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Abstract

The total stress tensor in a structured or non-structured medium can be obtained by a direct statistical approach
generalized virial theorem, without any reference to a potential function, as soon as positions, velocities and interactio
particles are given by Molecular Dynamics. However, as shown here, it would be wrong to apply these results to a gi
of particles in an heterogeneous medium without adding a cross internal virial tensor to the self internal virial tensor
partial kinetic energy tensor relative to this class of particles.To cite this article: P. Jouanna, L. Pèdesseau, C. R. Mecanique
332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Contraintes partielles en milieux hétérogènes par une approche statistique. Le tenseur total des contraintes dans
milieu structuré ou non-structuré peut être obtenu par une approche statistique directe à l’aide du théorème du viriel g
sans référence aucune à une fonction potentiel, dès lors que positions, vitesses et interactions des particules sont
Dynamique Moléculaire. Cependant, comme montré ici, il serait erroné d’appliquer ces résultats à une classe de parti
un milieu hétérogène sans l’ajout d’un tenseur viriel intérieur croisé, en plus du tenseur viriel intérieur propre et du
énergie cinétique relatifs à cette classe de particules.Pour citer cet article : P. Jouanna, L. Pèdesseau, C. R. Mecanique 332
(2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

1.1. Classical continuum approach of the stress tensor and partial stress tensor

In classical continuum mechanics, the stress tensorσ results from the first Euler’s law [1] applied to the Cauch
tetrahedron [2], in the classical non-polar case [3], section D. Stress, I and II, pp. 530–568. This tenso
one to specify the stress vectort(n) which is applied at any pointr of the surface of any arbitrary volume.
heterogeneous media, in presence ofΠ different constituentsπ , attempts have been made to introduce the no
of partial stresses by Duhem, Reynolds, Jaumann, Prigogine, Truesdell and Toupin [3], section D. Stress,
corresponding footnotes, pp. 567–568. These attempts were essentially applied to mixtures or to porou
Finally, a generalised theory was developed for overcoming discrepancies when writing fundamental pr
[4,5] in the most general case of heterogeneous media.

However, the use of partial stresses, as formally defined in the preceding theories, is facing in practi
levels of difficulties. Firstly, a quantification of partial stresses is not generally accessible to instrumentation
experimental behaviour relationships of the different constituents cannot be established. Moreover, rela
relative to one constituent depend on all the other constituents. Finally the generation of behaviour law
implemented in pure phenomenological models, appears to be a dream in complex heterogeneous media

The above dilemma are fundamentally linked to the description of the matter as a black box. For pen
this black box, homogenisation techniques are of great help. However, they face, at the microscopic level,
difficulty, i.e., introducing the behaviour of the different constituents and are often based on assumed a
model structures.

1.2. Alternative approach by statistical physics

A physical alternative approach, as proposed here, consists in starting deliberately from the discrete de
of the matter at the atomic scale. To come back to coarser scales, the first step consists in convertin
properties into average macroscopic entities by statistical physics. At this scale, physical experiments a
available, using for instance the Atomic Force Microscope; however they face again the same difficu
investigating the behaviour of the different constituents.

At this stage, the breakthrough consists in replacing ‘physical experiments’ by ‘numerical experiments
on the knowledge of the atomic structure (X-ray, neutron diffraction, etc.) and the basic atomic interaction
by fundamental physics (Ab Initio). Such an approach is no more a dream due to the huge development in
years of numerical computing capacities. The main issue is the possibility ofquantifying partial stresses based on
average positions and velocities of particles, as obtained by Molecular Dynamics.

This approach is based on the possibility of computing partial stress tensors at the atomic scale wha
complexity of the matter may be. Basic statistical physics allows defining an average fluid pressure o
of particles at the thermodynamic limit using the virial approach [6]. The stress tensor in a structured
considered as homogeneous can be approached by the generalised virial approach [7]. However, it would b
wrong to extend directly the total stress expression to the partial stress of a subset of particles, without in
an extra virial term, as developed hereunder.

