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Abstract

We investigate the time evolution of the density of interfaces in a two-phase mixture, with particular emphasis
role of compressibility, dilatability and phase transitions. Two different and complementary routes are considered:
intuitive one based on exact results for dilute mixtures which are then interpolated to all concentrations, and a more s
approach based on the statistical average of the exact transport equation for elementary pieces of interfaces.To cite this article:
D. Lhuillier, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Evolution de l’aire interfaciale volumique dans les mélanges diphasiques. Nous cherchons à décrire l’évolutio
temporelle de la densité d’interfaces dans un mélange diphasique. L’accent est mis sur les effets de la compress
la dilatabilité et des changements de phase. Deux chemins complémentaires sont suivis : le premier, assez intuiti
sur des résultats concernant les mélanges dilués, résultats qui sont ensuite interpolés à toute concentration ; le se
systématique, est basé sur la moyenne statistique de l’équation qui régit l’évolution temporelle d’un élément d’interfaPour
citer cet article : D. Lhuillier, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Version française abrégée

Dans la description des suspensions de particules ou des mélanges diphasiques à l’aide du modèle à de
l’une des difficultés est de modéliser correctement les échanges entre constituants. Ces échanges font in
façon cruciale l’aire totale des interfaces présentes et pour les suspensions de particules déformables
bulles) on conçoit bien que la fraction volumique des particules n’est pas suffisante à elle seule pour quan
échanges. Il faut en plus lui adjoindre la densité volumique des interfaces et trouver la façon dont celle-c
dans le temps. Pour établir la forme générale de cette équation de transport, on se propose d’utiliser deux d

E-mail address: dlhui@ccr.jussieu.fr (D. Lhuillier).
1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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complémentaires. La première, à caractère intuitif, est basée sur des résultats connus (mais concernant u
les suspensions diluées) reliant la densité d’interface à la fraction volumique du milieu dilué et au nom
particules par unité de volume. Une procédure d’interpolation permet de généraliser ces résultats à t
concentrations et aboutit à l’Éq. (3). La seconde est basée sur la moyenne statistique de l’équation d’é
(5) d’un élément d’interface, et elle aboutit à l’Éq. (7) dans le plus simple des cas, c’est-à-dire quand on
toutes les fluctuations. La comparaison des résultats (3) et (7) permet de se faire une idée sur leur complé
Dans l’approche intuitive la coalescence est bien modélisée, mais la fragmentation l’est de façon très so
Dans l’approche rigoureuse (mais qui ne tient pas compte des fluctuations) la coalescence est absen
fragmentation est bien mieux modélisée puisque vue comme le résultat d’un étirement sous l’action du c
vitesse et d’un retour vers une distribution isotrope des interfaces. La synthèse des deux approches appar
résultat (10).

1. Introduction

When describing the flow of two-phase mixtures or particulate suspensions, one of the main issue
modelling of interphase exchanges. The intensity of these exchanges depends on the total area of the inter
when the particles are likely to deform like drops or bubbles, their volume fraction is not enough to quanti
exchanges with the surrounding fluid. In addition, one must consider the interfacial area per unit volume and
the way it evolves with time. Almost thirty years ago, Ishii [1] proposed a very simple transport equation
convective flux and a source term. Since that time, a lot of efforts were devoted to close that equation, i.e. to
the flux and the source terms as explicit functions of the volumetric interfacial area, the particles volume f
and the main variables (velocities, temperatures and pressures) entering the two-fluid model. At present th
issue is far from being settled, as witnessed by a recent review on the subject [2]. It is noteworthy that th
type of problems is encountered in combustion science, whenever combustion occurs over relatively th
sheets. The so-called coherent flame model initiated by Marble and Broadwell [3], is based on a transport
for the flame surface density. Their phenomenological approach was made rigorous by Candel and Poinso
derived the exact transport equation for what they called the “flame surface to volume ratio”. It was realiz
recently [5] that the same quantity was used under the name “function of presence of the interfaces” o
function on interfaces” by the two-phase community [6,7].

