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Abstract

We consider the dynamical stability of horizontal fluid layer, performing harmonic oscillations in vertical direction
continued fractions approach allowed us to avoid the conventional restriction to the case of small viscosity and almost
frequencies. Our numerical results cover a wide range of the parameters (viscosity, amplitude and frequency of the o
and depth of the layer).To cite this article: V.I. Yudovich et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’exitation paramétrique des ondes sur la surface libre d’une couche horizontale de liquide. Nous examinons
l’instabilité dynamique d’une couche horizontale d’un liquide faisant des oscillations harmoniques verticales. L’utilisat
fractions continues nous a permis déviter les restrictions habituelles de petite viscosité et de fréquences presque ré
Nous obtenons des résultats numériques pour un large domaine des paramètres (la viscosité, l’amplitude et la fréq
oscillations, la profondeur de la couche).Pour citer cet article : V.I. Yudovich et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Problem formulation: Integro-differential equation

We consider a viscid fluid layer, bounded by a flat horizontal impermeable boundary (zero normal compo
velocity). The second boundary condition can be a non-slip one (rigid wall) or zero tangent stresses (“sof
We take our interest in flows caused by vertical wall oscillations, governed by the lawx3 = Af (ω̃t) with given
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amplitudeA and frequencỹω, the functionf is assumed to be 2π -periodic. In Cartesian coordinate system, rigid
fixed with the lower boundary, the equations of motion are

∂v

∂t
+ (v,∇)v = − 1

ρ
∇p + ν�v + g(t)k, divv = 0 (1)

Herev is the relative velocity,p is the pressure,ρ is the liquid density,ν is the kinematical viscosity coefficien
andk is the normal unit vector of vertical axisz, which is directed downwards. We denote coordinates asx1, x2, x3,
and where it is convenient, asx, y, z; g(t) = g0 − Aω̃2f ′′(ω̃t) is the variable acceleration of gravity whereg0 is
its mean value.

Let us further assume thatz = H is an impermeable and non-deformable free boundary (“soft wall”), on w
the following conditions are satisfied:

v3 = 0,
∂v1

∂x3
+ ∂v3

∂x1
= 0,

∂v2

∂x3
+ ∂v3

∂x2
= 0 (2)

In assumption that the free boundary is defined by an equationz = ξ(x1, x2, t) we write the boundary condition
on it as

v · � = ∂ξ

∂t
, � =

(
− ∂ξ

∂x1
,− ∂ξ

∂x2
,1

)
, (p − p0)ni = τij nj + σ0Γ ni, i = 1,2,3 (3)

Here� is the inner normal vector,n = �/|�| is its unit vector;p0 is the atmospheric pressure;τij are the viscous
stress tensor components;σ0 is the coefficient of surface tension;Γ is the mean curvature, so that

Γ = (1+ ξ2
x1
)ξx2x2 + (1+ ξ2

x2
)ξx1x1 − 2ξx1ξx2ξx1x2

(1+ ξ2
x1

+ ξ2
x2
)3/2 (4)

In our paper we concentrate on fluid flows periodic inx1, x2 directions with periodsL1 andL2, respectively.
Besides, we assume that the mean depth of the layer is prescribed and equals toH , so that

〈ξ〉 = 1

L1L2

L1∫
0

L2∫
0

ξ(x1, x2, t)dx1 dx2 = 0 (5)

Problem (1)–(5) has a solution, corresponding to a relative equilibrium

v0 = 0, p0 = ρg(t)z + p0, ξ0 = 0 (6)

We consider its stability with the use of the linearization method. Substitutingv = v0 + u, p = p0 + P, ξ =
ξ0 + ζ and converting to the dimensionless variables, we obtain the following problem for the infinite
disturbancesu, P , ζ

∂u

∂t
= −∇P + δ�u, divu = 0 (7)

z = 0: u3 = ∂ζ

∂t
,

∂u1

∂x3
+ ∂u3

∂x1
= 0,

∂u2

∂x3
+ ∂u3

∂x2
= 0 (8)

−P + 2δ
∂u3

∂x3
+ C�1ζ − Q(ωt)ζ = 0 (9)

z = h: u3 = 0,
∂u1

∂x3
+ ∂u3

∂x1
= 0,

∂u2

∂x3
+ ∂u3

∂x2
= 0 (10)

The following dimensionless parameters and functions are used:δ = νT /L2 is the viscosity,ω = ω̃T is
the frequency of modulation,Q(ωt) = Q0 − aω2f ′′(ωt) (a = A/L is the amplitude of modulation) is th
variable acceleration of gravity,Q0 = g0T

2/L is its mean value,−aω2f ′′(ωt) is its modulation with amplitude
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aω2, C = σ0T
2/ρL3 is the surface tension coefficient,h = H/L is the mean layer depth,L is the length scale an

T is the time scale.
Let us assume, for a moment,ζ(t) to be a known function, discard the dynamic boundary condition (9)

find the solution to the system (7), (8), (10). Then, substitution of the obtained velocity fieldu and the pressureP
into (9), and separation of the variables (ζ(x1, x2, t) = η(t)ei(α,x), x = (x1, x2), α = (α1, α2) is the wave vector
leads to the integro-differential equation for determination of the motion of the free boundary, that is,
amplitude functionη(t) (see [1,2] for more details). In the case of the layer of a finite depth, it has the form

