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Abstract

The infinite dimensional Riemannian geometry of Riemannian metrics is employed to propose novel objective time derivative
by means of covariant derivativo cite thisarticle: Z. Fiala, C. R. Mecanique 332 (2004).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dérivée temporelle obtenue en utilisant la variété riemannienne des métriques riemanniennes aux cinématiques des
milieux continus. La géometrie riemannienne des métriques riemanniennes, de dimension infinie, est employeé pour proposer
une nouvelle derivée temporelle objective par la biais de la dérivation covarRmie.citer cet article: Z. Fiala, C. R.
Mecanique 332 (2004).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In order to consistently describe the successive processes of deforndiffienential geometrys employed,
which offers significantly more refined tools for the description of finite deformations than matrix calculus. It
was Noll who initiated a deep interest in the mathematical foundations of mechanics of continua, and, at present,
Riemannian geomettyas been employed in many papers concerned with theoretical aspects of the deformation of
continua (Marsden and Hughes [1], Giessen and Kollmann [2], Stumpf and Hoppe [3]).

In addition to presenting this standard view, this Note briefly outlines more advanced aspectkitoémhatics
of finite deformationsas they have appeared in the literature, although without taking much notice. It is the book
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of Rougée [4] in particular, which offers novel key ideas for a proper understanding of finite deformations, and
closely related mathematical papers on geometripfiriite dimensional Riemannian spac&y combining the
Rougée’s approach with this general mathematics, a new objective time derivative will be derived at the end.

2. Preliminary information — continuum mechanics and Riemannian manifold

Classically, the kinematics of continua is described by tensor fields on 3D Euclidean®basig general
curvilinear coordinate systems, but the more modern approach, considering Euclidean space as a Riemannian
manifold, predominates. For our purposes it suffices to characterize the Riemannian manifold as a set of points,
with no privileged coordinate system endowed with metric, which enters the Riemannian manifold via the tangent
space; for more, see Frankel and Schutz [5]. Making use of the geometrical entities (such as pull-back, push-
forward, Lie derivatives, covariant derivative etc.) enables us to identify the actual geometrical content of the
kinematics of finite deformations. The following three paragraphs offer a brief outline of Riemannian geometry in
continuum mechanics. For more details, see [1-3] and [6].

2.1. Basic notions

e A configurationof a simple bodyB, is a mapping®:1 x B — E2 indexed by time from the interval
I = [0, T]. The configurations at time 0 or at actual timecalled referential R = ®(0, B) or spatial
S = & (r, B) configurations respectively, form Riemannian manifolds. The mappitigen induces a mapping
@ : I x R— S. We denote byX points fromR, and byx points fromsS.

e Thetangent spacd’x R is a linearized, infinitesimal neighbourhood of a pakk R. It is a linear, finite-
dimensional real vector space of all ‘infinitesinmaaterial line elementsepresented byectorstangent at the
point X to curves lying inR.

o Thecotangent spac&y R is again a linear, finite-dimensional real vector space of all ‘infinitesimeaterial
surfacesrepresented byovectors which are quantities intimately related to gradients to functions at the
pointX. The covectora act as linear mappinga, u)r, g of vectorsu to real number®, and so the cotangent
space is thdual spaceo the tangent space. Unlike the classical approach, making use of the dual space enables
us to define the tensors on manifolds more clearly, and distinguish between vectors and covectors, contravariant
and covariant tensors, being considered here as different objects. As above and below, the same applies to the
spatial configuration.

e (p—g)-tensorg(p-contravariantg-covariant) on a linear vector spate with V* being its dual, are elements
of the setsTfI’ =TPRT;=V® - VeV'®---V* andT8 =R. Here,V stands for some tangenk)
spacelx R or 7, S, andV* for its corresponding cotanger@) spacel’y R or T,*S.

e The key notion of Riemannian geometry is thmetric a positive-definite symmetric 2-covariant tenggr
defining thescalar produciof two vectorse, v:u - v = G(u, v).