Our purpose here is to gain insight into the transport of interfacial area, following two different routes:
a rather intuitive approach based on exact results for dilute suspensions and some extrapolation procedur
the whole volume fraction range and secondly, a more systematic approach based on the averaging of
small-scale transport equation. We will focus not only on deformable particles, but also on liquid–vapour m
in which the mass-exchange bears some resemblance with the chemical reactions in the coherent flame m

2. Poor man’s derivation

To get an intuitive insight into the evolution equation for the interface concentration, let us cons
superheated liquid. Soon after the boiling process is initiated, the mixture appears as a dispersion of s
vapour bubbles moving through the liquid, while at the end of the process, it is a dispersion of spherica
moving through the vapour. The evolution equation we are looking for must acknowledge the presence of s
particles whenever one of the two volume fractions is decreasing to zero. For these two special cases (and
only) one expects the interfacial densityQ to be related to the volume fractionφd and to the number densitynd of
the dispersed phase. When the size distribution of the dispersed phase is narrow, this relation can be form
Q3 ≈ ndφ

2
d which implies

∂Q/∂t + ∇ · QVd = (2Q/3φd)(∂φd/∂t + ∇ · φdVd) + (Q/3nd)(∂nd/∂t + ∇ · ndVd) (1)
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whereVd is the mean velocity of the dispersed phase. The evolution equation of the volume fraction
presented in different (yet equivalent) ways. It was shown in [8] that one can benefit from writing them
following “symmetric” form

∂φ1/∂t + ∇ · φ1V1 = φ1∇ · U − A − Γρ/ρ◦
1ρ◦

2

∂φ2/∂t + ∇ · φ2V2 = φ2∇ · U + A + Γρ/ρ◦
1ρ◦

2

In these evolution equationsU is the volume-averaged velocity of the mixture(U = φ1V1 + φ2V2), Γ is the mass
production rate of component 2(Γ = Γ2 = −Γ1), ρ is the mass density of the mixture(ρ = φ1ρ

◦
1 + φ2ρ

◦
2) andA

represents the difference of compressibility and dilatability between the two phases

A = φ1φ2
[(

1/ρ◦
1

)
d1ρ

◦
1/dt − (

1/ρ◦
2

)
d2ρ

◦
2/dt

]
(2)

where d1/dt (respectively d2/dt) is the convective time-derivative associated withV1 (respectivelyV2).
Concerning the number density, its evolution in time is not that of a conserved quantity because of break
coalescence phenomena on the one hand, and because of nucleation and collapse phenomena on the
In what follows we delete nucleation and collapse, with the risk of being wrong at the very beginning and
very end of the phase change process. Since break-up is mainly a one-particle process and coalescence
two-particles process, one can write on purely dimensional grounds

∂nd/∂t + ∇ · ndVd = 3nd/TBR − 3ndVCOAQ

whereTBR is a characteristic time for break-up andVCOA is a characteristic velocity for coalescence. The fact
is for convenience only.

The above results suggest that a general evolution equation forQ which encompasses all phenomenaexcept
nucleation and collapse and which reduces to (1) in the limit of a dilute mixture is

∂Q/∂t + ∇ · [(φ1V2 + φ2V1)Q
] = (2Q/3)∇ · U + (2Q/3)(1/φ2 − 1/φ1)

(
A + Γρ/ρ◦

1ρ◦
2

)

+ Q/TBR − VCOAQ2 (3)

The first two terms on the right-hand side represents the effects of compressibility and dilatability (preseA

and∇ · U) and phase transitions (present inΓ and∇ · U). The quantity(2Q/3)∇ · U already appeared in [9
A more general expression could be written for the term involvingA andΓ with, instead of 1/φ2 − 1/φ1, two
different factors multiplyingA andΓρ/ρ◦

1ρ◦
2. These two different factors must behave like 1/φ2 whenφ2 is small

and like−1/φ1 whenφ1 is small. Hence, the above common factor 1/φ2−1/φ1 must be understood as thesimplest
function which interpolates correctly between these two extreme values. The third and fourth terms on th
hand side represents the effects of break-up and coalescence respectively. The main difficulty is to give
expressions for bothTBR andVCOA in terms of the volume fractions and the physical quantities involved in
break-up and coalescence processes. As an example, for slow shear flows where viscous effects are dom
expectsVCOA = φ1φ2σ/η whereσ is the surface tension andη is some effective viscosity of the mixture (η is
noted 1/G0 in [5]).

