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Abstract

We consider the dynamical stability of horizontal fluid layer, performing harmonic oscillations in vertical direction. The
continued fractions approach allowed us to avoid the conventional restriction to the case of small viscosity and almost-resonant
frequencies. Our numerical results cover a wide range of the parameters (viscosity, amplitude and frequency of the oscillation,
and depth of the layerYo citethisarticle: V.I. Yudovich et al., C. R. Mecanique 332 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

L'exitation paramétrique des ondes sur la surface libre d’une couche horizontale de liquide. Nous examinons
l'instabilité dynamique d’une couche horizontale d’un liquide faisant des oscillations harmoniques verticales. L'utilisation des
fractions continues nous a permis déviter les restrictions habituelles de petite viscosité et de fréquences presque résonnantes.
Nous obtenons des résultats numériques pour un large domaine des parametres (la viscosité, 'amplitude et la fréquence des

oscillations, la profondeur de la couchBur citer cet article: V.I. Yudovich et al., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Problem formulation: I ntegro-differential equation

We consider a viscid fluid layer, bounded by a flat horizontal impermeable boundary (zero normal component of
velocity). The second boundary condition can be a non-slip one (rigid wall) or zero tangent stresses (“soft wall”).
We take our interest in flows caused by vertical wall oscillations, governed by theslawA /' (ot) with given
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amplitudeA and frequencw, the functionf is assumed to ber2periodic. In Cartesian coordinate system, rigidly
fixed with the lower boundary, the equations of motion are

v
ot

Herev is the relative velocityp is the pressurg is the liquid densityy is the kinematical viscosity coefficient
andk is the normal unit vector of vertical axiswhich is directed downwards. We denote coordinates as, x3,
and where it is convenient, as y, z; g(t) = go — A& f" (@¢) is the variable acceleration of gravity wheygis
its mean value.

Let us further assume that= H is an impermeable and non-deformable free boundary (“soft wall”), on which
the following conditions are satisfied:

1
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In assumption that the free boundary is defined by an equatiofi(x1, x2, t) we write the boundary conditions
onitas

ax1’  9xo
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Here{ is the inner normal vector, = £/|£] is its unit vector;pg is the atmospheric pressurg; are the viscous
stress tensor componens;is the coefficient of surface tensiofT;is the mean curvature, so that

A EDEn, + (L4 ED)Emn — 256ty
a (1+&2 +£5)%2

In our paper we concentrate on fluid flows periodiccin x2 directions with periodd.1 and Ly, respectively.
Besides, we assume that the mean depth of the layer is prescribed and edlizd® tihat

r (4)
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Problem (1)—(5) has a solution, corresponding to a relative equilibrium
vW=0,  p’=pgz+po.  §°=0 (6)

We consider its stability with the use of the linearization method. Substitutiag® +u, p = p° + P, £ =
£9 4+ ¢ and converting to the dimensionless variables, we obtain the following problem for the infinitesimal
disturbances, P, ¢

ou
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ou
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The following dimensionless parameters and functions are usedv7/L? is the viscosity,w = &T is
the frequency of modulationQ(w?) = Qo — aw?f”(wt) (a = A/L is the amplitude of modulation) is the
variable acceleration of gravitf)o = go7?/L is its mean valuer-aw? f” (wt) is its modulation with amplitude
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aw?, C =00T?/pL3is the surface tension coefficient= H/L is the mean layer deptls, is the length scale and
T is the time scale.

Let us assume, for a momemtt) to be a known function, discard the dynamic boundary condition (9) and
find the solution to the system (7), (8), (10). Then, substitution of the obtained velocity faeid the pressurg
into (9), and separation of the variablegxX1, x2, 1) = (1) €@, x = (x1, x2), & = (a1, a2) is the wave vector)
leads to the integro-differential equation for determination of the motion of the free boundary, that is, of the
amplitude functiom(¢) (see [1,2] for more details). In the case of the layer of a finite depth, it has the form

8 2
77n+4lU7t+th%(aQ(a)t)+Ca3)n=%th% / K(t — s)nsds (1)
—00

S 2,,2
K@) =y Y Lo e n @A 0(or) = Qo — aw? f(01)
m=1 1+ m2y2 ’

