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Abstract

The instability of position of a growing spherical crystal in an acoustic field is studied. Due to the Bjerknes force, a s
crystal, whose position is shifted from an antinode of pressure, moves in the acoustic field. This displacement, stable in the ca
of bubbles in a cavitation experiment, turns outto be unstable in the case of crystallization. This effect is studied for an arbitra
Atwood number.To cite this article: M. Ben Amar, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’instabilité de Bjerknes au cours de la nucléation d’un cristal par onde acoustique. On étudie ici l’instabilité de
position d’un cristal sphérique dans un champ acoustique. Etant donné la force de Bjerknes, un cristal dont la positi
trouve décalée par rapport à un ventre de pression se déplace dans le champ acoustique. Ce déplacement, stable
des bulles de cavitation, s’avère instable en cristallisation. Cet effet est étudié en fonction du nombre d’Atwood.Pour citer cet
article : M. Ben Amar, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Acoustics; Waves; Vibrations; Crystallization; Solid helium; Bjerknes force; Cavitation

Mots-clés : Acoustique ; Ondes ; Vibrations ; Cristallisation ; Helium solide ; Force de Bjerknes ; Cavitation

1. Introduction

Recently, Chavanne et al. [1] have shown that noticeableoverpressure in a liquid can trigger the production
a solid particle. The experiment was realized in a bath of Helium 4, at very low temperature (65 mK), at a p
set to the solid–liquid melting pressure. A piezo-electric hemi-spherical generator produces an oscillating acou
micro-wave which converges on an observation window. A sufficiently large over pressure allows the grow
crystal, which eventually remelts when the over-pressure becomes negative. A model of the growth dynam
solid has been proposed in a previous publication [2]. Thenumerical results, although qualitatively in agreem
with the experiment, do not recover the observation of Chavanne et al. of a solid which remelts about

E-mail address: benamar@lps.ens.fr (M. Ben Amar).
1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2004.02.002



362 M. Ben Amar / C. R. Mecanique 332 (2004) 361–365

collapse
n in the

, it is the
apse
wing:

of this
n.
e answer
ase state

cocious
od

en listed
ves in
h
e

n.
t
e at

sen

fined

ed
of

e in
o be one
before the pressure becomes lower than the equilibrium pressure. One possible explanation for this early
may be instabilities occurring during the growth of the nucleus, which may change its shape or its positio
acoustic field. A good candidate for shape deformation maybe the Rayleigh–Taylor instability, which is expected
to act during the growth phase, since the solid phase is more dense than the liquid [3]. In bubble cavitation
contrary; the Rayleigh–Taylor instability occurs during thedecrease of the bubble size, and especially at its coll
[3]. In this Note, our aim is to study an instability of position in the acoustic field. The question is the follo
assuming that the crystal is not exactly at an antinode of pressure, does it try to move in the direction
antinode? If this position is stable (resp. unstable), it willremain in (resp. leave) the vicinity of its initial positio
Since the experimentalists detect the growth of the crystal, via density measurements at a fixed position, th
has some importance. Anyway, the calculation can be made only for homogeneous nucleation where the b
is a spherical crystal. The transposition to an inhomogeneousnucleation process is not straightforward, since the
crystal may remain stuck to the glass plate. However, it may be a lead into the understanding of the pre
collapse found experimentally. The goal of this Note is to focus on this instability, as a function of the Atwo
number, or density contrast, which is small in the case of crystallization but of order one for bubble nucleation.

