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Abstract

The total stress tensor in a structured or non-structured medium can be obtained by a direct statistical approach using the
generalized virial theorem, without any reference to a potential function, as soon as positions, velocities and interactions of the
particles are given by Molecular Dynamics. However, as shown here, it would be wrong to apply these results to a given class
of particles in an heterogeneous medium without adding a cross internal virial tensor to the self internal virial tensor and the
partial kinetic energy tensor relative to this class of particlegite thisarticle: P. Jouanna, L. Pédesseau, C. R. Mecanique
332 (2004).
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Résumé

Contraintes partielles en milieux hétérogénes par une approche statistique. Le tenseur total des contraintes dans un
milieu structuré ou non-structuré peut étre obtenu par une approche statistique directe a I'aide du théoreme du viriel généralisé,
sans référence aucune a une fonction potentiel, dés lors que positions, vitesses et interactions des particules sont connues en
Dynamique Moléculaire. Cependant, comme montré ici, il serait erroné d’appliquer ces résultats a une classe de particules dans
un milieu hétérogéne sans I'ajout d'un tenseur viriel intérieur croisé, en plus du tenseur viriel intérieur propre et du tenseur
énergie cinétique relatifs a cette classe de particBas: citer cet article: P. Jouanna, L. Pédesseau, C. R. Mecanique 332
(2004).
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1. Introduction
1.1. Classical continuum approach of the stress tensor and partial stress tensor

In classical continuum mechanics, the stress temsesults from the first Euler’s law [1] applied to the Cauchy’s
tetrahedron [2], in the classical non-polar case [3], section D. Stress, | and Il, pp. 530-568. This tensor allows
one to specify the stress vectign) which is applied at any point of the surface of any arbitrary volume. In
heterogeneous media, in presencéloflifferent constituents, attempts have been made to introduce the notion
of partial stresses by Duhem, Reynolds, Jaumann, Prigogine, Truesdell and Toupin [3], section D. Stress, §215 and
corresponding footnotes, pp. 567-568. These attempts were essentially applied to mixtures or to porous media.
Finally, a generalised theory was developed for overcoming discrepancies when writing fundamental principles
[4,5] in the most general case of heterogeneous media.

However, the use of partial stresses, as formally defined in the preceding theories, is facing in practice three
levels of difficulties. Firstly, a quantification of partial stresses is hot generally accessible to instrumentation and the
experimental behaviour relationships of the different constituents cannot be established. Moreover, relationships
relative to one constituent depend on all the other constituents. Finally the generation of behaviour laws, to be
implemented in pure phenomenological models, appears to be a dream in complex heterogeneous media.

The above dilemma are fundamentally linked to the description of the matter as a black box. For penetrating
this black box, homogenisation techniques are of great help. However, they face, at the microscopic level, the same
difficulty, i.e., introducing the behaviour of the different constituents and are often based on assumed atrtificial
model structures.

1.2. Alternative approach by statistical physics

A physical alternative approach, as proposed here, consists in starting deliberately from the discrete description
of the matter at the atomic scale. To come back to coarser scales, the first step consists in converting atomic
properties into average macroscopic entities by statistical physics. At this scale, physical experiments are today
available, using for instance the Atomic Force Microscope; however they face again the same difficulty for
investigating the behaviour of the different constituents.

At this stage, the breakthrough consists in replacing ‘physical experiments’ by ‘numerical experiments’, based
on the knowledge of the atomic structure (X-ray, neutron diffraction, etc.) and the basic atomic interactions given
by fundamental physics (Ab Initio). Such an approach is no more a dream due to the huge developmentin the late
years of numerical computing capacities. The main issue is the possibitiaofifying partial stresses based on
average positions and velocities of particles, as obtained by Molecular Dynamics.

This approach is based on the possibility of computing partial stress tensors at the atomic scale whatever the
complexity of the matter may be. Basic statistical physics allows defining an average fluid pressure on a set
of particles at the thermodynamic limit using the virial approach [6]. The stress tensor in a structured matter
considered as homogeneous can be approached by the generalised virial approach [7]. However, it would be entirely
wrong to extend directly the total stress expression to the partial stress of a subset of particles, without including
an extra virial term, as developed hereunder.