Herep = 8a?, y = 2n» Wherea is the module of the wave vector.
For an infinitely deep layer the integro-differential equation is reduced to

o
d ra—ut
S[eMnit —1)]
M+ dun; + (4u? + a Q(wt) + Co®)n + 4u¥? / glemnt -0l g (12)
ATTT
This equation was obtained by Cherepanov [3] for the gg&g) = coswr and has the form:

o0

d ra—put
gl —1)]
Ny + 4un, + (4/L2 + 92+ 2q coswt)n + 4u3/2/ @ - 7

JrT

Here22 = Qou + Ca?® is the square of frequency of stationary gravitational-capillary waves @re@»%c .

dr=0 (13)

2. Floquet solutions. Continued fractions method

From now on, we assume th#{w?) = coswt. First, we turn our attention to the layer of infinite depth. The
Floquet solutions of equation (13) with multiplierare searched for as an infinite sum

+00
Ny =e" Y c, " (14)

n=—0o
Substitution of (14) into (13) results in an infinite system of linear algebraic equations for determination of
unknown coefficients,
Mycn = —q(cp-1+cny1), n=0,%1, ... (15)
M, = My(0) = (0 +inw + 21)* + 2% — 4u%20, (16)
.. o; +nw
0, = \‘7(0, + w2+ (07 + na))z(cosg +isin %) ¢ = arctg (;r T

Expression (16) gives the equality, (o) = M_,(5), where the bar stands for complex conjugation.
In the case of a finite depthwe can also obtain the same three-diagonal system (15), but with the expression
for M,, being

M,(c) = (o +inw+ 2;1,)thhz + 02— 4,11,3/2\/0 +inw + ,u,Cth(,an> (18)
14 14

17)
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whereg, = /(o +inw+ u)/u, Rey/o +inw + u > 0. Expression (18) coincides with (16) when— 0.
For three-diagonal systems it turns out to be possible to write a dispersion relati@rirfahe explicit form
using continued fractions [4,5]:

—Mo + = (19)

M1t Mgt
1 —Mo+--- 1 M_o+---

If o =0 oro =iw/2, the equation (19) can be simplified to the real form. The ease0 corresponds to
disturbances of the periodr2w, and the dispersion equation is
42 B 02

* 2
M2(0) + - --

Re (20)

M1(0) —

The caser = iw/2 corresponds to the neutral disturbances of the double petigd,Zand the corresponding
transcendent equation is

The continued fractions approach can be applied directly to the system of differential equations, for example,
when the lower boundary is a rigid wall, to obtain the similar three-diagonal system (15) with the same general
properties. Only the expression fof;,, (o) is slightly different.

3. High frequency asymptotics

Now we turn to a brief description of the results for the high frequency asymptatiss {) for the layer of
an infinite depth (see [1] for more details). We assumeg so that the vertical oscillations are governed by the
law z = gcosm, whereb is independent of. This results in the equatian= —b sinwt, so that the amplitude
b of oscillations of the velocity is fixed, and the amplitude of oscillation of the heightig® asw — co. We
introduce the new parametef 2 bo. We assume that the length and time scales, as well as the parametefs
and¢ are independent @b. Integro-differential equation in this case is:

&le 0 =9 ’”n(t—S)]

o0
N +4un + (4;1, + 2%+ 2w COSa)t n+ 4,11,3/2/ ds=0 (22)
0

The Krylov—Bogolubov averaging method is then applied to equation (22). We use two timetow andr = wt
is fast. The asymptotic solution= (¢, ) is represented as a sum of a smooth part (which depends only on the
slow time) and of an oscillatory part (which depends on slow and fast times)

- 1.
n(t. 1) =7(t) +—i(t. 1) (23)
The oscillatory part of the asymptotic solution is

n(t, T) = 2¢ cost - 7(t) (24)



V.. Yudovich et al. / C. R. Mecanique 332 (2004) 257262 261

Substituting (24) into (23) and then into (22) and averaging with respect to the fast tilmget an autonomous
integro-differential equation

o
2 2)7 3/2 % a (t_s)]
e + Ay + (dp® + 2%+ 20%) 7 + 4p ds=0 (25)
0

Itis natural to introduce in (25) a new paramemiff = 22 4 2¢?-the square of the effective frequency of the
gravitational-capillary wavesrzgff can be both positive and negative (whgn< 0).