3. Derivation from the local dynamics of interfaces

The small-scale description of interfacial phenomena requires each elementary portion of interface to
its position, its orientation and its velocity, respectively represented by a two-dimensional Dirac functionδI(x, t),
a unit normaln(x, t) and a velocity fieldVI(x, t). The main relevant quantity is the symmetric tensornnδI and its
statistical (ensemble) averageQij = 〈ninj δI〉 [10,11]. The traceQ of this tensor gives the mean interfacial area
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unit volumeQ = 〈δI〉, while its traceless partqij = 〈(ninj − δij /3)δI〉 describes the anisotropy of the interfac
orientation. The balance equation forQij appears as [5]

∂Qij /∂t + ∇ · 〈ninj VIδI
〉 = 〈

(ninjnknl + ninj δkl − ninkδjl − njnkδil)∂V I
k/∂xlδI

〉
(4)

from which one deduces the evolution of the area concentration [4]

∂Q/∂t + ∇ · 〈VIδI
〉 = 〈

(I − nn) :∇VIδI
〉

(5)

whereI is the unit tensor. The interfacial velocity is linked to the local velocities of the two phases in the imm
vicinity of the interfaces [12]. Without phase transitions one has simplyVI = u1 = u2. More generally, one ca
write VI = u1+ (VI −u1) ·n1n1 or VI = u2+ (VI −u2) ·n2n2 so that the tangential component ofVI is equal to the
common tangential velocity of the two phases on each side of the interface, while the normal component is
different in case of phase changes between the liquid and the vapour. The issue is to choose some “sy
form of (5) in which the two phases will appear on an equal footing. Defining the local speeds of phase
S1 = (VI − u1) · n1 andS2 = (VI − u2) · n2, we propose a definition which looks “symmetric” regarding the
phases

VI = φ2(u1 + S1n1) + φ1(u2 + S2n2) (6)

This special choice mixes averaged quantities (the volume fractions) with nonaveraged ones in such a waVI

is linked preferentially to the velocities of the dispersed phase in case of a dilute mixture. As a consequenc
choice

〈
(I − nn) :∇VIδI

〉 = 2/3
〈
(φ1∇ · u1 + φ2∇ · u2)δI

〉 + 2/3(φ1 − φ2)
〈
(∇ · u2 − ∇ · u1)δI

〉

− 〈
(φ2∇u1 + φ1∇u2) : (nn − I/3)δI

〉 + 〈
(φ2S1∇ · n1 + φ1S2∇ · n2)δI

〉

In this expression pure deformations were distinguished from dilatations. The four contributions on the rig
side will now be given approximate expressions. If the true densitiesρ◦

1 andρ◦
2 do not display large difference

between their values in the bulk and at the interfaces, one can write〈S1δI〉 ≈ Γ1/ρ
◦
1 and〈S2δI〉 ≈ Γ2/ρ

◦
2. The same

assumption also means that the difference is not large between the divergence ofuk in the bulk of phasek and its
divergence close to the interfaces. As a consequence

〈
(φ1∇ · u1 + φ2∇ · u2)δI

〉 ≈ Q
(
φ1〈∇ · u1〉1 + φ2〈∇ · u2〉2

)

〈
(∇ · u2 − ∇ · u1)δI

〉 ≈ Q
(〈∇ · u2〉2 − 〈∇ · u1〉1

)

and
〈
(φ2S1∇ · n1 + φ1S2∇ · n2)δI

〉 ≈ Γ 〈∇ · n2〉ρ/ρ◦
1ρ◦

2

where 〈∇ · n2〉 is the average radius of curvature while〈∇ · uk〉k is the average value of∇ · uk in phasek.
Since the divergence ofU is the average of the divergence of the small-scale velocity, one deduces∇ · U =
φ1〈∇ · u1〉1 + φ2〈∇ · u2〉2 + 〈(S1 + S2)δI〉 so that the balance equation for the interfacial area density becom

∂Q/∂t + ∇ · [(φ2V1 + φ1V2)Q
] + ∇ · 〈(φ2S1n1 + φ1S2n2)δI

〉

= (2Q/3)∇ · U + (2Q/3)(φ1 − φ2)
(〈∇ · u2〉2 − 〈∇ · u1〉1

) − q :
(
φ2〈∇u1〉1 + φ1〈∇u2〉2

)

+ Γ
[
(2Q/3)

(
1/ρ◦

1 − 1/ρ◦
2

) + 〈∇ · n2〉ρ/ρ◦
1ρ◦

2

]
(7)

As it stands, result (7) bears some resemblance with the intuitive result (3). Let us compare the two rig
sides first. The terms involving∇ · U are identical. The term involvingA in (3) is identical with the second term o
the right-hand side of (7) providedA ≡ φ1φ2(〈∇ · u2〉2 − 〈∇ · u1〉1) which is quite compatible with the previou
definition (2). The terms involving the mass exchange rateΓ are identical provided the mean radius of curvat
can be written as

