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Abstract

The infinite dimensional Riemannian geometry of Riemannian metrics is employed to propose novel objective time d
by means of covariant derivative.To cite this article: Z. Fiala, C. R. Mecanique 332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dérivée temporelle obtenue en utilisant la variété riemannienne des métriques riemanniennes aux cinématiques des
milieux continus. La géometrie riemannienne des métriques riemanniennes, de dimension infinie, est employeé pour
une nouvelle derivée temporelle objective par la biais de la dérivation covariante.Pour citer cet article : Z. Fiala, C. R.
Mecanique 332 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In order to consistently describe the successive processes of deformation,differential geometryis employed,
which offers significantly more refined tools for the description of finite deformations than matrix calcu
was Noll who initiated a deep interest in the mathematical foundations of mechanics of continua, and, at
Riemannian geometryhas been employed in many papers concerned with theoretical aspects of the deform
continua (Marsden and Hughes [1], Giessen and Kollmann [2], Stumpf and Hoppe [3]).

In addition to presenting this standard view, this Note briefly outlines more advanced aspects of thekinematics
of finite deformations, as they have appeared in the literature, although without taking much notice. It is the
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of Rougée [4] in particular, which offers novel key ideas for a proper understanding of finite deformation
closely related mathematical papers on geometry ofinfinite dimensional Riemannian spaces. By combining the
Rougée’s approach with this general mathematics, a new objective time derivative will be derived at the en

2. Preliminary information – continuum mechanics and Riemannian manifold

Classically, the kinematics of continua is described by tensor fields on 3D Euclidean spaceE
3 using genera

curvilinear coordinate systems, but the more modern approach, considering Euclidean space as a Rie
manifold, predominates. For our purposes it suffices to characterize the Riemannian manifold as a set o
with no privileged coordinate system endowed with metric, which enters the Riemannian manifold via the
space; for more, see Frankel and Schutz [5]. Making use of the geometrical entities (such as pull-bac
forward, Lie derivatives, covariant derivative etc.) enables us to identify the actual geometrical conten
kinematics of finite deformations. The following three paragraphs offer a brief outline of Riemannian geom
continuum mechanics. For more details, see [1–3] and [6].

2.1. Basic notions

• A configurationof a simple bodyB, is a mappingΦ̃ : I × B → E
3 indexed by time from the interva

I = [0, T ]. The configurations at time 0 or at actual timet , called referential R = Φ̃(0,B) or spatial
S = Φ̃(t,B) configurations respectively, form Riemannian manifolds. The mappingΦ̃ then induces a mappin
Φ : I ×R→ S. We denote byX points fromR, and byx points fromS.

• The tangent spaceTXR is a linearized, infinitesimal neighbourhood of a pointX ∈ R. It is a linear, finite-
dimensional real vector space of all ‘infinitesimalmaterial line elements’ represented byvectorstangent at the
pointX to curves lying inR.

• Thecotangent spaceT ∗
XR is again a linear, finite-dimensional real vector space of all ‘infinitesimalmaterial

surfaces’ represented bycovectors, which are quantities intimately related to gradients to functions a
pointX. The covectorsa act as linear mappings〈a,u〉TXR of vectorsu to real numbersR, and so the cotangen
space is thedual spaceto the tangent space. Unlike the classical approach, making use of the dual space
us to define the tensors on manifolds more clearly, and distinguish between vectors and covectors, con
and covariant tensors, being considered here as different objects. As above and below, the same app
spatial configuration.

• (p–q)-tensors(p-contravariant,q-covariant) on a linear vector spaceV , with V ∗ being its dual, are elemen
of the setsTpq = Tp ⊗ Tq = V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ · · · ⊗ V ∗ andT0

0 = R. Here,V stands for some tangent (T)
spaceTXR or TxS, andV ∗ for its corresponding cotangent (C) spaceT ∗

XR or T ∗
x S.

• The key notion of Riemannian geometry is themetric, a positive-definite symmetric 2-covariant tensorG

defining thescalar productof two vectorsu,v :u · v ≡G(u,v).
• The metricG defines a mappingG :TXR → T ∗

XR via the relation〈Gu,v〉TXR = G(u,v). It assigns an
associatedcovectoru� to a vectoru: u� = Gu (and conversely anassociatedvectora� to a covectora: a� =
G−1a). The so-calledassociated tensorst�, t� to a (1–1)-tensort are (2–0)- and (0–2)-tensors respective
defined by extending the mappingG to tensors. These operations correspond toraising and lowering indexe
of components of tensors, in classical approach. The metricG also induces the scalar product on covec
space, defined by means of the associated 2-contravariant tensorG�: a · b ≡G�(a, b)=G(a�, b�).