2. Extending the generalized virial theorem to heterogeneous media

The generalized virial theorem valuable for an homogeneous structured medium can be extended to an
heterogeneous medium considered as includihgifferent subsetst (x = 71, 7o, ..., 77) of particles, such
as constituents, species or phases. The ‘partial virial teWspeind the ‘partial kinetic energy tensd’. , relative
to the subset including N, particles(i,) are defined as follows:
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with r;, position of particle {;) at timet, f;, force applied to particleif) at time¢, p;; momentum of particle
(ir) attimet, m;; mass of particleif).

Within a heterogeneous medium, the generalized virial theorem can be directly extended to any safbset
particles, stating thahe sum of the partial average virial tensor and twice the partial average kinetic tensor is
equal to naught:

V,+2E,.,=0 3)

This property can be verified considering the Hamilton—Jacobi equations of the microscopic movement of any
particle belonging to the subsetgiven by:

drin Pix

= 4
dr mir ( )
dpin
—— =fix 5
& (5)

The material derivative of the tensorial product of the position vegtpby the momentum vectqr;, can be
written:

d dp; dr; ir @ Pi

g (im ©Pix) =Tiz ® 2;” + g @ Pir =rm®fm+% (6)
Summing up on th&/,; particles of the subset leads to:

Nm Nm Nm

’Z g (i ®Pin) = _Z Fix ®fix + ’Z % =V, +2Ex (7)

ir=1 ir=1 ir=1

The time average valuEf‘fT’Tzl %(rm ® pir) of the first member of this expression tends to zero for the same

reason as in the case of a homogeneous medium [6] and, according to the assumption of ergodicity at the
macroscopic equilibrium, time average and ensemble average are equal, leading to the extension of the generalized
virial theorem to any subset.

3. Internal and external decomposition of thevirial tensor relativeto a subset =

In the case of a structured heterogeneous medium, the force applied to a particléelonging to the subset
7 within the volumev, can be subdivided into:

— anexternal force ¢; applied by external atoms of the volurme

— ‘self’ internal forces f;; applied to the particlé € = by the N, — 1 particlesj € = belonging to the same
subsetr within the volumev,

— ‘cross internal forces f;; applied to the particlé € = by particlesk ¢ 7= belonging to other subsets within the
volumev.
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The total force applied to particies = can be written:
fi=¢;+> fij+ Y fu (withthe conventior;; = 0) (8)
j k
Thus, the virial tensor in a heterogeneous medium can be split into three tensors:
doriefi=) e, +> > niefi+> Y rief 9)
iemw iemw iem jemw iem k¢n

short notation$ ., or>_ ., being used for summations on particles belonging to the subaet short notation
Zk¢n for a summation on all particles, except for particles belonging to the sabset

This expression leads to defining the ‘partial external virial teriggr,,,,, the ‘partial self internal virial tensor’
V . .int @and the ‘partial cross internal virial tens&f’__;; as follows:

Vieet= D 1 ®9; (10)
iemw
—7171 int = Z Z r® fl] (11)
iem jem
—7171 “int — Z Z r® fzk (12)
iem k¢

Thus the generalized virial theorem relative to one subsaita heterogeneous medium can be written:

Voextt Yorint T Yoraint + ZET[ c= zn ext T zmr int T znn’ int T zEn =0 (13)
with:
Vo= <Z rN® <p,-> (average external virial tensor relativestd (14)
iem

Vorint = <Z done® f,]> (average self internal virial tensor relativest) (15)

iemw jemw
Vorint = <Z dorw® f,k> (average cross internal virial tensor relativertp (16)

iemw k¢m

pz X Pi I .

E,. (average kinetic energy tensor relativertp a7

iemr

Applied to the whole set of th&/ particles, the total virial tensor becomes identical to the virial tensor of an
homogeneous medium, because in that case the set of pakti¢lés; U o U --- U rp7) is empty and the total
cross virial tensor vanishes.

