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Abstract

An algorithm for partially relaxing multiwell energy densities, such as for materials undergoing martensitic phase transitions,
is presented here. The detection of the rank-one convex hull, which describes effective properties of such materials, is carried out
for the most prominent nontrivial case, namely the so-caljedonfigurations. Despite the fact that the computation of relaxed
energies (and with it effective properties) is inherently unstable, we show that the detection of thesEtadisfigurations)
can be carried out exactly and with high efficiency. This allows in practice for their computation to arbitrary precision. In
particular, our approach to detect these hulls is not based on any approximation or grid-like discretization. This makes the
approach very different from previous (unstable and computationally expensive) algorithms for the computation of rank-one
convex hulls or sequential-lamination algorithms for the simulation of martensitic microstructure. It can be used to improve
these algorithms. In cases where there is a strict separation of length scales, these ideas can be integrated at a sub-grid level to
macroscopic finite-element computations. The algorithm presented here enables, for the first time, large numbers of tests for
T4-configurations. Stochastic experiments in several space dimensions are reportdd biceghis article: C.-F. Kreiner et
al., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Vers le calcul efficace des propriétés effectives de materiaux microstructurédlous présentons dans cette Note un
algorithme de relaxation partielle de densités d’énergie a plusieurs puits, comme pour la modélisation de matériaux subissant
des transitions de phase «martensitiques». La détection de I'enveloppe rang-un convexe, qui décrit les propriétés effectives
de tels matériaux, est menée a bien pour le cas non trivial le plus connu, c’est-a-dire les configdjatBes que le
calcul d’énergies relaxées (et donc de propriétés effectives) soit naturellement instable, nous montrons que la détection de
ces enveloppes (configuratioiig) peut étre effectuée de facon exacte trés efficacement. En pratique, cela permet leur calcul &
une précision arbitraire. En particulier, notre approche pour la détection de ces enveloppes n’est basée sur aucune approximation
ou discrétisation. Ceci la démarque des autres algorithmes (instables et colteux) de calcul d’enveloppes rang-un convexes ou de
lamination séquentielle pour la simulation de microstructures martensitiques. Notre méthode peut étre utilisée pour améliorer
ces derniers. Dans les cas ou il y a une stricte séparation des échelles, ces idées peuvent étre utilisées a un niveau inférieur dans
des calculs macroscopiques de type éléments finis. La méthode présentée ici permet pour la premiére fois un grand nombre de
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tests pour la configuratiofy. Nous rendons compte également d’expériences stochastiques en plusieurs dimeosiaiter
cet article: C.-F. Kreiner et al., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This paper addresses the efficient algebraic detection of so-daHednfigurations (see Definition 2.1 below),
which are the most prominent examples of nontrivial rank-one convex hulls. Rank-one convex hulls of sets and
rank-one convex envelopes of functions are important notions in the calculus of variations [1]. Further, the rank-one
convex envelope of a nonconvex microscopic energy function of a material serves as a model for its macroscopic
energy, which explains the relevance of rank-one convexity to engineering and the importance of a reliable method
for the computation of these hulls and envelopes.

Previous algorithms for the computation of the rank-one convex hull of Atet R™*" have been based on
a discretization of the space and the rank-one convexification of the distance fuiotios= minyc o [lx — y||
along finitely many rank-one directions [2—4]. The complexity of these algorithms is high. The results depend very
sensitively on the chosen discretization and especially on the choice of rank-one directions. Moreover, satisfactory
results typically require a high degree of precision. It is easy to see that such a discretization-based algorithm will
fail completely if essential rank-one lines are missed. An example of a numerical instability is given in [5].

In this Note, we study a simpler, but closely related and important question rigorously. Specifically, we answer
a question posed in [6, Section 8] by presenting an efficient algorithm for the detecfiprcohfigurations as an
important example of nontrivial rank-one convex hulls. The guiding idea is to exploit the algebraic structure of
rank-one convexity.

2. Tx-configurations and their algorithmic detection
We start with the definition of -configurations.

Definition 2.1. A finite setM = (MWD, M@ ..., M®} c R™*" of k > 4 matrices is called &-configuration
if there exist a permutation of {1,...,k}, rank-one matrice€ @, Cc@ ... c® e R™*" positive scalars
K1, k2, ..., ki, and matricex @, x@ .. x® ¢ Rmxn gych that the relations

XUY _x(D =), gei) - xUtD — o) 1)

hold, where the indey is counted modul@ (see Fig. 1).

