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Abstract

For the first time, the multi-frame shadow visualization technique coupled with a laser stroboscopic source of light has been
used to obtain data on the dynamics of irregularly shaped bodies in the flow behind shock wave. A procedure for determining
body acceleration from body trajectory is proposed, which, together with the diagnostic technique used, represents a kind of
contactless aerodynamic balance. Drag data for spheres and irregularly shaped bodies in the flow behind shock wave with
Mach number of 0.5 to 1.5 and Reynolds number of &fe reportedTo cite this article: V.M. Boiko, S.V. Poplavski, C. R.

Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

La dynamique des corps de forme irréguliére dans un écoulement derriere une onde de choc. On a utilisé pour la
premiére fois, la technique de visualisation en ombre multi-repére couplée avec une source de lumiére laser stroboscopique afin
d’obtenir des données sur la dynamique des corps solides irréguliers plongés dans un écoulement derriere une onde de choc.
On propose une procédure originale pour déterminer I'accélération du corps a partir de sa trajectoire. Cette procédure, avec la
technique du diagnostic utilisée, représente une sorte de balance aérodynamique évitant le contact. Les données sur la tirée pour
des spheres et des corps de forme irréguliére ont été obtenues pour les écoulements derriere les ondes de choc correspondant aux
nombres de Mach entre 0,5 et 1,5, et pour le nombre de Reynolds égEaIFa)GOciter cet article: V.M. Boiko, S.V. Poplavski,

C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Shock waves, the inevitable consequence of all explosion processes, display in two-phase media some specific
features. For instance, the momentum transfer between the phases in the course of phase velocity relaxation is
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directly related with the aerodynamic properties of condensed-phase particles. The question in which measure the
particle shape affects these properties is especially topical for phytogenic and mineral organic dusts since their
particles are shaped as irregular crystals with a random number and shape of crystal faces. No experimental data
on the drag of such particles were published in the literature. In reported numerical studies of two-phase flows,
particles were assumed to be smooth spheres. The question to which extent this approximation is adequate to
particular actual cases has not so far been addressed, nor did this question even arose since even for spherical
particles no drag data for unsteady-flow conditions were reported.

In this connection, it is of interest to examine the dynamics of irregularly shaped bodies in the flow behind shock
wave in the regimes characteristic of dust explosions, to determine their drag coefficient for a few model bodies
taken as an example, and, comparing their dynamics with that of sphere, to reveal the effect of particle shape on
their drag.

2. Experimental

In the present study, the dynamics of irregularly shaped particles was examined by the exampl&ocf amm
cube. The choice of cubic shape (with its distinct edges and faces, typical of organic-dust particles) was motivated
by the desire to have reproducible experimental conditions considering body shape. Nonetheless, even such
a simple body displays a substantial from-test-to-test scatter in its dynamics depending on its initial orientation
with respect to the direction of the flow. Fig. 1 shows two sets of pictures (the frames with even numbers follows
at a time interval of 80 psec) sampled from two picture sequences taken under identical shock-tube experimental
conditions. In frames No 2, the traveling shock-wave front is clearly seen; both this front and the shock-induced
flow move from left to right, causing the free bodies, a cube and a sphere, move in the same direction. In their
initial stationary position, the bodies were spaced one and a half of the body size apart along the viewing direction
in order to diminish their influence on each other.

In Fig. 1(a), the cube is oriented normally to the flow with one of its faces; nevertheless, in this case, its
acceleration turned out to be lower compared to the cases in which the cube was oriented to the flow with one of its
edges or one of its corners (Fig. 1(b)). The latter can be attributed to the fact that, in tests with various orientations,
the aerodynamic force depended in a greater extent on the midsection area of the body than on its aerodynamic
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Fig. 1. Comparative dynamics of a cube and a sphere of identical sizes and densities for various orientations of the cube to the direction of the
flow behind shock wave.
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resistance. To run a few steps forward, note that the drag coefficient of the cube in @ase-A.{5) was indeed

greater than in case BC, = 1.5); however, the midsection areas in the two cases differed much greater, by the
factor v/3. Thus, the geometrical factor related with the rotation of irregularly shaped bodies in the flow exerts
a greater influence on their translational motion than the aerodynamic one (for a cube, the corresponding ratio is
~ 3/2). The rotation of a body in a flow is observed more frequently than the specific behavior the cube displayed
in case A; in the majority of cases, this rotation leads to establishment of some stable orientation of body relative
to the flow velocity vector. Numerous observations showed that, for a cube, the most stable orientation is such in
which the flow washes the cube approaching it parallel to its large diagonal.