4. External virial tensor and partial stresstensor

The external forceg,,, due to external atoms on particles belonging to the subsan be divided into ‘contact
forcese;, cont applied to internal atoms e (x cony in the vicinity of the boundary, and ‘volume forces, o/’
applied by long range forces to internal atoyns (;r vol) within volumev. Thus the average external virial tensor
can be split into an average external virial tenBgg contdue to contact forces and an average external virial tensor
Vextvol due to long range forces:
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V v exttot=Vr extcont+ Vo extvol = < Z lin @ Qix cont> + < Z lig @ Q;x vol> (18)

iex cont iem vol

Let us consider thads element on the boundary of the whole set of partialdseing the external normal vector at
positionr and ds the element surface. In the heterogeneous medium, the internal particles belonging to the particles
of the subsetr being in the vicinity of the boundary apply an average fokgg,) on the boundary elementds,

given by:

(@ix) =0 ,nds (19)

whereg , is by definition the partial stress tensor relative to the subsetith the usual sign conventions.
The expression o¥ extcontcan thus be written:

iem cont

Vnextcont£< Z lin ®¢incont>:%rin ®o nds (20)
S

A demonstration similar to the demonstration used in the case of a homogeneous medium [7], Subsection 3.2, leads
to:

vgn < Z lin @ Qir cont> (21)
iem cont
Finally,
‘77r exttot = ‘77r extcontt Vn extvol = UQI[ + < Z liz ® Qi vol> (22)
iem vol

5. Expression of theinternal virial tensor and stresses
5.1. Partial self internal virial tensor of a subset =

The partial self internal virial tensor, relative to the particles belonging to a sahdstgiven in the case of
2-body interactions by:

Virint = er ®fij = ZZ(r rj)®fij (23)

iemw jemw ten jem

The expression of the partial internal tensor does not depend on the origin of the co-ordinates of the reference
frame, because this tensor depends on the relative position of particles.

5.2. Partial crossinternal virial

The preceding treatment cannot be applied to the partial cross internal virial as defined by (16) because indices
andk are assigned to distinct sets of particles andever appears in the first summationioirhus the expression
of the cross internal virial tensor cannot be written in function of the relative co-ordimates () of the particles
and remains in the definition form:

Vorine =YY i ®f; (24)

iemw k¢m
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The partial cross internal tensor appears to depend on the origin of the co-ordinates. Indeed, if the reference frame
Oxyz becomes)’x’y’z’, the position vector; of a particle becomes and a virial tensoV is modified toV’ as
follows:

l:er®f,»=2ri®fi+ZO’0®f,»=y+0/0®Zfi (25)
1 4 L L
However if the inertia center of the particles considered is statistically at rest or in a steady movement, as assumed
in standard statistical physics, the average valud; = 0. ThusV’' =V, i.e., the average virial tensor becomes
independent of the origin of co-ordinates in the chosen inertial frame.
The above statement can be applied to the cross internal virial tensor, considering that if the average expression
> fi = 0 on the total medium, then statistically the center of inertia of a subset of particles belonging to a subset

7 remains at rest or in a steady movement, e, .. f; = 0. Thus according to the above assumptions, the average
partial cross virial tensor does not depend on the choice of the origin of co-ordinates.

5.3. Computation of the partial stress relative to a subset

Thus the generalized virial theorem extended to a subsgs expressed by (3), with the expression (11) of
V . -int» Plus the expression (12) of . int and the expression (22), leads to the following expression of the
transpose stress tensor:

QZ=%[%ZZ(H—l’j)®fij+zzfi®fik+2%i|—%< Z Mix ®¢invol> (26)

ien jem ien k¢n ienr iem vol

Discussion:

(i) The second term in the right-hand side memtgn) > ;.. > 4, i ® fix is a term which does not appear in
the expression of the total stress. Forgetting this term could generate totally wrong results, because it can be of
first order as compared to other terms. For instance in a partially dried clay, the partial pressure of water can
be of hundreds of bars, even if the total pressure is negligible.

(i) The last term of the right hand side membe(1/v)(} ;. voiTiz ® @iz vol) is related to long range external
forcesg,, vo- If this term is neglected, the transpose of the partial teadorelative to the subset is given
when positions, velocities and interactiofas and f;; of the particles are given by a standard Molecular
Dynamics. However, it must be emphasized that neglecting this last term may be incorrect in a molecular
simulation, for instance in presence of long range Coulomb interactions, for instance evaluated by Ewald sums
using a periodic boundary technique. In that case the cluster, where the stress is computed, is limited to the
central box and long range forces, issued from atoms of periodically duplicated boxes, act as external volume
forces.

5.4. Total stress

Applying (26) to theN particles of the total medium gives the total stress of the heterogeneous medium. This
expression is similar to the expression of the stress obtained for a homogeneous medium, because the summation
on the total medium of the second term in the right-hand side member of (26) is equal to zero, the set of particles
k¢ (r1UmpU---Ump) becoming empty.