2. Extending the generalized virial theorem to heterogeneous media

The generalized virial theorem valuable for an homogeneous structured medium can be extende
heterogeneous medium considered as includingΠ different subsetsπ (π = π1,π2, . . . , πΠ) of particles, such
as constituents, species or phases. The ‘partial virial tensor’Vπ and the ‘partial kinetic energy tensor’E cπ relative
to the subsetπ includingNπ particles(iπ ) are defined as follows:
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Vπ =
Nπ∑

iπ=1

riπ ⊗ fiπ noted
∑
i∈π

ri ⊗ fi (1)

E cπ =
Nπ∑

iπ=1

piπ ⊗ piπ

2miπ

noted
∑
i∈π

pi ⊗ pi

2mi

(2)

with riπ position of particle (iπ ) at timet , fiπ force applied to particle (iπ ) at timet , piπ momentum of particle
(iπ ) at timet , miπ mass of particle (iπ ).

Within a heterogeneous medium, the generalized virial theorem can be directly extended to any subπ of
particles, stating thatthe sum of the partial average virial tensor and twice the partial average kinetic tensor is
equal to naught:

Vπ + 2Ecπ = 0 (3)

This property can be verified considering the Hamilton–Jacobi equations of the microscopic movemen
particle belonging to the subsetπ given by:

driπ

dt
= piπ

miπ

(4)

dpiπ

dt
= fiπ (5)

The material derivative of the tensorial product of the position vectorriπ by the momentum vectorpiπ can be
written:

d

dt
(riπ ⊗ piπ ) = riπ ⊗ dpiπ

dt
+ driπ

dt
⊗ piπ = riπ ⊗ fiπ + piπ ⊗ piπ

miπ

(6)

Summing up on theNπ particles of the subsetπ leads to:

Nπ∑
iπ=1

d

dt
(riπ ⊗ piπ ) =

Nπ∑
iπ=1

riπ ⊗ fiπ +
Nπ∑

iπ=1

piπ ⊗ piπ

miπ

= Vπ + 2Ecπ (7)

The time average value
∑Nπ

iπ=1
d
dt

(riπ ⊗ piπ ) of the first member of this expression tends to zero for the s
reason as in the case of a homogeneous medium [6] and, according to the assumption of ergodici
macroscopic equilibrium, time average and ensemble average are equal, leading to the extension of the ge
virial theorem to any subsetπ .

3. Internal and external decomposition of the virial tensor relative to a subset π

In the case of a structured heterogeneous medium, the force applied to a particlei ∈ π , belonging to the subse
π within the volumev, can be subdivided into:

– anexternal force ϕi applied by external atoms of the volumev,
– ‘self’ internal forces fij applied to the particlei ∈ π by theNπ − 1 particlesj ∈ π belonging to the sam

subsetπ within the volumev,
– ‘cross’ internal forces fik applied to the particlei ∈ π by particlesk /∈ π belonging to other subsets within th

volumev.
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The total force applied to particlei ∈ π can be written:

fi = ϕi +
∑
j

fij +
∑

k

fik (with the conventionfii = 0) (8)

Thus, the virial tensor in a heterogeneous medium can be split into three tensors:∑
i∈π

ri ⊗ fi =
∑
i∈π

ri ⊗ ϕi +
∑
i∈π

∑
j∈π

ri ⊗ fij +
∑
i∈π

∑
k/∈π

ri ⊗ fik (9)

short notations
∑

i∈π or
∑

j∈π being used for summations on particles belonging to the subsetπ and short notation∑
k/∈π for a summation on all particles, except for particles belonging to the subsetπ .
This expression leads to defining the ‘partial external virial tensor’Vπ ext, the ‘partial self internal virial tensor

Vππ int and the ‘partial cross internal virial tensor’Vππ ′ int as follows:

Vπ ext
�=

∑
i∈π

ri ⊗ ϕi (10)

Vππ int
�=

∑
i∈π

∑
j∈π

ri ⊗ fij (11)