Considering the substantial influence of initial orientation of the cube on its dynamics in the flow and with the
aim to rule out possible influence of the second body, we performed a series of tests with isolated irregular bodies.
Under conditions typical of the early development stage of dust explosions, namely, under unsteady-flow Mach
number 0.5 to 1.5, we examined the drag coeffic@&nof freely accelerating irregular bodies; similar experiments
with spheres were performed to obtain reference data for the same experimental conditions. In the present study,
the following determination procedure f6k was used. By definition, the drag coeffici€ht of a body is the ratio
between the aerodynamic forég and the force due to the dynamic pressure acting upon the body midsection
areas: Cy = F,/(s[p(u — V)?/2]) wherep is the gas density; and V are the flow and free body velocity. If the
body massn is known, then, instead of carrying out force measurements, it is possible to calculate the coefficient
C, from the acceleratiod of the free body:

2mA 2m 1
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whereL = (u — V)?/A is a quantity, having the dimensions of length, to be experimentally determined from the
flow velocity and the mean acceleratidrof the body. This acceleration can be found with the help of multi-frame
registration of body trajectories, taking into account that acceleration is doubly differentiated displacement. This
approach became possible due to implementation of the multiple exposure shadowgraph technique coupled with
a laser stroboscopic source of light and followed by subsequent processing of gained data on the body trajectory
on a personal computer with the help of a special software complex.

Fitting the doubly differentiated data on the body trajectory with an appropriate function in combination with
the diagnostics used yields the same result as an aerodynamic balance but, in contrast to the latter case, the former
method is contactless, Fig. 2 shows a typical plot of the acceleration of a particle freely accelerating in a flow behind
shock wave. The points in this graph were obtained by double numerical differentiation of the displacement dataset.
The fluctuations of the acceleration (and, hence, the fluctuations of the aerodynamic force) at a characteristic
frequency of 5x 10° Hz seem to be related with the separation-zone size pulsations under the unsteady flow
regime around particles experiencing an acceleration b® m/sec.

2.1. Early stage of flow and free-patrticle velocity relaxation

The revealed fluctuations of the free-body acceleration in the flow, the fact that the number of available points is
usually limited, and problems that arise in numerical differentiation of a function defined, with some experimental
error, at a discrete number of points in some cases do not make it possible to find the acceleration with a
satisfactory accuracy. For such cases, methods of treating initial datasets or their not-higher-than-first derivatives
were developed. This approach yields a new expression for the particle drag in terms of velocity relaxation
parameters. The computational part of this algorithm is based on the possibility of fitting the experimental data
on particle displacemer$, known at momentsg, with some appropriate functia$z). The same approach can
be applied to the derivative dataset on particle velobjty= (S;+1 — S;)/(ti+1 — t;) to find the value of. (and,
with it, C,) without measuring the acceleration. The analytical form of the displacement fus¢tioand velocity
function V (¢) for the early stage of velocity relaxation, needed for this procedure, is given below.
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Fig. 2. Acceleration of a particle instantaneously introduced
into the flow behind shock wave. The predicted acceleration
function (see text) is shown with the dashed line.
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Fig. 3. The drag coefficient§; of a cube and a sphere in the
flow behind shock wave: 1 and 2 — the sphere and the cube
whose motion is influenced by the shock-wave front; 3 and 4
— the sphere and the cube not experiencing the action of the
shock-wave front; curve — the coefficie@t, of a sphere in a
steady-state flow witlRe~ 10° [1].

At high Reynolds numbers, the equation of motion of a free body instantaneously introduced into a flow has the

2
formm %/ = 5245 (v =0 atr = 0).