ηtt + 4µηt + th
π

γ

(
αQ(ωt) + Cα3)η = 8µ2

π
th

π

γ

t∫
−∞

K(t − s)ηs ds (11)

K(s) = γ

∞∑
m=1

m2γ 2

1+ m2γ 2 e−µ(1+m2γ 2)s, Q(ωt) = Q0 − aω2f ′′(ωt)

Hereµ = δα2, γ = π
αh

, whereα is the module of the wave vector.
For an infinitely deep layer the integro-differential equation is reduced to

ηtt + 4µηt + (
4µ2 + αQ(ωt) + Cα3)η + 4µ3/2

∞∫
0

d
dt [e−µtη(t − τ )]√

πτ
dτ = 0 (12)

This equation was obtained by Cherepanov [3] for the casef (ωt) = cosωt and has the form:

ηtt + 4µηt + (4µ2 + Ω2 + 2q cosωt)η + 4µ3/2

∞∫
0

d
dt [e−µtη(t − τ )]√

πτ
dτ = 0 (13)

HereΩ2 = Q0α + Cα3 is the square of frequency of stationary gravitational-capillary waves and 2q = aω2α.

2. Floquet solutions. Continued fractions method

From now on, we assume thatf (ωt) = cosωt . First, we turn our attention to the layer of infinite depth. T
Floquet solutions of equation (13) with multiplierσ are searched for as an infinite sum

η(t) = eσ t
+∞∑

n=−∞
cn einωt (14)

Substitution of (14) into (13) results in an infinite system of linear algebraic equations for determina
unknown coefficientscn

Mncn = −q(cn−1 + cn+1), n = 0,±1, . . . (15)

Mn = Mn(σ) = (σ + inω + 2µ)2 +Ω2 − 4µ3/2Qn (16)

Qn = 4
√
(σr + µ)2 + (σi + nω)2

(
cos

ϕ

2
+ i sin

ϕ

2

)
, ϕ = arctg

σi + nω

σr + µ
(17)

Expression (16) gives the equalityMn(σ) = M−n(σ ), where the bar stands for complex conjugation.
In the case of a finite depthh we can also obtain the same three-diagonal system (15), but with the expr

for Mn being

Mn(σ) = (σ + inω + 2µ)2 cth
π

γ
+ Ω2 − 4µ3/2

√
σ + inω + µcth

(
βn

π

γ

)
(18)
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(σ + inω + µ)/µ, Re

√
σ + inω + µ> 0. Expression (18) coincides with (16) whenγ → 0.

For three-diagonal systems it turns out to be possible to write a dispersion relation forσ in the explicit form
using continued fractions [4,5]:

−M0 + −q2

−M1 + −q2

−M2 + · · ·
= −q2

M−1 + −q2

M−2 + · · ·
(19)

If σ = 0 or σ = iω/2, the equation (19) can be simplified to the real form. The caseσ = 0 corresponds to
disturbances of the period 2π/ω, and the dispersion equation is

Re
q2

M1(0) − q2

M2(0)+ · · ·
= Ω2

2
(20)

The caseσ = iω/2 corresponds to the neutral disturbances of the double period 4π/ω, and the correspondin
transcendent equation is∣∣∣∣∣M0 − q2

M1 − q2

M2 − · · ·

∣∣∣∣∣
2

= q2 (21)

The continued fractions approach can be applied directly to the system of differential equations, for e
when the lower boundary is a rigid wall, to obtain the similar three-diagonal system (15) with the same
properties. Only the expression forMn(σ) is slightly different.

3. High frequency asymptotics

Now we turn to a brief description of the results for the high frequency asymptotics (ω � 1) for the layer of
an infinite depth (see [1] for more details). We assumea = b

ω
so that the vertical oscillations are governed by

law z = b
ω

cosωt , whereb is independent ofω. This results in the equatioṅz = −b sinωt , so that the amplitud
b of oscillations of the velocity is fixed, and the amplitude of oscillation of the height is O(1/ω) asω → ∞. We
introduce the new parameter 2� = bα. We assume that the length and time scales, as well as the parametersµ, Ω2

and� are independent ofω. Integro-differential equation in this case is:

ηtt + 4µηt + (
4µ2 + Ω2 + 2�ω cosωt

)
η + 4µ3/2

∞∫
0

d
ds [e−µsη(t − s)]√

πs
ds = 0 (22)

The Krylov–Bogolubov averaging method is then applied to equation (22). We use two times:t is slow andτ = ωt

is fast. The asymptotic solutionη = η(t, τ ) is represented as a sum of a smooth part (which depends only o
slow time) and of an oscillatory part (which depends on slow and fast times)

η(t, τ ) = η̄(t) + 1

ω
η̃(t, τ ) (23)

The oscillatory part of the asymptotic solution is

η̃(t, τ ) = 2�cosτ · η̄(t) (24)
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Substituting (24) into (23) and then into (22) and averaging with respect to the fast timeτ we get an autonomou
integro-differential equation

η̄t t + 4µη̄t + (
4µ2 + Ω2 + 2�2)η̄ + 4µ3/2

∞∫
0

d
ds [e−µsη̄(t − s)]√

πs
ds = 0 (25)

It is natural to introduce in (25) a new parameterΩ2
eff = Ω2 + 2�2-the square of the effective frequency of t

gravitational-capillary waves.Ω2
eff can be both positive and negative (wheng0 < 0).