This differs only slightly from the definition in [6, Definition 7] wheyet is considered as a tupel rather than as
a set (i.e.g =id).

A degenerated}-configurationarises as limit of7;-configurations where the inner polygon formed by the
X&) reduces to a single point. More precisely, there existsXaa M (the usual convex hull of\1) with
rank X — M)y =1forall M) e M.

We state some connections betweégrconfigurations and rank-one convex hulls. For asétc R"*", the
rank-one convex hull will be denoted b1 (see, e.g., [1] for the precise definition).

It is easy to verify that the rank-one convex hull dfjaconfigurationM (indexed such that = id) contains at
IeastU’}zl[M(-/), X1, where[A, B] is the line segment betweehand B. For a degeneratef} -configuration,
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Fig. 1. A T4-configuration and d5-configuration, both projected ®2.

one hasU’;:l[M(-”, X], see [7, Corollary 4.19]. Note that, unlike in the classical example given by Tartar [8],
M need not lie in a plane, even fb= 4.

The question asked in [6, Section 8] and addressed here can be phrased as fadfows: 4 matrices
MO M® e R without rank-one connectior(se., rank M) — M) > 2 for i # j) be given. Do they
form aTy-configuratior?

We will study only the interesting cage> 4, sinceTs-configurations lie necessarily in a plane consisting of
rank-one lines. The stochastic experiments in Section 3 will concentrdte configurations. In the special case of
R?*2, the Ty-configurations are in some sense the universal example for finite sets with nontrivial rank-one convex
hull. This is due to the following theorem [9, Theorem 2].

Theorem 2.2(Székelyhidi, 2003)Let M c R?*? be a compact set without rank-one connections/bti £ M.
ThenM contains a(possibly degenerat@d-configuration.

For k = 4, an attempt was made to solve the system (1) (@f) @) + 8mn quadratic and linear equations
directly (for some permutation of {1, 2, 3, 4}). But even Grobner basis methods implementetacaulay 2
failed to solve the system even for simple test cases.

To exploit the algebraic structure, let us define for a malfix R™*" its rank-one conéR1(M) as

R1(M) :={X e R™" [rank X — M) < 1}

Xrs — M Xru—M, 1<r<t<m
— X| det( rs rs ru ru> :O’ S X (2)
Xis — My Xpu — My 1<s<u<n

i.e.,R1(M) is the set of all matrices that are rank-one connectéd to

In order to describ& 1 (M) algebraically, the following notation is used. Lét= (X,;) be anm x n-matrix of
the indeterminateX 11, X12, ..., X1, X21, ..., Xmn. The real polynomials in these indeterminates will be denoted
by R[X] (considered as a ring, i.e., addition and multiplication are well defined). Whenever necessary, we will
silently identifyR"™" andR™*". For simplicity, the ideas leading to Algorithm 2.3 will be explaineddo£ id.

If the matricesM®, ..., M® form a T;-configuration then the corners of the inner polygon lie necessarily in
the intersections of rank-one cones, i.e.,

XD e J; = Ra(MP) N Ry (MU~D)

where the indey is counted modula. It can be shown that i, n > 3 thenJ; is generically empty. '

The intersections/; (j =1, ..., k) are the zero set of thex22-minors of(X /) — M) and(X) — MU~D),
. . . . . - . .

det(Xié) - Xy - Mr(-;)) (XE-Q A T T
) ) ) W) ) (-1 ) G
Xiy =M X5 — My X' =M™ X5 — My,
1<r<t<m, 1<s<u<n, j=1,...,k(counted moduld) 3)
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(As a zero set of polynomialg]; is by definition avariety.) The set of polynomials with the zero s&} has the
structure of arideal and will be denoted;. It is generated by the minors in (3), see, e.g., [10];l&= R[X W],
then the associated varieff; is empty and there is no candidate point for the comé? of the inner polygon of
a possibleTy-configuration.