e The metricG defines a mappings:Tx R — T¢R via the relation(Gu, v)y, g = G(u,v). It assigns an
associatedcovectoru” to a vector: u” = Gu (and conversely anssociatedsectora® to a covecton: a* =
G~1a). The so-callechssociated tensors, ¢ to a (1-1)-tensor are (2-0)- and (0—2)-tensors respectively,
defined by extending the mappi@yto tensors. These operations correspongiging and lowering indexes
of components of tensors, in classical approach. The métradso induces the scalar product on covector
space, defined by means of the associated 2-contravariant @hsor b = G*(a, b) = G (a?, b?).

e A mapping®:I x R — S induces thetangent mappingor deformation gradienf in other words)
Td(=F):TxR — T,S. The tangent mapping definpash-forward®, andpull-back®* operations between
corresponding spaces of tensors. These then, in a simple way, couple the description of deformation and stress
state in the referential and spatial configurations: in thetdescription of the motion in thieferential spatia)
picture is obtained byull-back(push-forward of thespatial(referentia) picture
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2.2. Dual stress and strain tensors, dual time derivatives

The various stress and strain tensors, and their objective time derivatives can be related to each other (Hill [7],
Haupt and Tsakmakis [8]) via thetress power density
b b
N,E(a,t,d,>Ts* =(cr,,d,ﬁ)TS=crtod, Q)
whereo; is the Cauchy stress (1-1)-tensor ahds therate-of-deformatiorf1-1)-tensor.
Hill's result is obtained byulling-backthe spatial picture to the referential configuration, so thateferential
stress power densitan be written:

PPLOED) o . . o
ﬂref:{( ! 1R }:{P’ 9E: \hered stands for thenaterial time derivative.

t b .
In the above, the following two relations, playing the key role in the next paragraph, were employed:
o*d>=9E"=30C",  ®*d*=-9H*=-3}9B" ()

By pushing-forwardhe Hill's result back to spatial configuration, Haupt and Tsakmakis obtained:

ref __
=

b .
(S Lee)) g ge (LE€")ij = éij + (d — w)irger + g (d + w);
—(8) Lehi) g (LER®)YT =il — (d +w)* ghl) — hik gy (d — )

L = &, 00 o @* is the so-calledLie derivative (againF = T@®), and w is the vorticity. Thisdual time
derivative (Oldroyd derivative), obtained from material derivative exactly the same way as the corresponding
dual stress and strain tensors, is naturalbjective S = Jo is the weighted Cauchy (or Kirchhoff) stress
(1-1)-tensor, and the Jacobidn(being scalar) is the determinant of the tangent mapping transformatien
detd®/0X)./det(g)/det(G). G andg denote the metric oR andS, respectively (i.e., the scalar productBpR

andT, S, respectively). Below] stands for tangen€ for cotangent spaces.

T-R: C" = ®*g the associatedIGHT CAUCHY—GREEN deformation(0—2)-tensor )

E = %(C — 1) the GREEN-ST.VENENT strain (1-1)-tensor (Lagrangian strain tensor)
PY = @*sF the associatedECONDPIOLA—KIRCHHOFF stress(2—0)-tensor

T-S: ¢ = ®,G
e= %(i —c¢)  the ALMANSI-HAMEL strain (1-1)-tensor (Eulerian strain tensor)
SF the (contravariantivelGHTED CAUCHY stress(2—0)-tensor
C-R: B =o*g* (4)

H=3(B~-1) the RoLA strain(1-1)-tensor
K" =—®*S" the associateNEGATIVE CONVECTED stress(0—2)-tensor

C-S: b'=,G* the associatedeFT CAUCHY—GREEN deformation(2—0)-tensor
h=33i—-b) the ANGER strain (1-1)-tensor
-5’ the (covariantNEGATIVE WEIGHTED CAUCHY stress(0—2)-tensor

3. Advanced information — continuum and Riemannian manifold of Riemannian metrics
In summary, here are the main points of the previous paragraphs required later on:

— Finite deformations of the continua at the referential p&iratire described by any of twaeformatiortensors
C" (3) (cf. Ciarlet and Laurent [9]) 0B* (4).
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— Their time derivativesdC” or dB?, in the progress of deformation, are obtained by pulling-back the
corresponding associated tensors ofrtite-of-deformation tensat” or d* (see (2)).

