (the frames with even numbers
at a time interval of 80 µsec) sampled from two picture sequences taken under identical shock-tube expe
conditions. In frames No 2, the traveling shock-wave front is clearly seen; both this front and the shock-i
flow move from left to right, causing the free bodies, a cube and a sphere, move in the same direction.
initial stationary position, the bodies were spaced one and a half of the body size apart along the viewing d
in order to diminish their influence on each other.

In Fig. 1(a), the cube is oriented normally to the flow with one of its faces; nevertheless, in this ca
acceleration turned out to be lower compared to the cases in which the cube was oriented to the flow with o
edges or one of its corners (Fig. 1(b)). The latter can be attributed to the fact that, in tests with various orien
the aerodynamic force depended in a greater extent on the midsection area of the body than on its aer

Fig. 1. Comparative dynamics of a cube and a sphere of identical sizes and densities for various orientations of the cube to the dire
flow behind shock wave.
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resistance. To run a few steps forward, note that the drag coefficient of the cube in case A (Cx = 1.75) was indeed
greater than in case B(Cx = 1.5); however, the midsection areas in the two cases differed much greater,
factor

√
3. Thus, the geometrical factor related with the rotation of irregularly shaped bodies in the flow

a greater influence on their translational motion than the aerodynamic one (for a cube, the correspondin
≈ 3/2). The rotation of a body in a flow is observed more frequently than the specific behavior the cube di
in case A; in the majority of cases, this rotation leads to establishment of some stable orientation of body
to the flow velocity vector. Numerous observations showed that, for a cube, the most stable orientation is
which the flow washes the cube approaching it parallel to its large diagonal.

Considering the substantial influence of initial orientation of the cube on its dynamics in the flow and w
aim to rule out possible influence of the second body, we performed a series of tests with isolated irregula
Under conditions typical of the early development stage of dust explosions, namely, under unsteady-flo
number 0.5 to 1.5, we examined the drag coefficientCx of freely accelerating irregular bodies; similar experime
with spheres were performed to obtain reference data for the same experimental conditions. In the prese
the following determination procedure forCx was used. By definition, the drag coefficientCx of a body is the ratio
between the aerodynamic forceFa and the force due to the dynamic pressure acting upon the body mids
areas: Cx = Fa/(s[ρ(u − V )2/2]) whereρ is the gas density,u andV are the flow and free body velocity. If th
body massm is known, then, instead of carrying out force measurements, it is possible to calculate the coe
Cx from the accelerationA of the free body:

Cx = 2mA

sρ(u − V )2 = 2m

sρ

1

L
(1)

whereL = (u − V )2/A is a quantity, having the dimensions of length, to be experimentally determined fro
flow velocity and the mean accelerationA of the body. This acceleration can be found with the help of multi-fra
registration of body trajectories, taking into account that acceleration is doubly differentiated displaceme
approach became possible due to implementation of the multiple exposure shadowgraph technique cou
a laser stroboscopic source of light and followed by subsequent processing of gained data on the body t
on a personal computer with the help of a special software complex.

Fitting the doubly differentiated data on the body trajectory with an appropriate function in combinatio
the diagnostics used yields the same result as an aerodynamic balance but, in contrast to the latter case,
method is contactless, Fig. 2 shows a typical plot of the acceleration of a particle freely accelerating in a flow
shock wave. The points in this graph were obtained by double numerical differentiation of the displacement
The fluctuations of the acceleration (and, hence, the fluctuations of the aerodynamic force) at a chara
frequency of 5× 103 Hz seem to be related with the separation-zone size pulsations under the unstea
regime around particles experiencing an acceleration of∼ 105 m/sec2.

2.1. Early stage of flow and free-particle velocity relaxation

The revealed fluctuations of the free-body acceleration in the flow, the fact that the number of available p
usually limited, and problems that arise in numerical differentiation of a function defined, with some experi
error, at a discrete number of points in some cases do not make it possible to find the acceleration
satisfactory accuracy. For such cases, methods of treating initial datasets or their not-higher-than-first de
were developed. This approach yields a new expression for the particle drag in terms of velocity rel
parameters. The computational part of this algorithm is based on the possibility of fitting the experimen
on particle displacementSi , known at momentsti , with some appropriate functionS(t). The same approach ca
be applied to the derivative dataset on particle velocityVi = (Si+1 − Si)/(ti+1 − ti) to find the value ofλ (and,
with it, Cx) without measuring the acceleration. The analytical form of the displacement functionS(t) and velocity
functionV (t) for the early stage of velocity relaxation, needed for this procedure, is given below.
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Fig. 2. Acceleration of a particle instantaneously introduced
into the flow behind shock wave. The predicted acceleration
function (see text) is shown with the dashed line.

Fig. 3. The drag coefficientsCx of a cube and a sphere in the
flow behind shock wave: 1 and 2 – the sphere and the cube
whose motion is influenced by the shock-wave front; 3 and 4
– the sphere and the cube not experiencing the action of the
shock-wave front; curve – the coefficientCx of a sphere in a
steady-state flow withRe∼ 105 [1].