〈∇ · n2〉 = (2Q/3φ1φ2)
(
φ2

1ρ◦
1 − φ2

2ρ◦
2

)
/ρ (8)
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The expected results〈∇ · n2〉 = 2Q/3φ2 whenφ2 
 1 and〈∇ · n2〉 = −2Q/3φ1 whenφ1 
 1 are recovered a
special cases. Interestingly, the average radius of curvature vanishes forφ2

1ρ◦
1 = φ2

2ρ◦
2 which is not unreasonabl

but needs some confirmation in the case of liquid–vapour mixtures which have a density ratio close to one th
Conversely, if one obtains a different modelling for〈∇ · n2〉 and introduces it into (7), the resulting coefficient
front of Γ will be different from the one appearing in (3). But the main difference between (7) and (3) is ce
the presence of the anisotropy tensorq = 〈(nn − I/3)δI〉 in (7). This means that the evolution equation forQ

generally depends onq which itself obeys an evolution equation that can be deduced from (4) and (5). The
is that the evolution ofq depends on〈nnnnδI〉 and a closure problem arises. This situation is reminiscent o
closure problem for the turbulent kinetic energy〈v′2〉 and there is in fact a certain analogy between the wayQ

and〈v′2〉 are evolving. In the example of emulsions of two immiscible liquids [5,13] it was shown that the p
mean strain rates〈∇u1〉1 and〈∇u2〉2 can be expressed in terms ofq and the symmetric and traceless strain r
(∇U)S0 with the result,

q :
(
φ2〈∇u1〉1 + φ1〈∇u2〉2

) = αq : (∇U)S0+ VISOq : q (9)

whereα is a scalar andVISO is a characteristic speed for return to isotropy. These two parameters are respe
associated with the stretch due to the average motion and with the relaxation towards an isotropic dis
of interfaces. When writing theQ/TBR term of (3), it was implicitly assumed that the interfacial distribut
was always close to isotropic and this term is, so to say, the ghost form of (9). Hence, break-up can be
of as resulting from the combined action of stretch and relaxation towards isotropy. In the example of a
sheared suspension [5] one obtainsα = 1+ (φ1 − φ2)(η1 − η2)/η andVISO = σ/2φ1φ2η. Note thatVISO displays
the same scaling asVCOA but a different dependence on the volume fractions. Concerning coalescence, it
thought of as a relaxation process towards a state with a minimum density of interfaces. This process is
from (7) but it is clear that we selected only the main contributions when writing (7), in particular we neg
all types of fluctuations. Hence, a coalescence term must be added to (7) similar to theVCOAQ2 term in (3).
So far we dealt with the sink and source terms of the right-hand side of (7). What about the convectio
appearing in the left-hand side? Obviously, there is no term in (3) which corresponds to〈(φ2S1n1 + φ1S2n2)δI〉
in (7). In fact this term is null when the volume fractions are uniform. In all other cases one must
〈(φ2S1n1 + φ1S2n2)δI〉 ≈ −(Γ /Q)(ρ/ρ◦

1ρ◦
2)∇φ2. This diffusion-like flux is usually negligible when compar

to the convection flux(φ1V2 + φ2V1)Q.

4. Conclusion

When the role of nucleation and collapse can be neglected, the general form of the transport equatio
volumetric interface area can be presented as

∂Q/∂t + ∇ · [(φ1V2 + φ2V1)Q
]

= (2Q/3)∇ · U − αq : (∇U)S0+ (2Q/3)(1/φ2 − 1/φ1)
(
A + Γρ/ρ◦

1ρ◦
2

) − VISOq : q − VCOAQ2 (10)

In this expression,A andΓ must be given expressions compatible with a positive entropy production [8]. It is
that the evolution ofQ is connected to the anisotropy tensorq and one must solve the transport equation foq
before closing the above equation. Each different type of flow will give different results forq, so that a universa
closure is not likely to appear. The similarity of the link betweenQ andq, and the link between the fluctuation
kinetic energy and the deviatoric part of the Reynolds stress is noteworthy. Moreover, if the mixture is in tu
motion, one can imagine a coupling (due to the Curie symmetry principle of irreversible thermodynamics) b
the area tensor〈nnδI〉 and the Reynolds stress tensor. One can wonder whether such a coupling can pr
phenomenological interpretation of the modifications of turbulence close to moving and deformable bound
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