Assuming the long range forces to be negligible, it comes:

QTZ%E 5 Y Gomeh+ Y w] 27)

m
ie(mUmoU---Umpp) je(mrUmaU---Umr) ie(mUmoU---Umpy) !
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5.5. Additivity of partial stresses

Summing up on all the subsets(w =1, ..., IT) the partial stresses (26), assuming here long range forces to
be negligible, leads to:

?jd:i{ [ Y'Y m—rpeh+Y. Y etk ®fk+2pl®pl“ (28)

iem jemw iem k¢m iem

According to the identity:

n=I1
Y Y rniefu=0 (29)

=1 ien k¢n

it comes:
n=II n=II p ® p
IBES I BCENLITED D IS R |
r=1 r=1 iemw jemw iemw k¢m iemw
171 T e pi ® Pi
=;[§ > Y, Fi—rpef+ ) m—} (30)
ie(mUmoU---Unpr) je(mUmoU---Umr) i€(mUmoU---Umy)
which proves that the summation of the partial stresses leads, under the above assumption, to the total stress:
n=II
Y ar=a' (31)
r=1

This is consistent with physical intuition. The total stress is by definition the action on the box wall of particles
N1 of subset 1N of subset 2, .., N, of subsetr, ..., N of subsetl7. Thus the total stress is equal to the sum
of the action of all the particles. As the action of the different particles is defined here as the partial stress, the total
stress must be equal to the sum of the partial stresses.

The apparent obviousness of this result is worth thinking over. The first comment is that partial stresses can be
different from zero, even if the total stress is equal to zero. Such a situation is the case of a structured cluster placed
in the void for instance.

The second comment concerns fluids. It is classical to define the so-called ‘partial pressafrie species
as the product of the total pressureby the mole fraction,; of the species.

qr =Xz Pt (32)

Except in the case where particles have no mutual interactions, this so-called ‘partial prgsssidifferent from
the partial pressurg;, which is defined here as a particular case of the temsoin the case of a fluid. Owing to
the identity:

X1+x2+x7 +--+xg=1 (33)

summing up these so-called ‘partial pressures’ leads also to the total pressure:
Y an=P (34)
T

Even if this relation looks like a special case of (31), its proof and its meaning are, in general, entirely different.



312 P. Jouanna, L. Pédesseau / C. R. Mecanique 332 (2004) 305-312

6. Conclusion

The generalised virial theorem extended to structured heterogeneous media leads to the transpose partial stress
tensor, relative to any subset of constituents, by adding, in a unit volume, the average partial self internal virial
tensor, twice the average partial kinetic energy tensor, the average partial cross internal virial tensor and a possible
long range forces term. For the sake of simplicity, 2-body interactions are assumed in all the above developments.
However an extension of these concepts is possible in the presence of 3-body interactions [8].

The main issue here is to give to partial stresses a physical meaning via a Molecular Dynamics numerical
experiment, when a phenomenological approach poses only their formal definition and when a physical
experimentation is not possible. If necessary, these partial stresses can feed an homogenisation process to come
back to a macro scale. Partial stresses are computed under the equilibrium assumption of statistical physics,
this restriction being consistent with their status of state variable, but their expression is not affected by a
macroscopic evolution which is very slow as compared to the motion of particles. Their divergence, as stated
in a classical momentum balance equation, gives in fact a macroscopic information on momentum exchanges
between particles at the atomic scale. However, this contribution has not to be confused, in the same balance
equation, with the volumetric rate of momentum exchanges between constituents, occurring in a non-equilibrium
macroscopic diffusion movement. Briefly, the divergence of partial stresses obtained by statistical physics gives
a global information on momentum exchanges between constituents at the atomic scale, in the same manner as
temperature does for the kinetic energy of particles.

In practice, quantified partial stresses can be used as criteria in heterogeneous media, as total stress in
homogeneous media. For instance, the cohesion of a structured medium in presence of a fluid with additives
can be quantified using the partial tensor relative to the solid. Similarly the degree of interaction between different
species in an alloy can be quantified by their partial tensors. The consistency of a gel depending on additives can
be estimated in the same manner, etc.

Finally, instead of being a competitive treatment, statistical physics becomes today a fully complementary
approach to classical mechanics, bringing information from ‘numerical experiments’ at the atomic level, possibly
through homogenisation techniques, up to the phenomenological level.
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