At high Reynolds numbers, the equation of motion of a free body instantaneously introduced into a flow

form mdV
dt

= Cxs
ρ(u−V )2

2 (V = 0 at t = 0).

Under an assumption about constancy ofCx , after gathering all fixed parameters in a single parameter

λ = 2m

sρCx

(2)

the equation of motion reduces todV
dt

= 1
λ
(u − V )2 (V = 0 at t = 0). This equation is satisfied by the partic

velocity function

V (t) = u

(
1− 1

1+ t/τ

)
(whereτ = λ/u) (3)

which, after integration and differentiation, gives respectively the displacement function

S(t) = λ

[
t

τ
− ln

(
1+ t

τ

)]
(4)

and the acceleration function

A(t) = u

τ

1

(1+ t/τ )2 (5)

We used functions (3) and (4) to fit the experimental data on particle dynamics at the early stage of
relaxation. The values ofλ and τ are to be found from the best-fit conditions, using the least squares m
or more advanced algorithms. Apparently, if the parameterλ is already known, then the coefficientCx can be
calculated from formula (2):

Cx = 2m

sρλ
(6)
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The above formula definesCx in terms of the velocity relaxation parameters. Formally, definition (6) coinc
with (1); together with kinematic functions (3–5), it enables determination ofλ not from the body acceleration b
as the dimensional coefficient in the displacement function (4). According to the least squares method, in
of function (4) the sought value ofλ (if the velocityu is known) represents a root of the equation

∑
i

{
Si −

[
uti − λ ln

(
1+ u

λ
ti

)]}[
tiu/λ

1+ (u/λ)ti
− ln

(
1+ u

λ
ti

)]
= 0 (7)

If the problem involves other unknown parameters (for instance, the flow velocityu), it is possible to obtain
and solve a system of similar differential equations involving partial derivatives with respect to corresp
parameters (for instance, with respect tou):




n∑
i

[
Si − S(ti;u,λ)

]∂S(ti;u,λ)

∂u
= 0

n∑
i

[
Si − S(ti;u,λ)

]∂S(ti;u,λ)

∂λ
= 0

(8)

Since the particle drag may vary in the course of particle acceleration, the found value ofλ should be considere
as a time-mean value, as if it was obtained by time averaging over the observation period. The fewer the
of points sampled from the available data array, i.e., the shorter the track of the particle, the more lo
measurement is, but less representative is the statistics. Here we observe the indeterminancy inherent to
of-flight methods of measuring velocity of moving particles: the higher the spatial resolution of a metho
lower its accuracy. Note, finally, that Eq. (7) has, as a rule, two or more solutions. In some approximation,
solution can be found considering the physical conditions of the experiment. On the other hand, there exis
general, totally formal approach, based on dealing exclusively with the experimental data on particle tra
This approach is described below.

2.2. Approximate solution

For quick engineering calculations, and also for a preliminary estimation of the domain to which the solu
Eq. (7) falls, we found an approximate analytical formula for the parameterλ. This formula allows one to calculat
the coefficientCx directly from the dataset(Si , ti) without solving the transcendent Eq. (7) or a system of equa
similar to system (8). This approach is especially useful in solving multi-parametric problems having two o
solutions. Since we consider the early stage of velocity relaxation (t/τ < 1), the following expansion is valid
ln(1+ t

τ
) ∼= t

τ
− 1

2( t
τ
)2 + 1

3( t
τ
)3 − · · · . Then, we can replace the displacement function (6) with an approxi

one,

S(t;u, τ) = 1

2

u

τ
t2 − 1

3

u

τ2 t3 + 1

4

u

τ3 t4 − · · · (9)

Introducing new parametersx1 = u/2τ, x2 = u/3τ2, x3 = u/4τ3, . . . , and inserting into (8) the new fittin
function S∗(t;x1, x2, . . . , xm) = x1t

2 − x2t
3 + · · · ± xmtm+1 (here, the signs ‘+’ and ‘−’ should be taken

respectively for odd and evenm’s; m < n is the number of points in the sampled dataset), we obtain a sy
of m linear equations. We arrive at nothing else than at the problem on finding the coefficients of alte
polynomial (9) with which this polynomial fits the experimental dataset(Si, ti ) with a minimal root-mean-squar
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deviation. Not giving here the cumbersome general consideration, we restrict ourselves to presenting, b
example, the case of two expansion terms:



x1

n∑
i

t4
i − x2

n∑
i

t5
i =

n∑
i

Si t
2
i

x1

n∑
i

t5
i − x2

n∑
i

t6
i =

n∑
i

Si t
3
i

The solution of this system, like that of linear systems of higher orders, can be expressed algeb
through some statistical sums of initial experimental data arrays. For the above system, for instance, w
x1 = (c + bx2)/a, x2 = (f − bc/a)(b2/a − e) wherea = ∑n

i t4
i , b = ∑n

i t5
i , c = ∑n

i Si t
2
i , e = ∑n

i t6
i , and

f = ∑n
i Si t

3
i ; from here, the approximate values of relaxation parameters can be expressed through the po

coefficients:

τ ∗ = 2

3

x1

x2
, λ∗ = 8

9

x3
1

x2
2

(10)

If tn/τ
∗ � 1, then these values can be used as final ones for determiningCx . For example in the experiments

Fig. 1 the observation time istn ∼ 0.5 ms andτ ∼ 1.3 ms at the number of the framesn = 12–14. Then more
members in the alternating polynomial (9) and less frames have to be used for this approach.

