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Abstract

An algorithm for partially relaxing multiwell energy densities, such as for materials undergoing martensitic phase tran
is presented here. The detection of the rank-one convex hull, which describes effective properties of such materials, is c
for the most prominent nontrivial case, namely the so-calledTk-configurations. Despite the fact that the computation of rela
energies (and with it effective properties) is inherently unstable, we show that the detection of these hulls (T4-configurations)
can be carried out exactly and with high efficiency. This allows in practice for their computation to arbitrary precis
particular, our approach to detect these hulls is not based on any approximation or grid-like discretization. This m
approach very different from previous (unstable and computationally expensive) algorithms for the computation of r
convex hulls or sequential-lamination algorithms for the simulation of martensitic microstructure. It can be used to
these algorithms. In cases where there is a strict separation of length scales, these ideas can be integrated at a sub-
macroscopic finite-element computations. The algorithm presented here enables, for the first time, large numbers o
T4-configurations. Stochastic experiments in several space dimensions are reported here.To cite this article: C.-F. Kreiner et
al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Vers le calcul efficace des propriétés effectives de materiaux microstructurés.Nous présentons dans cette Note
algorithme de relaxation partielle de densités d’énergie à plusieurs puits, comme pour la modélisation de matériaux
des transitions de phase « martensitiques ». La détection de l’enveloppe rang-un convexe, qui décrit les propriétés
de tels matériaux, est menée à bien pour le cas non trivial le plus connu, c’est-à-dire les configurationsTk . Bien que le
calcul d’énergies relaxées (et donc de propriétés effectives) soit naturellement instable, nous montrons que la dé
ces enveloppes (configurationsT4) peut être effectuée de façon exacte très efficacement. En pratique, cela permet leur
une précision arbitraire. En particulier, notre approche pour la détection de ces enveloppes n’est basée sur aucune app
ou discrétisation. Ceci la démarque des autres algorithmes (instables et coûteux) de calcul d’enveloppes rang-un conv
lamination séquentielle pour la simulation de microstructures martensitiques. Notre méthode peut être utilisée pour
ces derniers. Dans les cas où il y a une stricte séparation des échelles, ces idées peuvent être utilisées à un niveau in
des calculs macroscopiques de type éléments finis. La méthode présentée ici permet pour la première fois un grand
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1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2004.01.011
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tests pour la configurationT4. Nous rendons compte également d’expériences stochastiques en plusieurs dimensions.Pour citer
cet article : C.-F. Kreiner et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This paper addresses the efficient algebraic detection of so-calledTk-configurations (see Definition 2.1 below
which are the most prominent examples of nontrivial rank-one convex hulls. Rank-one convex hulls of s
rank-one convex envelopes of functions are important notions in the calculus of variations [1]. Further, the r
convex envelope of a nonconvex microscopic energy function of a material serves as a model for its mac
energy, which explains the relevance of rank-one convexity to engineering and the importance of a reliable
for the computation of these hulls and envelopes.

Previous algorithms for the computation of the rank-one convex hull of a setM ⊂ Rm×n have been based o
a discretization of the space and the rank-one convexification of the distance functiond(x) := miny∈M ‖x − y‖
along finitely many rank-one directions [2–4]. The complexity of these algorithms is high. The results depe
sensitively on the chosen discretization and especially on the choice of rank-one directions. Moreover, sat
results typically require a high degree of precision. It is easy to see that such a discretization-based algor
fail completely if essential rank-one lines are missed. An example of a numerical instability is given in [5].

In this Note, we study a simpler, but closely related and important question rigorously. Specifically, we
a question posed in [6, Section 8] by presenting an efficient algorithm for the detection ofTk-configurations as a
important example of nontrivial rank-one convex hulls. The guiding idea is to exploit the algebraic struc
rank-one convexity.

2. Tk-configurations and their algorithmic detection

We start with the definition ofTk-configurations.

Definition 2.1. A finite setM = {M(1),M(2), . . . ,M(k)} ⊂ Rm×n of k � 4 matrices is called aTk-configuration
if there exist a permutationσ of {1, . . . , k}, rank-one matricesC(1),C(2), . . . ,C(k) ∈ Rm×n, positive scalars
κ1, κ2, . . . , κk, and matricesX(1),X(2), . . . ,X(k) ∈ Rm×n such that the relations

X(j+1) − X(j) = C(j), M(σ(j)) − X(j+1) = κjC
(j) (1)

hold, where the indexj is counted modulok (see Fig. 1).

This differs only slightly from the definition in [6, Definition 7] whereM is considered as a tupel rather than
a set (i.e.,σ = id).

A degeneratedTk-configurationarises as limit ofTk-configurations where the inner polygon formed by
X(j) reduces to a single point. More precisely, there exists anX ∈ Mco (the usual convex hull ofM) with
rank(X − M(j)) = 1 for all M(j) ∈M.