At this point, some comments are still in order on why tleformation tensors, instead of strain tensors, are
more fitting for the description of the process of finite deformatidine answer reflects the very nature of the
difference between finite and small deformations: provided we split the deformato® (X) = X + u(X),
for two successive deformations — x; — x2, the following relation holdscy = @3 o @1(X) = P2(x1) =
Po(X +u1(X)) = X + u1(X) + u2(X + u1(X)). In case of small deformations one neglects all the terms of the
second order in magnitude, and so the relation takes thesfernX + u1(X) + u2(X), i.e., the diffeomorphisnd
acts as identity mapping= @ (X) ~ X, and the concept of diffeomorphisms changes into that of fields. Similarly,
for the deformation gradiefit® = I 4+ Tu ~ I, and for transformations of vectors and covectors:T® (V) ~ V
andA = T®*(a) ~ a. The concept of small deformations thus identifies tangent and cotangent spaces in referential
and spatial configurations. In particular, the metric tensors are egsal;, and the objective time derivative
is replaced by the simple material time derivative = @, 0 3 o @* ~ 9. Infinitesimal variatioru(X) around
identity mapping® (X) = x & X at the pointx = @ (X) (i.e., linearization of mapping@ in other words) results
in substituting fields for diffeomorphisms, and enters the theory of small deformations via infinitesimal variation
of the metricg = G. It is the strain tensors~ E, h ~ H that represent this infinitesimal variation. Naw,~ C®
andh® ~ H*, and the relations (2) reaflC’ = 28Eb ~2d", B* =20H" ~ —2d".

On the other hand, in case of finite deformations the deformation process no longer keeps moving inside
the tangent linear spacE~»M (see later on), as in the case of small deformations, and the finite difference
between initial and terminal deformation tensors provides the same piece of information about deformation, as
Euclidean distance between starting and ending points about the whole trajectory of a particle does: that means
no information! Consequently, the deformation process at each materialXpaimbuld be described not by time
dependent strains, but by a trajectory in thanifoldM = Met(R) of all possible deformation tensors (relative to
reference configuration).

A fundamental observation of Rougée [4] made it possible for him to significantly broaden the analysis of the
process of finite deformations. He realized that the quanﬁtii?sin fact constitute tangent vectors to the manifold
M atthe particular poirrf,b, chosen at the actual moment of timé&Vith the assistance of the relatiadb =20xd"
he introduced a scalar product on taegent spacé€. bM so that the manifol became Riemannian manifold.

He managed to do this by extending the usual scalar product of vectors, defirfi&ds dyy the metricg, to

a scalar product of 2-tensors (see also (1)). In particular, for the rate-of-deformation #&nkerobtained:
dv.d?|, = g"kgﬂd,}jd,zi. As the diffeomorphisn®; is actually arisometry(a metric preserving diffeomorphism
between Riemannian spaceR, Cb = <1>;"g) and (S, g)), he introduced the scalar product on the tangent space

ToM via the relationaC? - ac2b|c X = = @/ (d" - d®), wheredC” e T, oM, C) =drg, B = (C))7L, and

ac”’ 2@7d™. Carrying out the pull-back operation, Rougée eventually obtalnenhﬁnecon M (i.e., the scalar
product on the tangent spagg,M):
t

1 .,
0CY - 9C?| 0y = ZB;"Bi’lac,}jac,% (5)

Do not be confused by considering the deformation tersfmss points of the Riemannian manifditl and their
material time derivative8C™* e T.»M as vectors lying in the corresponding tangent spgeéd, at a particular
t t

point C,b of M! As we shall see in the next three paragraphs, such a viewpoint offers far-reaching implications for
the description of kinematics of finite deformations.
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First, one can define time derivative of a time-dependent tensor@wea thecovariant derivativeof vector
fields overM. For a vectolV € T-»M and a vector field/ overM, the covariant derivative can be expressed:
d

sU 1 sU
(VyU)ij = <—) — Z(VuB*Uy; + Uy BI* vy, Where(—> = —U;j(C/ +qV)|
ij

sV 2 8V ), dq 9=0

Let C,b :I — M denote a smooth curve, then the derivative of vector fielelong the curve can be written:

Py) = U)~~—aU~—}((aC)»B”‘U + U B*(3Cy)j), since—— =aU
= BC,b ij = ij 2 t)il by Ukj il Dy t)kj)s =
tj

Dt

As nowaC,b =2¢*d", pushing the above derivative forward to the spatial configuration, one obtains

D .
<Eu>“ = (@*(Vac,bU)),»j = (Lru)ij — (ding™ uxj +uirg™ dij) = (MZJ)U (6)
ij

u = &4, U is any spatial 2-covariant symmetric tensor o@ecorresponding to a vector fieltd over M. The
resulting time derivative is the Zaremba—Jaumann derivative (Rougée [4]). If we interpret paramstéme

and the curveC,b as a deformation process taking place at paintthe underlying mathematical structure of
the Riemannian manifolt¥, based on the metric (5), then unambiguously selects the only one objective time
derivative (6). Note also that?’ = 0, or equivalentlyDC, /Dt = 0.

Second the geometrical structure of the manifoM enables us to clarify the geometrical meaning of
logarithmic strainsby relating them t@eodesic§Rougée [4]).

Third, the manifoldM can be split (Freed and Groisser [10]) into volumetric and shape submanifolds:
M = Vol(R) x Met, (R). Whereas the space V@) is flat, the space Mgi(R) hasnonzero curvatur¢negative),
resulting in the dependence of deformation processes on the trajélftmy\/l . In particular, here seems to lie the
problems with the existing use of logarithmic strains in modelling of constitutive relations.

4. Discussion and proposal of novel time derivative

Provided we eliminate the restriction of deformation processes to a single materiakpeiRt, which is the
case of Rougée [4], we have slightly to modify the above theory. Now, the Riemannian metric is a tenszfrcﬁi’eld
deformation tensors over the referential configurattorand the corresponding manifold of such Riemannian
metrics is arinfinite dimensional Riemannian manifdléreed and Groisser [10], Gill-Medrano and Michor [11],
Kriegel and Michor [12]). Thenmetric(5) should then be modified by

1 .,
(U, UZ)C?=/UloU2|Ctb!X dVOLx(Cf)=/ZB;"B/’UkljUﬁ,/det(Cf)|Xdx (7)

R R

Now, due to the additional multiplicative terQAdet(Cf) (which appears quite natural from the viewpoint of the
relation (1) and that what immediately follows), tbevariant derivativecan be written:

§U 1 Ik Ik 1 ki op Kl

_(°ZY _ = ! = _

(VyU);j _<5V) 2(%’13 Uy + Ui B, ij)-i- I(B’ VikUij — B, Vie B, " Upik(Cy)ij + Vij By Ulk)
ij

and so for the objective time derivative of a spatial symmetric 2-covariant tensor ftald obtains:

D . 1
<Eu> = (MZJ),-j + E(gkldlkuij — g diogPuprgi +dij g uik) (8)
t
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5. Conclusion

The approach sketched above, initiated by Rougée [4], offers a great number of entirely novel ideas in the
kinematics of finite deformations and deserves further scrutiny. To this end, the mathematical theory of infinite
dimensional Riemannian manifolds of Riemannian metrics, as described in the papers citied in the previous
paragraph, will no doubt proof helpful. As a starteew objective time derivati8) with clear geometrical origin
has been proposed. As the time derivative should represerdtihef change of quantitiesttached to the points
X € R, the new objective time derivative seems to be promising. In fagy,Dr = 3/2 - d" (cf. Leg = 24") and
DC,b /Dt =3/4- 8Ctb , contrary to the Zaremba—Jaumann derivative, for which these derivatives are zeros.
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