Closer investigation shows that the behavior of the system depends on the param@é{f/uz, which has a
critical valuek, such that ifc > k., then there is oscillatory stability; if @ « < «, then the stability is monotonic;
if ¥ <0, then there is a monotonic instability, and there exist one monotonically growing mode ardi( < 0)
one monotonically decreasing mode. lbebe an eigenvalue, corresponding to the former mode. Bhen —pu
and converges to the continuous spectrum as —1.

4. Fluid movement on the ceiling

Now we discuss some results concerning the ease0, which corresponds to the “upturned layer” (or flow
on a ceiling), where the rigid (or soft) wall is on the upper boundary of the layer, and the free surface is its lower
boundary. The expression for the parametér

Q% Q24202 1 [goT? b2a?
W W us\ L 2

In the case of the normal layatrs always positive. Agg < 0 in the case of upturned layer, there exists such an
interval of parametex thatx is negative. But for any fixed value of parametewhen the intensity of vibration is

so large that the inequality? > 2 (%% — Ca) is satisfiedk becomes positive, that is, the normal mode fades.
One can see from this inequality that no vibration can fully stabilize an upturned layer, but it can stabilize all waves
that are short enough, so that> «,(b). In this casex, can be determined from the same inequality, where the
sign “greater than” is replaced by equality. The described procedure can be repeated for the oscillatory instability,

2
and the corresponding conditian- «, for a given parameter is b2 > 2 (-1 — cq + 5),

(26)

K=

5. Numerical results

Dispersion equations (20), (21) contain the following dimensionless paramgtersia?, y = T 2=

go—Tza + Ca®, w andg = aw?a/2. Further we present the results of numerical solution of Egs. (20) and (21) for the
layers of finite and infinite depth, finite viscosity and arbitrary frequency. The amplitude—frequency characteristics
(g, w) are obtained, as well as the neutral cur¢esw) and (aw, ) with all other parameters fixed. }i = 0,

then Eq. (11) is the well known Mathieu equation. Its properties are described in sufficient details, for example,

in [6]. The resonance points ares, +1 = % n=0,1,..., andwz,+2 = n%l n=0,1,..., 2= _/th %Q One

can easily see that resonant frequencies decrease when the depth decreases. Also, calculations show that the layer
is stabilizing with the growth of viscosity (Fig. 22 = 1, y = 0). If the solid boundary is rigid, then the layer
behaves more stably over the soft case. Further on the influence of vibration on the neutral curves (with viscosity
fixed) is described. It turns out that if the frequency of vibration is small, the layer of a smaller depth is more stable,
than the layer with a large depth. The neutral curves correspondimgd® ando = iw/2, rise as the depth of

the layer decreases. As the frequency of vibration increases, the neutral curves approach to those for the case of an
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Fig. 1. Variation of amplitude of acceleration with the fre- Fig. 2. Variation of the critical amplitude with the fre-
guency of modulation. guency of modulation.

infinite depth. Moreover, the increase of the frequency of vibration displays interesting effects on the layers with
different types of solid wall. If the frequency of vibration is relatively small, the rigid wall layer is more stable than
the soft wall one. However, as the frequency increases, the neutral curves of the rigid wall case become closer and
closer to the neutral curves of the soft wall case (Fig: 2 1, § = 0.5, C =1). On Fig. 2a* denotes critical
amplitude that is minimized with respect to parameter

Also the case of upturned layer, considered in [3], was studied. The curve correspondirg @ooutlines
the instability region which this time lies below the curve. The instability region increases if the depth decreases.
Increase of the frequency of vibration displays stabilizing effects: the curves correspondiggito/2 rise, and
the curves corresponding to= 0 go down. As it was shown by Cherepanov [3], the amplitude on the neutral
curve (critical amplitude) fos = 0 grows asymptotically as/& whena — 0, independently of the frequency of
vibrations. Thus, ifx is not bounded from below (that is, the wave length of disturbances is not bounded from
above), then no vibration can stabilize the layer. For the case of small viscosity, and, respectively, small critical
amplitudes and almost-resonant frequencies our results are in complete agreement with those in [3].
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