• A mappingΦ : I × R → S induces thetangent mapping(or deformation gradientF in other words)
TΦ(≡ F) :TXR→ TxS. The tangent mapping definespush-forwardΦ∗ andpull-backΦ∗ operations betwee
corresponding spaces of tensors. These then, in a simple way, couple the description of deformation a
state in the referential and spatial configurations: in fact,the description of the motion in thereferential(spatial)
picture is obtained bypull-back(push-forward) of thespatial(referential) picture.



Z. Fiala / C. R. Mecanique 332 (2004) 97–102 99

(Hill [7],

onding
ss
2.2. Dual stress and strain tensors, dual time derivatives

The various stress and strain tensors, and their objective time derivatives can be related to each other
Haupt and Tsakmakis [8]) via thestress power density:

πt ≡
〈
σ
�
t , d

�
t

〉
T S∗ = 〈

σ
�
t , d

�
t

〉
T S

= σt · dt (1)

whereσt is the Cauchy stress (1–1)-tensor anddt is therate-of-deformation(1–1)-tensor.
Hill’s result is obtained bypulling-backthe spatial picture to the referential configuration, so that thereferential

stress power densitycan be written:

π ref
t =

{
〈P�t , ∂E�t 〉T R∗

〈K�
t , ∂H

�
t 〉T R

}
=

{
Pt · ∂Et
Kt · ∂Ht where∂ stands for thematerial time derivative.

In the above, the following two relations, playing the key role in the next paragraph, were employed:

Φ∗d� = ∂E� = 1
2∂C

�, Φ∗d� = −∂H� = −1
2∂B

� (2)

By pushing-forwardthe Hill’s result back to spatial configuration, Haupt and Tsakmakis obtained:

π ref
t =

{
〈S�t ,LFe

�
t 〉T R∗ (LFe

�)ij = ėij + (d −w)ikg
klelj + eikg

kl(d +w)lj

−〈S�t ,LFh
�
t 〉T R (LFh

�)ij = ḣij − (d +w)ikgklh
lj − hikgkl(d −w)lj

LF = Φ∗ ◦ ∂ ◦ Φ∗ is the so-calledLie derivative (again F ≡ TΦ), and w is the vorticity. Thisdual time
derivative (Oldroyd derivative), obtained from material derivative exactly the same way as the corresp
dual stress and strain tensors, is naturallyobjective. S = Jσ is the weighted Cauchy (or Kirchhoff) stre
(1–1)-tensor, and the JacobianJ (being scalar) is the determinant of the tangent mapping transformationJ =
det(∂Φ/∂X)

√
det(g)/det(G).G andg denote the metric onR andS, respectively (i.e., the scalar product onTXR

andTxS, respectively). Below,T stands for tangent,C for cotangent spaces.

T –R: C� =Φ∗g the associatedRIGHT CAUCHY–GREEN deformation(0–2)-tensor (3)

E = 1
2(C − I) the GREEN–ST.VENENT strain (1–1)-tensor (Lagrangian strain tensor)

P� =Φ∗S� the associatedSECONDPIOLA –KIRCHHOFFstress(2–0)-tensor
T –S: c� =Φ∗G

e= 1
2(i − c) the ALMANSI –HAMEL strain (1–1)-tensor (Eulerian strain tensor)

S� the (contravariant)WEIGHTED CAUCHY stress(2–0)-tensor

C–R: B� =Φ∗g� (4)

H = 1
2(B − I) the PIOLA strain (1–1)-tensor

K� = −Φ∗S� the associatedNEGATIVE CONVECTEDstress(0–2)-tensor
C–S: b� =Φ∗G� the associatedLEFT CAUCHY–GREEN deformation(2–0)-tensor

h= 1
2(i − b) the FINGER strain (1–1)-tensor

−S� the (covariant)NEGATIVE WEIGHTED CAUCHY stress(0–2)-tensor

3. Advanced information – continuum and Riemannian manifold of Riemannian metrics

In summary, here are the main points of the previous paragraphs required later on:

– Finite deformations of the continua at the referential pointX are described by any of twodeformationtensors
C� (3) (cf. Ciarlet and Laurent [9]) orB� (4).
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– Their time derivatives∂C� or ∂B�, in the progress of deformation, are obtained by pulling-back
corresponding associated tensors of therate-of-deformation tensord� or d� (see (2)).