We state some connections betweenTk-configurations and rank-one convex hulls. For a setM ⊂ Rm×n, the
rank-one convex hull will be denoted byMrc (see, e.g., [1] for the precise definition).

It is easy to verify that the rank-one convex hull of aTk-configurationM (indexed such thatσ = id) contains at
least

⋃k
j=1[M(j),X(j)], where[A,B] is the line segment betweenA andB. For a degeneratedTk-configuration,
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Fig. 1. AT4-configuration and aT5-configuration, both projected toR2.

one has
⋃k

j=1[M(j),X], see [7, Corollary 4.19]. Note that, unlike in the classical example given by Tarta
M need not lie in a plane, even fork = 4.

The question asked in [6, Section 8] and addressed here can be phrased as follows.Let k � 4 matrices
M(1), . . . ,M(k) ∈ Rm×n without rank-one connections(i.e., rank(M(i) − M(j)) � 2 for i 
= j ) be given. Do they
form aTk-configuration?

We will study only the interesting casek � 4, sinceT3-configurations lie necessarily in a plane consisting
rank-one lines. The stochastic experiments in Section 3 will concentrate onT4-configurations. In the special case
R2×2, theT4-configurations are in some sense the universal example for finite sets with nontrivial rank-one
hull. This is due to the following theorem [9, Theorem 2].

Theorem 2.2(Székelyhidi, 2003).LetM ⊂ R2×2 be a compact set without rank-one connections butMrc 
= M.
ThenM contains a(possibly degenerated) T4-configuration.

For k = 4, an attempt was made to solve the system (1) of 4
(
m
2

)(
n
2

) + 8mn quadratic and linear equation
directly (for some permutationσ of {1,2,3,4}). But even Gröbner basis methods implemented inMacaulay 2
failed to solve the system even for simple test cases.

To exploit the algebraic structure, let us define for a matrixM ∈ Rm×n its rank-one coneR1(M) as

R1(M) := {
X ∈ R

m×n | rank(X − M) � 1
}

=
{
X

∣∣ det

(
Xrs − Mrs Xru − Mru

Xts − Mts Xtu − Mtu

)
= 0,

1 � r < t � m

1 � s < u � n

}
(2)

i.e.,R1(M) is the set of all matrices that are rank-one connected toM.
In order to describeR1(M) algebraically, the following notation is used. LetX = (Xrs) be anm × n-matrix of

the indeterminatesX11,X12, . . . ,X1n,X21, . . . ,Xmn. The real polynomials in these indeterminates will be deno
by R[X] (considered as a ring, i.e., addition and multiplication are well defined). Whenever necessary,
silently identifyRmn andRm×n. For simplicity, the ideas leading to Algorithm 2.3 will be explained forσ = id.

If the matricesM(1), . . . ,M(k) form aTk-configuration then the corners of the inner polygon lie necessari
the intersections of rank-one cones, i.e.,

X(j) ∈Jj :=R1
(
M(j)

) ∩R1
(
M(j−1)

)
where the indexj is counted modulok. It can be shown that ifm,n � 3 thenJj is generically empty.

The intersectionsJj (j = 1, . . . , k) are the zero set of the 2× 2-minors of(X(j) − M(j)) and(X(j) − M(j−1)),

det

(
X

(j)
rs − M

(j)
rs X

(j)
ru − M

(j)
ru

X
(j)
ts − M

(j)
ts X

(j)
tu − M

(j)
tu

)
, det

(
X

(j)
rs − M

(j−1)
rs X

(j)
ru − M

(j−i)
ru

X
(j)
ts − M

(j−1)
ts X

(j)
tu − M

(j−1)
tu

)
∈ R

[
X(j)

]
1� r < t � m, 1 � s < u � n, j = 1, . . . , k (counted modulok) (3)
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(As a zero set of polynomials,Jj is by definition avariety.) The set of polynomials with the zero setJj has the
structure of anideal and will be denotedIj . It is generated by the minors in (3), see, e.g., [10]. IfIj = R[X(j)],
then the associated varietyJj is empty and there is no candidate point for the cornerX(j) of the inner polygon of
a possibleTk-configuration.

If M is aTk-configuration, then for eachj , the matricesM(j), X(j+1) andX(j) lie on a line, in this particula
order. This yields the equations and inequalities

λjM
(j) + (1− λj )X

(j) = X(j+1), 0 < λj < 1, for 1 � j � k (4)

In order to describe this in terms of varieties we introduce the polynomial ringP := R[X(1), . . . ,X(k), λ1, . . . ,λk]
in kmn + k indeterminates. Then we obtain naturally from (4) the polynomials

λjM
(j)
rs + (1− λj )X

(j)
rs − X

(j+1)
rs for 1� j � k, 1 � r � m, 1 � s � n (5)

Thesekmn polynomials and the polynomials in (3), the latter taken for all 1� j � k, generate an idealI ⊆P . For
a permutationσ , let Iσ be the ideal generated analogously, withM(j) substituted byM(σ−1(j)) in (3) and (5). The
real variety associated toIσ will be denoted byVσ ⊂ Rkmn+k .