If M is aTy-configuration, then for each, the matrices /), XU+D andX () lie on a line, in this particular
order. This yields the equations and inequalities

AMD £ 1—apxPD =x0tD 0<a; <1, forl<j<k (4)

In order to describe this in terms of varieties we introduce the polynomiaRing R[ XD, ..., X® i ... Al
in kmn + k indeterminates. Then we obtain naturally from (4) the polynomials

M +A—apXE - XY for1< <k, 1<r<m, 1<s<n (5)

Thesekmn polynomials and the polynomials in (3), the latter taken for &l 1 < k, generate an idedlC P. For
a permutation, let 7, be the ideal generated analogously, wit) substituted by @ () in (3) and (5). The
real variety associated g will be denoted by, c Rkm+k,

With the notation introduced abovég = {MD, ..., M®} c R™*" is a Ty-configuration if and only if there
exists a permutationr of {1,...,k} such thaty, c Rtk contains a pointX®, ..., X® i1, ..., 4) with
rje(0,D)forl<j <k,

The preceding arguments immediately show the correctness of the following algorithm.

Algorithm 2.3.
Input M = {M®D . M®}c R™" without rank-one connections.
Procedure For all permutations of {1, ..., k} perform the following test.

1. Forj=1,...,k compute a Grobner basis for the iddgal; generated by the polynomials from (3), with

M) substituted byM© (), If 1, ; = R[X)] for some; then there exists no solution to (1) for this
Else:

2. Compute a Grobner basis for the ideal generated by the polynomials in (5)M#ith substituted by
MO,

3. Compute a Grébner basis for the idéalgenerated by the union of the ideals in Steps 1 and 2. ¥ P
then there exists no solution to (1) for this Else:

4. Check if there is a poirtX™V, ..., X® a1,...,4) € Vo with &; € (0,1) forall 1 < j < k. If yes, this is a
Tr-configuration; if not, there exists no solution to (1) for this

Output If M is a Tx-configuration this is detected in Step 4 for sosndf M is not aT;-configuration, then
for everyo, either Step 1, 3 or 4 give a negative answetr.

To perform the check in Step 4, we use a combination of the BKR algorithm [11] and the eliminant method [12].
This requiresl, to be zero-dimensional ifP (i.e., the complex variety, c C"** has to consist of single
points). This was true in every one of the more than 200 000 examples we checked. However, a rigorous proof of
the zero-dimensionality is lacking.

Similar ideas can be applied for the detection of degenef@tebnfigurations.

3. Stochastic experiments fofT4-configurations

Extensive tests with random integer matrice®Riti2, R**2 andR3*3 have been carried out far= 4. Such
computations were not possible with previous methods. Algorithm 2.3 allows for the first time the investigation of
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Table 1
Overview of some results of stochastic experiments
RZXZ R4><2 R3><3
RangeR 30 50 150 50 20
Number of experiments 5000 50000 50000 25000 100000
with a rank-one connection 748 776 133 0 0
T4-configurations 368 4351 4392 0 0
thereof sixfold7y-configurations 2 108 80 0 0
thereof degeneratefi;-configurations 0 0 0 0 0
not aT-configuration 3884 44873 45475 25000 100000

Average time per experiment on a 1 GHz Dual Pentium Il /an 8.79s 9.70s  3.66s 0.41s

stochastic questions, such as the distributiofiefonfigurations in the space of quadruples of matrices. We report
some results.

Algorithm 2.3 has been implemented in the computer algebra padkagaulay 2[13]. For every experiment,
we hadVlacaulay 2generate four random matricad = (MDY, M@ .., M@} with integer entries in the interval
[0, R] for R = 20, 30, 50, 150. If the setM was found to have a rank-one connection between two of its elements,
the experiment was terminated since such a\getannot be &4-configuration.

Table 1 shows some results. In particular, almost 9% — a remarkably large number — of all random four-element
sets inR2*2 were found to form &4-configuration. This suggests that the set offaliconfigurations, considered
as a subset afR2*2)4, has positive measure.

Somewhat surprisingly, quite a fesixfold 74-configurationswvere found. By this term, we mean setd that
satisfy (1) foreverypermutationo of {1, 2, 3, 4}. As shown by Székelyhidi [9, Theorem 3],7a-configuration
admits a real solution for (1) either for only oag(up to a rotation) or for all permutatioas Consistent with this,
no twofold or threefoldi's-configurations were found.

As expected, a larger range of entries in the matrices leads to fewer configurations with rank-one connections.