At this point, some comments are still in order on why thedeformation tensors, instead of strain tensors,
more fitting for the description of the process of finite deformations. The answer reflects the very nature of
difference between finite and small deformations: provided we split the deformationx ≡ Φ(X) = X + u(X),
for two successive deformationsX → x1 → x2, the following relation holdsx2 = Φ2 ◦ Φ1(X) = Φ2(x1) =
Φ2(X + u1(X)) = X + u1(X)+ u2(X + u1(X)). In case of small deformations one neglects all the terms o
second order in magnitude, and so the relation takes the formx2 ≈X+u1(X)+u2(X), i.e., the diffeomorphismΦ
acts as identity mappingx =Φ(X)≈X, and the concept of diffeomorphisms changes into that of fields. Simi
for the deformation gradientTΦ ≡ I +T u≈ I , and for transformations of vectors and covectors:v = TΦ(V )≈ V

andA= TΦ∗(a)≈ a. The concept of small deformations thus identifies tangent and cotangent spaces in ref
and spatial configurations. In particular, the metric tensors are equalg ≈ G, and the objective time derivativ
is replaced by the simple material time derivativeLF = Φ∗ ◦ ∂ ◦ Φ∗ ≈ ∂ . Infinitesimal variationu(X) around
identity mappingΦ(X) = x ≈ X at the pointx = Φ(X) (i.e., linearization of mappingΦ in other words) results
in substituting fields for diffeomorphisms, and enters the theory of small deformations via infinitesimal va
of the metricg =G. It is the strain tensorse≈E, h≈H that represent this infinitesimal variation. Now,c� ≈ C�

andh� ≈H�, and the relations (2) read:∂C� = 2∂E� ≈ 2d�, ∂B� = 2∂H� ≈ −2d�.
On the other hand, in case of finite deformations the deformation process no longer keeps movin

the tangent linear spaceTC�M (see later on), as in the case of small deformations, and the finite diffe
between initial and terminal deformation tensors provides the same piece of information about deforma
Euclidean distance between starting and ending points about the whole trajectory of a particle does: tha
no information! Consequently, the deformation process at each material pointX should be described not by tim
dependent strains, but by a trajectory in themanifoldM = Met(R) of all possible deformation tensors (relative
reference configuration).

A fundamental observation of Rougée [4] made it possible for him to significantly broaden the analysis
process of finite deformations. He realized that the quantities∂C

�
t in fact constitute tangent vectors to the manifo

M at the particular pointC�t , chosen at the actual moment of timet . With the assistance of the relation∂C�t = 2Φ∗
t d

�

he introduced a scalar product on thetangent spaceT
C
�
t
M, so that the manifoldM became Riemannian manifol

He managed to do this by extending the usual scalar product of vectors, defined onTxS by the metricg, to
a scalar product of 2-tensors (see also (1)). In particular, for the rate-of-deformation tensord� he obtained:
d1� ·d2�|g,x ≡ gikgjld1

kj d
2
li . As the diffeomorphismΦt is actually anisometry(a metric preserving diffeomorphis

between Riemannian spaces(R,C�t = Φ∗
t g) and (S, g)), he introduced the scalar product on the tangent sp

T
C
�
t
M via the relation:∂C1� · ∂C2�|

C
�
t ,X

≡ Φ∗
t (d

1� · d2�), where∂Ci� ∈ T
C
�
t
M, C

�
t = Φ∗

t g, B�t = (C
�
t )

−1, and

∂Ci� = 2Φ∗
t d

i�. Carrying out the pull-back operation, Rougée eventually obtained themetricon M (i.e., the scalar
product on the tangent spaceT

C
�
t
M):

∂C1� · ∂C2�
∣∣
C
�
t ,X

= 1

4
Bikt B

jl
t ∂C

1
kj ∂C

2
li (5)

Do not be confused by considering the deformation tensorsC
�
t as points of the Riemannian manifoldM and their

material time derivatives∂Ci� ∈ T
C
�
t
M as vectors lying in the corresponding tangent spaceT

C
�
t
M, at a particular

pointC�t of M! As we shall see in the next three paragraphs, such a viewpoint offers far-reaching implicati
the description of kinematics of finite deformations.
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First, one can define time derivative of a time-dependent tensor overS, via thecovariant derivativeof vector
fields overM. For a vectorV ∈ TC�M and a vector fieldU overM, the covariant derivative can be expressed:

(∇V U)ij =
(
δU

δV

)
ij

− 1

2

(
VilB

lk
t Ukj +UilB

lk
t Vkj

)
, where

(
δU

δV

)
ij

≡ d

dq
Uij

(
C
�
t + qV

)∣∣
q=0

LetC�t : I → M denote a smooth curve, then the derivative of vector fieldU along the curve can be written:(
D

Dt
U

)
ij

≡ (∇
∂C

�
t
U)ij = ∂Uij − 1

2

(
(∂Ct )ilB

lk
t Ukj +UilB

lk
t (∂Ct )kj

)
, since

δU

δ(∂C
�
t )

= ∂U

As now∂C�t = 2Φ∗
t d

�, pushing the above derivative forward to the spatial configuration, one obtains(
D

Dt
u

)
ij

≡ (
Φt∗(∇∂C�t U)

)
ij

= (LFu)ij − (
dilg

lkukj + uilg
lkdkj

) = (
u̇ZJ

)
ij

(6)

u = Φt∗U is any spatial 2-covariant symmetric tensor overS corresponding to a vector fieldU over M. The
resulting time derivative is the Zaremba–Jaumann derivative (Rougée [4]). If we interpret parametert as time
and the curveC�t as a deformation process taking place at pointX, the underlying mathematical structure
the Riemannian manifoldM, based on the metric (5), then unambiguously selects the only one objective
derivative (6). Note also thaṫgZJ = 0, or equivalentlyDC�t /Dt = 0.

Second, the geometrical structure of the manifoldM enables us to clarify the geometrical meaning
logarithmic strainsby relating them togeodesics(Rougée [4]).

Third, the manifoldM can be split (Freed and Groisser [10]) into volumetric and shape submani
M ∼= Vol(R)× Metµ(R). Whereas the space Vol(R) is flat, the space Metµ(R) hasnonzero curvature(negative),

resulting in the dependence of deformation processes on the trajectoryC
�
t in M. In particular, here seems to lie th

problems with the existing use of logarithmic strains in modelling of constitutive relations.

4. Discussion and proposal of novel time derivative

Provided we eliminate the restriction of deformation processes to a single material pointX ∈ R, which is the
case of Rougée [4], we have slightly to modify the above theory. Now, the Riemannian metric is a tensor fieC

�
t of

deformation tensors over the referential configurationR, and the corresponding manifoldM of such Riemannian
metrics is aninfinite dimensional Riemannian manifold(Freed and Groisser [10], Gill-Medrano and Michor [1
Kriegel and Michor [12]). Themetric(5) should then be modified by

〈
U1,U2〉

C
�
t
=

∫
R

U1 ·U2
∣∣
C
�
t ,X

dVOLX
(
C
�
t

) =
∫
R

1

4
Bikt B

jl
t U

1
kjU

2
li

√
det

(
C
�
t

)∣∣
X

dX (7)

Now, due to the additional multiplicative term
√

det(C�t ) (which appears quite natural from the viewpoint of t
relation (1) and that what immediately follows), thecovariant derivativecan be written:

(∇V U)ij =
(
δU

δV

)
ij

− 1

2

(
VilB

lk
t Ukj +UilB

lk
t Vkj

) + 1

4

(
Bklt VlkUij −Bklt VloB

op
t Upk(Ct )ij + VijB

kl
t Ulk

)
and so for the objective time derivative of a spatial symmetric 2-covariant tensor fieldu one obtains:(

D

Dt
u

)
ij

= (
u̇ZJ

)
ij

+ 1

2

(
gkldlkuij − gkldlog

opupkgij + dij g
klulk

)
(8)
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5. Conclusion

The approach sketched above, initiated by Rougée [4], offers a great number of entirely novel idea
kinematics of finite deformations and deserves further scrutiny. To this end, the mathematical theory of
dimensional Riemannian manifolds of Riemannian metrics, as described in the papers citied in the p
paragraph, will no doubt proof helpful. As a starter,new objective time derivative(8) with clear geometrical origin
has been proposed. As the time derivative should represent therate of change of quantitiesattached to the point
X ∈ R, the new objective time derivative seems to be promising. In fact,Dg/Dt = 3/2 · d� (cf. LFg = 2d�) and
DC

�
t /Dt = 3/4 · ∂C�t , contrary to the Zaremba–Jaumann derivative, for which these derivatives are zeros.
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