2.3. Two-parametric problem

In a number of cases, the flow velocityu is unknown, and there arises a necessity in determining it (or in fin
its more accurate value), along with the relaxation parameters, by statistically treating data on particle tra
In the above method, the approximate flow velocityu∗ is already known sinceu∗ = λ∗/τ ∗. In a general case, on
should solve, instead of Eq. (7), system (8) with some particular displacement function. It is known, howev
in solving a two-parametric problem, requirements imposed on the accuracy of the initial data array becom
more stringent. For this reason, along with the measures to be taken to improve the measurement accu
generally accepted to use the approach that makes it possible to pass over from solving the two-parame
problem to independent determination of the two parameters explicitly given by algebraic expressions (3)–
approach is based on the fact that each of the sought parameters enters the respective fitting function as a
that can be eliminated by passing over from the data vectorFi to the matrixFij = Fi/Fj , i < j . Then, it follows
from (3) that the relaxation parameterτ can be independently obtained by statistically treating the dataset fo
by the elements of the matrix

τij = tj
1− Vij

Vij tji − 1
(11)

whereVij = Vi/Vj and tj i = tj /ti . Here,Vi is a new dataset to be obtained by numerical differentiation of
initial displacement data array. By eliminating, in a similar manner, the relaxation parameterλ right in the equation
of motion and substituting, in this equation, the left-hand side with the numerical value of the acceleraai

obtained by differentiating the datasetVi , one can find the flow velocity, averaging the set of elements in the m

uij = Vj

√
aij − Vij√
aij − 1

(12)

whereaij = ai/aj . Thus, if one wants to determine the relaxation parameters from the initial displacement d
then it is necessary to solve the two-parametric approximation problem; from the two derivatives of this
the parameters can be found independently. An important point is that in both cases the proposed approa
one to obtain, with satisfactory accuracy, an estimate of the relaxation parameterλ = uτ for a given data arraySi
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Shock
if, for this data array, the inequalitytn/τ � 1 is satisfied. Otherwise, if the relaxation time constantτ is comparable
with the observation timetn, then it suffices to use a subsetS1, . . . , Sm meeting the conditiontm/τ � 1. Also, it is
of importance that the experimental scheme itself and the physical pattern of the particle interaction with
be consistent with the equation of motion (2). A number of problems require using other approaches al
the stage of writing equation of motion and the velocity function deduced from this equation. For a displa
function other than (3), Eq. (7) will acquire a different form, the series expansion (9) and the approximate re
parameters (10) deduced from this expansion will no longer be suitable, and the passage from vector da
to their matrix representation (11) and (12) will differ from that described above; nevertheless, the above m
will remain in force and ready for application to displacement, velocity, and acceleration functions of any fo

3. Results and discussion

The above methods of treating experimental data on the displacement of free bodies in the flow behin
waves has allowed us to determine either the mean drag over the whole observation time (in this case, t
available dataset was used) or the local (drawn from a sampled subset of the initial dataset) drag (b). For
points 1 and 2 in Fig. 3 were obtained from the whole data array, including the early stage of velocity rela
when the shock-wave front substantially affected the body acceleration; points 3 and 4 in this figure were o
for a later stage.

For the cube, it is found that there exists its stable orientation with respect to the vector of flow veloc
which the moment of the aerodynamic force with respect to the center of mass of the cube is zero. This
that the center of mass of the body and the center of the aerodynamic force either coincide or lie, in the i
succession, on a straight line coincident with the vector of this force. The cube acquires its stable orien
a time interval of first 200–400 µsec after the body starts experiencing the action of the flow, and the re
angular velocity the body displays during this process may run into 3000 rpm. The stable orientation of the
the flow corresponds to its maximum possible midsection area.

4. Conclusions

For the first time, the multi-frame shadow visualization technique coupled with a laser stroboscopic so
light has been used to obtain data on the dynamics of irregularly shaped bodies freely accelerating in a flow
shock wave. A fitting procedure for doubly differentiated displacement data array is proposed, which, toget
the diagnostic technique used, represents a kind of contactless aerodynamic balance. Data on the drag
and irregularly shaped bodies at the early stage of velocity relaxation in the flow behind shock wave are o
The drag of an irregularly shaped body and the drag of a sphere under such conditions are shown to be
equal, two to three times exceeding the steady drag of the sphere.
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