With the notation introduced above,M = {M(1), . . . ,M(k)} ⊂ Rm×n is aTk-configuration if and only if there
exists a permutationσ of {1, . . . , k} such thatVσ ⊂ Rkmn+k contains a point(X(1), . . . ,X(k), λ1, . . . , λk) with
λj ∈ (0,1) for 1 � j � k.

The preceding arguments immediately show the correctness of the following algorithm.

Algorithm 2.3.
Input: M = {M(1), . . . ,M(k)} ⊂ Rm×n without rank-one connections.
Procedure: For all permutationsσ of {1, . . . , k} perform the following test.

1. For j = 1, . . . , k compute a Gröbner basis for the idealIσ,j generated by the polynomials from (3), wi

M(j) substituted byM(σ−1(j)). If Iσ,j = R[X(j)] for somej then there exists no solution to (1) for thisσ .
Else:

2. Compute a Gröbner basis for the ideal generated by the polynomials in (5) withM(j) substituted by
M(σ−1(j)).

3. Compute a Gröbner basis for the idealIσ generated by the union of the ideals in Steps 1 and 2. IfIσ = P
then there exists no solution to (1) for thisσ . Else:

4. Check if there is a point(X(1), . . . ,X(k), λ1, . . . , λk) ∈ Vσ with λj ∈ (0,1) for all 1 � j � k. If yes, this is a
Tk-configuration; if not, there exists no solution to (1) for thisσ .

Output: If M is aTk-configuration this is detected in Step 4 for someσ . If M is not aTk-configuration, then
for everyσ , either Step 1, 3 or 4 give a negative answer.

To perform the check in Step 4, we use a combination of the BKR algorithm [11] and the eliminant metho
This requiresIσ to be zero-dimensional inP (i.e., the complex varietyVσ ⊂ C

kmn+k has to consist of singl
points). This was true in every one of the more than 200 000 examples we checked. However, a rigorous
the zero-dimensionality is lacking.

Similar ideas can be applied for the detection of degeneratedTk-configurations.

3. Stochastic experiments forT4-configurations

Extensive tests with random integer matrices inR2×2, R4×2 andR3×3 have been carried out fork = 4. Such
computations were not possible with previous methods. Algorithm 2.3 allows for the first time the investiga
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Table 1
Overview of some results of stochastic experiments

R2×2 R4×2 R3×3

RangeR 30 50 150 50 20
Number of experiments 5 000 50 000 50 000 25 000 100 000

with a rank-one connection 748 776 133 0 0
T4-configurations 368 4 351 4 392 0 0

thereof sixfoldT4-configurations 2 108 80 0 0
thereof degeneratedT4-configurations 0 0 0 0 0

not aT4-configuration 3 884 44 873 45 475 25 000 100 000

Average time per experiment on a 1 GHz Dual Pentium III n/a 8.79 s 9.70 s 3.66 s 0.41 s

stochastic questions, such as the distribution ofT4-configurations in the space of quadruples of matrices. We re
some results.

Algorithm 2.3 has been implemented in the computer algebra packageMacaulay 2[13]. For every experiment
we hadMacaulay 2generate four random matricesM = {M(1),M(2), . . . ,M(4)} with integer entries in the interva
[0,R] for R = 20,30,50,150. If the setM was found to have a rank-one connection between two of its elem
the experiment was terminated since such a setM cannot be aT4-configuration.

Table 1 shows some results. In particular, almost 9% – a remarkably large number – of all random four-
sets inR2×2 were found to form aT4-configuration. This suggests that the set of allT4-configurations, considere
as a subset of(R2×2)4, has positive measure.

Somewhat surprisingly, quite a fewsixfoldT4-configurationswere found. By this term, we mean setsM that
satisfy (1) foreverypermutationσ of {1,2,3,4}. As shown by Székelyhidi [9, Theorem 3], aT4-configuration
admits a real solution for (1) either for only oneσ (up to a rotation) or for all permutationsσ . Consistent with this
no twofold or threefoldT4-configurations were found.

As expected, a larger range of entries in the matrices leads to fewer configurations with rank-one conne
In the cases ofR3×3 andR4×2, no random set of matrices was found to be aT4-configuration. InR3×3, no

random configuration yielded four nonempty intersectionsJj of the respective rank-one cones. It was alre
a rare exception (ca. 0.1% of experiments) to find at least one nonempty intersection. Rank-one cones ar
dimensional objects in a nine-dimensional space; thus this is intuitively not surprising. InR4×2, however, the
Jj are two-dimensional, but the idealIσ equaled the entire ringP in every experiment. The complexity of th
algorithm increases by necessity for largerk. However, the casek = 4 we focussed on is the most interesting a
important one for theoretical reasons (see Section 2).
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