Under an assumption about constancy’of after gathering all fixed parameters in a single parameter

2m
A=
spCy

the equation of motion reduces % = %(u — V)2 (Vv =

velocity function

Vi)=u (1 - > (Wheret = A /u)

1+1¢/7

(2)

0 atr = 0). This equation is satisfied by the particle

3)

which, after integration and differentiation, gives respectively the displacement function

S(t) :)»|:£ — In(1+ £>j|
T T

and the acceleration function
u 1

A([) = ;7(14_ t/f)z

(4)

()

We used functions (3) and (4) to fit the experimental data on particle dynamics at the early stage of velocity
relaxation. The values of and r are to be found from the best-fit conditions, using the least squares method
or more advanced algorithms. Apparently, if the paramgtex already known, then the coefficie@t, can be

calculated from formula (2):

2m

Cy=——
* SpA

(6)
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The above formula defings, in terms of the velocity relaxation parameters. Formally, definition (6) coincides
with (1); together with kinematic functions (3-5), it enables determinaticnradt from the body acceleration but
as the dimensional coefficient in the displacement function (4). According to the least squares method, in the case
of function (4) the sought value af (if the velocityu is known) represents a root of the equation

Xi:{&—[uti—kln<1+%ti>]}[%—In(1+%t,->}=o e

If the problem involves other unknown parameters (for instance, the flow velogity is possible to obtain
and solve a system of similar differential equations involving partial derivatives with respect to corresponding
parameters (for instance, with respect:jo
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Since the particle drag may vary in the course of particle acceleration, the found valskaild be considered
as a time-mean value, as if it was obtained by time averaging over the observation period. The fewer the number
of points sampled from the available data array, i.e., the shorter the track of the particle, the more local the
measurement is, but less representative is the statistics. Here we observe the indeterminancy inherent to all time-
of-flight methods of measuring velocity of moving particles: the higher the spatial resolution of a method, the
lower its accuracy. Note, finally, that Eq. (7) has, as a rule, two or more solutions. In some approximation, the true
solution can be found considering the physical conditions of the experiment. On the other hand, there exists a more
general, totally formal approach, based on dealing exclusively with the experimental data on particle trajectory.
This approach is described below.

2.2. Approximate solution

For quick engineering calculations, and also for a preliminary estimation of the domain to which the solution of
Eq. (7) falls, we found an approximate analytical formula for the paramefehis formula allows one to calculate
the coefficienC, directly from the datasé€ts;, ;) without solving the transcendent Eq. (7) or a system of equations
similar to system (8). This approach is especially useful in solving multi-parametric problems having two or more
solutions. Since we consider the early stage of velocity relaxation<£ 1), the following expansion is valid:

InQ+4H=1i- %(%)2 + %(%)3 — ... Then, we can replace the displacement function (6) with an approximate
one,
lu lu lu
Stiu,1)==—12— ==+ - —t*— ... 9
@ u,7) 27 312 +47,'3 ©)
Introducing new parametens = u/2t, x» = u/3t2, x3 =u/473, ..., and inserting into (8) the new fitting

function S*(¢; x1, x2, ..., xu) = x112 — x2t3 4+ -+ + x,"*1 (here, the signs+’ and ‘—’ should be taken
respectively for odd and even’s; m < n is the number of points in the sampled dataset), we obtain a system
of m linear equations. We arrive at nothing else than at the problem on finding the coefficients of alternating
polynomial (9) with which this polynomial fits the experimental datgsets;) with a minimal root-mean-square
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deviation. Not giving here the cumbersome general consideration, we restrict ourselves to presenting, by way of
example, the case of two expansion terms:

n n n
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The solution of this system, like that of linear systems of higher orders, can be expressed algebraically
through some statistical sums of initial experimental data arrays. For the above system, for instance, we have:
x1 = (c+bx2)/a, x2 = (f —bc/a)(b?/a—e) wherea = Y 't} b=Y"112, c =3I 8t? e=Y11tP and
f=X"Ss ti3; from here, the approximate values of relaxation parameters can be expressed through the polynomial
coefficients:

_ 2x1 . 8x3
T 3x N 9x§
If t,/7* <« 1, then these values can be used as final ones for detern@Ringor example in the experiments in

Fig. 1 the observation time ig ~ 0.5 ms andr ~ 1.3 ms at the number of the frames= 12—-14. Then more
members in the alternating polynomial (9) and less frames have to be used for this approach.