Vππ ′ int
�=

∑
i∈π

∑
k/∈π

ri ⊗ fik (12)

Thus the generalized virial theorem relative to one subsetπ of a heterogeneous medium can be written:

Vπ ext + Vππ int + Vππ ′ int + 2Eπ c = Vπ ext + Vππ int + Vππ ′ int + 2Eπ c = 0 (13)

with:

Vπ ext
�=

〈∑
i∈π

ri ⊗ ϕi

〉
(average external virial tensor relative toπ) (14)

Vππ int
�=

〈∑
i∈π

∑
j∈π

ri ⊗ fij

〉
(average self internal virial tensor relative toπ) (15)

Vππ ′ int
�=

〈∑
i∈π

∑
k/∈π

ri ⊗ fik

〉
(average cross internal virial tensor relative toπ) (16)

Eπ c
�=

〈∑
i∈π

pi ⊗ pi

2mi

〉
(average kinetic energy tensor relative toπ) (17)

Applied to the whole set of theN particles, the total virial tensor becomes identical to the virial tensor o
homogeneous medium, because in that case the set of particlesk /∈ (π1 ∪ π2 ∪ · · · ∪ πΠ) is empty and the tota
cross virial tensor vanishes.

4. External virial tensor and partial stress tensor

The external forcesϕiπ due to external atoms on particles belonging to the subsetπ can be divided into ‘contac
forcesϕiπ cont’ applied to internal atomsi ∈ (π cont) in the vicinity of the boundary, and ‘volume forcesϕjπ vol’
applied by long range forces to internal atomsj ∈ (π vol) within volumev. Thus the average external virial tens
can be split into an average external virial tensorV extcontdue to contact forces and an average external virial te
V extvol due to long range forces:
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V π ext tot= V π extcont+ V π extvol
�=

∑
i∈π cont

riπ ⊗ ϕiπ cont +
∑

i∈π vol

riπ ⊗ ϕiπ vol (18)

Let us consider then ds element on the boundary of the whole set of particles,n being the external normal vector
positionr and ds the element surface. In the heterogeneous medium, the internal particles belonging to the
of the subsetπ being in the vicinity of the boundary apply an average force〈ϕiπ 〉 on the boundary elementn ds,
given by:

〈ϕiπ 〉 =̂σ πn ds (19)

whereσ π is by definition the partial stress tensor relative to the subsetπ , with the usual sign conventions.
The expression ofV extcontcan thus be written:

V π extcont
�=

〈 ∑
i∈π cont

riπ ⊗ ϕiπ cont

〉
=

∮
s

riπ ⊗ σ π n ds (20)

A demonstration similar to the demonstration used in the case of a homogeneous medium [7], Subsection
to:

vσ T
π =

〈 ∑
i∈π cont

riπ ⊗ ϕiπ cont

〉
(21)

Finally,

V π ext tot= V π extcont+ V π extvol = vσ T
π +

〈 ∑
i∈π vol

riπ ⊗ ϕiπ vol

〉
(22)

5. Expression of the internal virial tensor and stresses

5.1. Partial self internal virial tensor of a subset π

The partial self internal virial tensor, relative to the particles belonging to a subsetπ , is given in the case o
2-body interactions by:

Vππ int
�=

∑
i∈π

∑
j∈π

ri ⊗ fij = 1

2

∑
i∈π

∑
j∈π

(ri − rj ) ⊗ fij (23)

The expression of the partial internal tensor does not depend on the origin of the co-ordinates of the r
frame, because this tensor depends on the relative position of particles.