In the cases oR%*2 andR**2, no random set of matrices was found to b&aconfiguration. InNR3*3, no
random configuration yielded four nonempty intersectighsof the respective rank-one cones. It was already
a rare exception (ca..D% of experiments) to find at least one nonempty intersection. Rank-one cones are five-
dimensional objects in a nine-dimensional space; thus this is intuitively not surprisifif*f however, the
J; are two-dimensional, but the ide&) equaled the entire rin@ in every experiment. The complexity of the
algorithm increases by necessity for largeHowever, the cask = 4 we focussed on is the most interesting and
important one for theoretical reasons (see Section 2).

Acknowledgements

This paper contains a part of CFK’s Diploma thesis [14], written under the supervision of JZ. The work
was carried out while JZ was a postdoctoral scholar and IVC a graduate student at the California Institute of
Technology. CFK was a Diploma student in mathematics at the Technische Universitat Miinchen, Germany and
visited Caltech as a special student. His stay was financed by the Freistaat Bayern through a stipend of the
Bayerische Begabtenforderung. He thanks Kaushik Bhattacharya for support, and the Division of Engineering
and Applied Sciences at Caltech for hospitality. The financial support of an NSF-ITR grant (ACI-0204932) is
gratefully acknowledged. We thank Kaushik Bhattacharya for encouragement and generous support. The results
were presented on the NATO Advanced Research Workshop ‘Nonlinear Homogenization and its Application to
Composites, Polycrystals and Smart Materials’ in Kazimierz Dolny, Poland.



174 C.-F. Kreiner et al. / C. R. Mecanique 332 (2004) 169-174

References

[1] S. Mdiller, Variational models for microstructure and phase transitions, in: Calculus of Variations and Geometric Evolution Problems
(Cetraro, 1996), in: Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85-210.

[2] E. Aranda, P. Pedregal, On the computation of the rank-one convex hull of a function, SIAM J. Sci. Comput. 22 (5) (2000) 1772-1790
(electronic).

[3] S. Aubry, M. Fago, M. Ortiz, A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic
materials, Comput. Methods Appl. Mech. Engrg. 192 (26—27) (2003) 2823-2843.

[4] G. Dolzmann, Numerical computation of rank-one convex envelopes, SIAM J. Numer. Anal. 36 (5) (1999) 1621-1635 (electronic).

[5] J. MatouSek, On directional convexity, Discrete Comput. Geom. 25 (3) (2001) 389—-403.

[6] B. Kirchheim, S. Milller, V. Sverak, Studying nonlinear pde by geometry in matrix space, in: Geometric Analysis and Nonlinear Partial
Differential Equations, Springer, Berlin, 2003, pp. 347-395.

[7] B. Kirchheim, Rigidity and Geometry of Microstructures, in: Lecture Notes, vol. 16, Max Planck Institute for Mathematics in the Sciences,
Leipzig, 2003.

[8] L. Tartar, Some remarks on separately convex functions, in: Microstructure and Phase Transition, in: IMA Vol. Math. Appl., vol. 54,
Springer, New York, 1993, pp. 191-204.

[9] L. Székelyhidi, Elliptic regularity versus rank-one convexity, Ph.D. thesis, Universitat Leipzig, 2003.

[10] J. Harris, Algebraic Geometry, Springer-Verlag, New York, 1995. A first course, Corrected reprint of the 1992 original.

[11] P. Pedersen, M.-F. Roy, A. Szpirglas, Counting real zeros in the multivariate case, in: Computational Algebraic Geometry (Nice, 1992),
in: Progr. Math., vol. 109, Birkhauser Boston, Boston, MA, 1993, pp. 203—-224.

[12] F. Sottile, From enumerative geometry to solving systems of polynomial equations, in: D. Eisenbud, D.R. Grayson, M. Stillman (Eds.),
Computations in Algebraic Geometry with Macaulay 2, in: Algorithms and Computation in Mathematics, vol. 8, Springer-Verlag, Berlin,
2002, pp. 1-30.

[13] D.R. Grayson, M.E. Stillman, Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/
Macaulay?2/.

[14] C.-F. Kreiner, Algebraic methods for convexity notions in the calculus of variations, Master’s thesis, Technische Universitat Minchen,
Zentrum Mathematik, 2003.