*

T (10)

2.3. Two-parametric problem

In a number of cases, the flow velocitys unknown, and there arises a necessity in determining it (or in finding
its more accurate value), along with the relaxation parameters, by statistically treating data on particle trajectory.
In the above method, the approximate flow veloeityis already known since* = A*/t*. In a general case, one
should solve, instead of Eq. (7), system (8) with some particular displacement function. It is known, however, that,
in solving a two-parametric problem, requirements imposed on the accuracy of the initial data array become much
more stringent. For this reason, along with the measures to be taken to improve the measurement accuracy, it is
generally accepted to use the approach that makes it possible to pass over from solving the two-parametric fitting
problem to independent determination of the two parameters explicitly given by algebraic expressions (3)—(5). This
approach is based on the fact that each of the sought parameters enters the respective fitting function as a multiplier
that can be eliminated by passing over from the data veGtéo the matrixF;; = F;/F;, i < j. Then, it follows
from (3) that the relaxation parametecan be independently obtained by statistically treating the dataset formed
by the elements of the matrix

1-V;
tj————
Vijtji =1
whereV;; = V;/V; andt;; =t;/t;. Here,V; is a new dataset to be obtained by numerical differentiation of the
initial displacement data array. By eliminating, in a similar manner, the relaxation paranright in the equation

of motion and substituting, in this equation, the left-hand side with the numerical value of the acceleration
obtained by differentiating the datadét one can find the flow velocity, averaging the set of elements in the matrix

(11)

Tij =

a — Vi
ujj = Vjﬁ (12)
) aij —

wherea;; = a; /a;. Thus, if one wants to determine the relaxation parameters from the initial displacement dataset,
then it is necessary to solve the two-parametric approximation problem; from the two derivatives of this dataset,
the parameters can be found independently. An important point is that in both cases the proposed approach allows
one to obtain, with satisfactory accuracy, an estimate of the relaxation parameter for a given data array;
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if, for this data array, the inequality/t < 1 is satisfied. Otherwise, if the relaxation time constaistcomparable

with the observation time,, then it suffices to use a subs#t . .., S,, meeting the condition,, /t <« 1. Also, itis

of importance that the experimental scheme itself and the physical pattern of the particle interaction with the flow
be consistent with the equation of motion (2). A number of problems require using other approaches already at
the stage of writing equation of motion and the velocity function deduced from this equation. For a displacement
function other than (3), Eq. (7) will acquire a different form, the series expansion (9) and the approximate relaxation
parameters (10) deduced from this expansion will no longer be suitable, and the passage from vector data arrays
to their matrix representation (11) and (12) will differ from that described above; nevertheless, the above methods
will remain in force and ready for application to displacement, velocity, and acceleration functions of any form.

3. Resultsand discussion

The above methods of treating experimental data on the displacement of free bodies in the flow behind shock
waves has allowed us to determine either the mean drag over the whole observation time (in this case, the whole
available dataset was used) or the local (drawn from a sampled subset of the initial dataset) drag (b). For instance,
points 1 and 2 in Fig. 3 were obtained from the whole data array, including the early stage of velocity relaxation,
when the shock-wave front substantially affected the body acceleration; points 3 and 4 in this figure were obtained
for a later stage.

For the cube, it is found that there exists its stable orientation with respect to the vector of flow velocity, for
which the moment of the aerodynamic force with respect to the center of mass of the cube is zero. This implies
that the center of mass of the body and the center of the aerodynamic force either coincide or lie, in the indicated
succession, on a straight line coincident with the vector of this force. The cube acquires its stable orientation in
a time interval of first 200-400 psec after the body starts experiencing the action of the flow, and the registered
angular velocity the body displays during this process may run into 3000 rpm. The stable orientation of the cube in
the flow corresponds to its maximum possible midsection area.

4. Conclusions

For the first time, the multi-frame shadow visualization technique coupled with a laser stroboscopic source of
light has been used to obtain data on the dynamics of irregularly shaped bodies freely accelerating in a flow behind
shock wave. A fitting procedure for doubly differentiated displacement data array is proposed, which, together with
the diagnostic technique used, represents a kind of contactless aerodynamic balance. Data on the drag of spheres
and irregularly shaped bodies at the early stage of velocity relaxation in the flow behind shock wave are obtained.
The drag of an irregularly shaped body and the drag of a sphere under such conditions are shown to be roughly
equal, two to three times exceeding the steady drag of the sphere.
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