5.2. Partial cross internal virial

The preceding treatment cannot be applied to the partial cross internal virial as defined by (16) becausei
andk are assigned to distinct sets of particles andrk never appears in the first summation oni. Thus the expressio
of the cross internal virial tensor cannot be written in function of the relative co-ordinates (ri − rj ) of the particles
and remains in the definition form:

Vππ ′ int
�=

∑
i∈π

∑
k/∈π

ri ⊗ fij (24)
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The partial cross internal tensor appears to depend on the origin of the co-ordinates. Indeed, if the referen
Oxyz becomesO ′x ′y ′z′, the position vectorri of a particle becomesr′

i and a virial tensorV is modified toV′ as
follows:

V′ =
∑

i

r′
i ⊗ fi =

∑
i

ri ⊗ fi +
∑

i

−−−→
O ′O ⊗ fi = V + −−−→

O ′O ⊗
∑

i

fi (25)

However if the inertia center of the particles considered is statistically at rest or in a steady movement, as
in standard statistical physics, the average value

∑
i fi = 0. ThusV′ = V, i.e., the average virial tensor becom

independent of the origin of co-ordinates in the chosen inertial frame.
The above statement can be applied to the cross internal virial tensor, considering that if the average ex∑

i fi = 0 on the total medium, then statistically the center of inertia of a subset of particles belonging to a
π remains at rest or in a steady movement, i.e.,

∑
i∈π fi = 0. Thus according to the above assumptions, the ave

partial cross virial tensor does not depend on the choice of the origin of co-ordinates.

5.3. Computation of the partial stress relative to a subset π

Thus the generalized virial theorem extended to a subsetπ as expressed by (3), with the expression (11
Vππ int, plus the expression (12) ofVππ ′ int and the expression (22), leads to the following expression o
transpose stress tensor:

σT
π = 1

v

[
1

2

∑
i∈π

∑
j∈π

(ri − rj ) ⊗ fij +
∑
i∈π

∑
k/∈π

ri ⊗ fik +
∑
i∈π

pi ⊗ pi

mi

]
− 1

v

〈 ∑
i∈π vol

riπ ⊗ ϕiπ vol

〉
(26)

Discussion:

(i) The second term in the right-hand side member(1/v)
∑

i∈π

∑
k/∈π ri ⊗ fik is a term which does not appear

the expression of the total stress. Forgetting this term could generate totally wrong results, because it
first order as compared to other terms. For instance in a partially dried clay, the partial pressure of w
be of hundreds of bars, even if the total pressure is negligible.

(ii) The last term of the right hand side member−(1/v)〈∑i∈π vol riπ ⊗ ϕiπ vol〉 is related to long range extern
forcesϕiπ vol. If this term is neglected, the transpose of the partial tensorσT

π relative to the subsetπ is given
when positions, velocities and interactionsfij and fik of the particles are given by a standard Molecu
Dynamics. However, it must be emphasized that neglecting this last term may be incorrect in a mo
simulation, for instance in presence of long range Coulomb interactions, for instance evaluated by Ewa
using a periodic boundary technique. In that case the cluster, where the stress is computed, is limite
central box and long range forces, issued from atoms of periodically duplicated boxes, act as externa
forces.

5.4. Total stress

Applying (26) to theN particles of the total medium gives the total stress of the heterogeneous medium
expression is similar to the expression of the stress obtained for a homogeneous medium, because the s
on the total medium of the second term in the right-hand side member of (26) is equal to zero, the set of
k /∈ (π1 ∪ π2 ∪ · · · ∪ πΠ) becoming empty.

Assuming the long range forces to be negligible, it comes:

σT = 1

v

[
1

2

∑
i∈(π1∪π2∪···∪πΠ)

∑
j∈(π1∪π2∪···∪πΠ)

(ri − rj ) ⊗ fij +
∑

i∈(π1∪π2∪···∪πΠ)

pi ⊗ pi

mi

]
(27)
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5.5. Additivity of partial stresses

Summing up on all the subsetsπ (π = 1, . . . ,Π) the partial stresses (26), assuming here long range forc
be negligible, leads to:

π=Π∑
π=1

σT
π =

π=Π∑
π=1

{
1

v

[
1

2

∑
i∈π

∑
j∈π

(ri − rj ) ⊗ fij +
∑
i∈π

∑
k/∈π

ri ⊗ fik +
∑
i∈π

pi ⊗ pi

mi

]}
(28)

According to the identity:

π=Π∑
π=1

∑
i∈π

∑
k/∈π

ri ⊗ fik = 0 (29)

it comes:

π=Π∑
π=1

σT
π =

π=Π∑
π=1

{
1

v

[
1

2

∑
i∈π

∑
j∈π

(ri − rj ) ⊗ fij +
∑
i∈π

∑
k/∈π

ri ⊗ fik +
∑
i∈π

pi ⊗ pi

mi

]}

= 1

v

[
1

2

∑
i∈(π1∪π2∪···∪πΠ)

∑
j∈(π1∪π2∪···∪πΠ)

(ri − rj ) ⊗ fij +
∑

i∈(π1∪π2∪···∪πΠ)

pi ⊗ pi

mi

]
(30)

which proves that the summation of the partial stresses leads, under the above assumption, to the total st

π=Π∑
π=1

σT
π = σT (31)

This is consistent with physical intuition. The total stress is by definition the action on the box wall of pa
N1 of subset 1,N2 of subset 2,. . . , Nπ of subsetπ, . . . ,NΠ of subsetΠ . Thus the total stress is equal to the s
of the action of all the particles. As the action of the different particles is defined here as the partial stress,
stress must be equal to the sum of the partial stresses.

The apparent obviousness of this result is worth thinking over. The first comment is that partial stresse
different from zero, even if the total stress is equal to zero. Such a situation is the case of a structured clust
in the void for instance.

The second comment concerns fluids. It is classical to define the so-called ‘partial pressure’qπ of the speciesπ
as the product of the total pressurePt by the mole fractionxπ of the speciesπ .

qπ = xπPt (32)

Except in the case where particles have no mutual interactions, this so-called ‘partial pressure’qπ is different from
the partial pressurepπ , which is defined here as a particular case of the tensorσ π in the case of a fluid. Owing to
the identity:

x1 + x2 + xπ + · · · + xΠ = 1 (33)

summing up these so-called ‘partial pressures’ leads also to the total pressure:
∑
π

qπ = Pt (34)

Even if this relation looks like a special case of (31), its proof and its meaning are, in general, entirely diffe
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6. Conclusion

The generalised virial theorem extended to structured heterogeneous media leads to the transpose pa
tensor, relative to any subset of constituents, by adding, in a unit volume, the average partial self intern
tensor, twice the average partial kinetic energy tensor, the average partial cross internal virial tensor and a
long range forces term. For the sake of simplicity, 2-body interactions are assumed in all the above develo
However an extension of these concepts is possible in the presence of 3-body interactions [8].

The main issue here is to give to partial stresses a physical meaning via a Molecular Dynamics nu
experiment, when a phenomenological approach poses only their formal definition and when a p
experimentation is not possible. If necessary, these partial stresses can feed an homogenisation proces
back to a macro scale. Partial stresses are computed under the equilibrium assumption of statistical
this restriction being consistent with their status of state variable, but their expression is not affecte
macroscopic evolution which is very slow as compared to the motion of particles. Their divergence, as
in a classical momentum balance equation, gives in fact a macroscopic information on momentum ex
between particles at the atomic scale. However, this contribution has not to be confused, in the same
equation, with the volumetric rate of momentum exchanges between constituents, occurring in a non-equ
macroscopic diffusion movement. Briefly, the divergence of partial stresses obtained by statistical physi
a global information on momentum exchanges between constituents at the atomic scale, in the same m
temperature does for the kinetic energy of particles.

In practice, quantified partial stresses can be used as criteria in heterogeneous media, as total
homogeneous media. For instance, the cohesion of a structured medium in presence of a fluid with a
can be quantified using the partial tensor relative to the solid. Similarly the degree of interaction between d
species in an alloy can be quantified by their partial tensors. The consistency of a gel depending on addi
be estimated in the same manner, etc.

Finally, instead of being a competitive treatment, statistical physics becomes today a fully complem
approach to classical mechanics, bringing information from ‘numerical experiments’ at the atomic level, p
through homogenisation techniques, up to the phenomenological level.
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