Closer investigation shows that the behavior of the system depends on the parameterκ = Ω2
eff/µ

2, which has a
critical valueκ∗ such that ifκ > κ∗, then there is oscillatory stability; if 0< κ < κ∗, then the stability is monotonic
if κ < 0, then there is a monotonic instability, and there exist one monotonically growing mode and (−1< κ < 0)
one monotonically decreasing mode. Letσ be an eigenvalue, corresponding to the former mode. Thenσ → −µ

and converges to the continuous spectrum asκ → −1.

4. Fluid movement on the ceiling

Now we discuss some results concerning the caseκ � 0, which corresponds to the “upturned layer” (or flo
on a ceiling), where the rigid (or soft) wall is on the upper boundary of the layer, and the free surface is it
boundary. The expression for the parameterκ is

κ = Ω2
eff

µ2 = Ω2 + 2�2

µ2 = 1

µ2

(
g0T

2

L
α + Cα3 + b2α2

2

)
(26)

In the case of the normal layer,κ is always positive. Asg0 < 0 in the case of upturned layer, there exists such
interval of parameterα thatκ is negative. But for any fixed value of parameterα, when the intensity of vibration i

so large that the inequalityb2 > 2 (
|g0|T 2

L
1
α

− Cα) is satisfiedκ becomes positive, that is, the normal mode fad
One can see from this inequality that no vibration can fully stabilize an upturned layer, but it can stabilize al
that are short enough, so thatα > α∗(b). In this caseα∗ can be determined from the same inequality, where
sign “greater than” is replaced by equality. The described procedure can be repeated for the oscillatory in

and the corresponding conditionκ > κ∗ for a given parameterα is b2 > 2 (
|g0|T 2

L
1
α

− Cα + κ∗
α2 ).

5. Numerical results

Dispersion equations (20), (21) contain the following dimensionless parameters:µ = δα2, γ = π
αh

, Ω2 =
g0T

2

L
α+Cα3, ω andq = aω2α/2. Further we present the results of numerical solution of Eqs. (20) and (21) f

layers of finite and infinite depth, finite viscosity and arbitrary frequency. The amplitude–frequency charac
(q,ω) are obtained, as well as the neutral curves(a,ω) and (aω,ω) with all other parameters fixed. Ifµ = 0,
then Eq. (11) is the well known Mathieu equation. Its properties are described in sufficient details, for ex

in [6]. The resonance points are:ω2n+1 = 2Ω̃
2n+1, n = 0,1, . . . , andω2n+2 = Ω̃

n+1, n = 0,1, . . . , Ω̃ =
√

th π
γ
Ω . One

can easily see that resonant frequencies decrease when the depth decreases. Also, calculations show th
is stabilizing with the growth of viscosity (Fig. 1,Ω2 = 1, γ = 0). If the solid boundary is rigid, then the lay
behaves more stably over the soft case. Further on the influence of vibration on the neutral curves (with v
fixed) is described. It turns out that if the frequency of vibration is small, the layer of a smaller depth is more
than the layer with a large depth. The neutral curves corresponding toσ = 0 andσ = iω/2, rise as the depth o
the layer decreases. As the frequency of vibration increases, the neutral curves approach to those for the
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Fig. 1. Variation of amplitude of acceleration with the fre-
quency of modulation.

Fig. 2. Variation of the critical amplitude with the fre-
quency of modulation.

infinite depth. Moreover, the increase of the frequency of vibration displays interesting effects on the laye
different types of solid wall. If the frequency of vibration is relatively small, the rigid wall layer is more stable
the soft wall one. However, as the frequency increases, the neutral curves of the rigid wall case become c
closer to the neutral curves of the soft wall case (Fig. 2,h = 1, δ = 0.5, C = 1). On Fig. 2a∗ denotes critica
amplitude that is minimized with respect to parameterα.

Also the case of upturned layer, considered in [3], was studied. The curve corresponding toσ = 0 outlines
the instability region which this time lies below the curve. The instability region increases if the depth dec
Increase of the frequency of vibration displays stabilizing effects: the curves corresponding toσ = iω/2 rise, and
the curves corresponding toσ = 0 go down. As it was shown by Cherepanov [3], the amplitude on the ne
curve (critical amplitude) forσ = 0 grows asymptotically as 1/α whenα → 0, independently of the frequency
vibrations. Thus, ifα is not bounded from below (that is, the wave length of disturbances is not bounded
above), then no vibration can stabilize the layer. For the case of small viscosity, and, respectively, smal
amplitudes and almost-resonant frequencies our results are in complete agreement with those in [3].
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