2. Interfacial laws for a spherical crystal

Crystal growth is governed by mass, momentum and energy conservation. These conditions have be
explicitly in [2]. To simplify the analysis, we restrict our attention to the hard-sphere limit: we neglect wa
the solid, assuming the Young modulus infinite. In this case, the fluid velocityVf is simply related to the growt
rate of the crystalṘ: Vf = −βṘ , with the Atwood number given byβ = (ρs − ρf )/ρf . In the Helium case, th
density of the solidρs is slightly larger than the density of the liquidρf and the Atwood number is of order 0.1.
The momentum conservation is then

Ps + ρsṘ
2 = ρf (Vf − Ṙ)2 + Pf + 2γ

R
(1)

wherePs , andPf mean the pressure in the solid and the fluid phases, respectively,γ being the surface tensio
Since the exchange of heat can be neglected in the case of Helium (no measurable latent heat, infinite Pecle
number, ...), it has been shown [2,4,5] that the Gibbs–Thomson relation [6,7] maintains the averaged pressur
the interface:

(Ps + Pf ) − 2P0 = 2γ

R

ρs + ρf

ρs − ρf

(2)

whereP0 is the equilibrium pressure of the planar front, estimated to be around 25 bars. Hereafter, it will be cho
as our reference pressure. We do not consider here the kinetic effects which are also very weak for Helium [8].

The fluid velocityVf satisfies the Euler equation (no viscosity for a superfluid) so the velocity potential (de
by Vf = ∇Φf ) satisfies the wave equation which has a general solution

Φf = −F(t − r/cf )

r
+ Φ0

sin(kr)

kr
cos(kcf t) (3)

when the spherical symmetry is assumed.F is an arbitrary function,Φ0 represents the amplitude of the impos
acoustic fieldΦ∞(r, t), assumed spherical, given the geometry of the ultrasonic generator. In the close vicinity
the crystal, since the velocities in the liquid are much smaller than the sound velocity, one can expandF(t − r/cf )

at smallr near the crystal. The velocity in the liquid then becomes:

Vf = ∇Φf = F(t)

R(t)2 (4)

This means that we reduce the wave equation to the Laplace equation, an approximation which is usually mad
sonoluminescence and bubble cavitation. In the case of Helium, the maximum growth rate is estimated t
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third of the sound speed, which gives for the fluid velocityVf ∼ βcf /3 and justifies the Laplace approximati
sinceβ ∼ 0.1. A more precise treatment can be found in [9]. The background velocity is negligible as soon
crystal radius is small.

One determines the pressure thanks to the Bernoulli equation:

Pf = ρf

(
F ′(t)

r
− 1

2
V 2

f

)
+ P0

sin(kr)

kr
sin(kcf t) (5)

with P0 = ρf Φ0(kcf ).

3. Instability of position during nucleation

The growth of a crystal can be perturbed by various instabilities, among them the Rayleigh–Taylor instability
which may be responsible for a shape instability, which breaks the spherical symmetry. Here, we want to study
instability of position of the nucleus in the acoustic wave. According to cavitation theory, bubbles subject to
acoustic standing wave field move to gather at pressure nodes or antinodes. In the case where they are n
at the correct position, these bubbles can execute erratic motions, sometimes with shape oscillations. In any ca
on average over a large number of cycles, the averaged position of these bubbles is fixed, as shown nu
by [10], but their position can vary periodically, the period covering many acoustic cycles. In our case, the p
is slightly different since we are concerned with a transient regime. Indeed, in the experiment of [1], the nu
of the crystal occurs after a few periods of the acoustic wave and the crystal grows then melts during th
period. So our problem is not exactly an averaged effect after a long time but an instantaneous motion wh
be of interest if the focusing of the wave on the plate of the window is not perfect. The nucleus may move f
window, and it then escapes possible density measurements. The calculation is made in the frame of the crystal
not in the laboratory frame. So in this frame, the center position is fixed. Assuming that the crystal displace
d along thex-axis, the Laplace velocity potential centered at the crystal is then

Φf = −F(t)

r
− 1

2
v̂f (t)R(t)3 cosθ

r2
+ Φ∞(r, t) (6)

We define the monopole of each quantity, for example, forΦf : φ̂f = −1
2v̂f (t)

R(t)3

r2 . It denotes the first coefficien
in the Fourier series. So we deduce from mass conservation:

v̂f = ḋ (7)

The Bernoulli equation must be written in the laboratory frame where the velocity potential is denotedΦ̃f . In
the laboratory frame, Eq. (5) is transformed into:

∂t Φ̃f = ∂tΦf − ḋ�ex · �∇Φf (8)

which gives:

∂t Φ̃f = −
[
Ḟ (t)

R(t)
+ ∂t

(
v̂f (t)R(t)3)cosθ

2R2

]
− ḋ cosθ

(
F

R2 + v̂f cosθ

)

+ 1

2
ḋ v̂f sin2 θ − (kcf )Φ0

sin(kr)

kr
sin(kcf t) (9)

We assume negligible the spatial derivative of the background pressure. Finally, we get:
[
Ḟ (t)

R(t)
+ ∂t

(
v̂f (t)R(t)3)cosθ

2R2 + ḋ cosθ
F (t)

R(t)2 + 1

2
ḋ v̂f

(
3 cos2 θ − 1

)]
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− 1

2

F

R2

2

+ v̂2
f cosθ2 + 1

4
sinθ2 + 2

F

R2 v̂f cosθ

+ P∞(r, t) − �x �fb,x

ρf
+ β

2

(
F

R2 − Ṙ

)2

+ β

(
F

R2 − Ṙ

)
(v̂f − ḋ)cosθ = 2

γ

Rβρf
(10)

�x �fb is a local potential due to a force per unit volume acting at the crystal surface whose origin comes f
Bjerknes force. By definition, the Bjerknes force is�Fb = − ∫

P∞�ndS, the surfaceS being the crystal surface. W
assume a spherical standing wave field:

P∞(r, t) = P0 sin(kr)/(kr)sin(kcf t)

with r ∼ (R + d cosθ) at the surface of the crystal if the mismatch is small.
The force along thex-axis, to linear order ind is then:

Fb,x = −
∫

P∞�ex · �ndS = P0j1(kR)(kd)
(
2πR2)sin(kcf t)

π∫
0

cos2 θ sinθ dθ (11)

The quantityj1(u) is the spherical Bessel function of first order, related to the spherical Bessel function o
orderj0(u) = sin(u)/(u) by the relationj1(u) = −j ′

0(u). It gives a force per unit volume along thex-axis:

fb,x = 3Fb,x

4πR3
= P0

(
k2d

)
sin(kcf t)/3

This calculation assumes thatR � d , an approximation not valid at the nucleation threshold. An exact calcul
gives:

fb,x = − P0

(k2dR)2

3

8R
sin(kcf t)

[
M(U+) − M(U−)

]
(12)

M(U) being given by:

M(U) = k2(R2 + d2)cosU − U2 cosU + 2U sinU + 2 cosU (13)

with U+ = k(R + d) andU− = k(R − d).
As expected the Bjerknes force is unstable when the crystal is close to an antinode of pressure: the si

crystal near the focus of the acoustic wave is submitted to a higher pressure than the other side, so the
pushed and moves off the focus. Due to the principle of action and reaction, the crystal exerts a force on
Since Bernoulli equation governs this flow, when the crystal is at rest, we assume that the density of forc
flow is −fbx which gives a potential contribution�x �fb .

We average the Bernoulli equation:〈sin2 θ〉 = 1
2

∫ π

0 sinθ sin2 θ dθ = 2〈cos2 θ〉 = 2/3. So we find that the
Bernoulli relation is modified only by one contribution, which comes from the square of the fluid veloc
the crystal:V 2

f = F 2/R4 = (βṘ)2 is transformed intoV 2
f + 1

2 v̂2
f .

Isolating the contribution in cosθ and replacingF andv̂f by their values:F = −βR2Ṙ andv̂f = ḋ , we derive
an equation ford , the distance between the focus and the crystal:

d̈R + 3Ṙḋ = 2RP0k
2d sin(kcf t)/(3ρf ) (14)

4. Discussion of the results and conclusion

We recover quite the same equation as for bubble cavitation. It is independent of the Atwood numb
difference comes only from realistic experimental considerations. During crystallization, the microwave is fo
on the glass plate and the crystal grows near the focus. Any mismatch of position of the center with th
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increases during the crystallization process and can explain a displacement of the crystal in the microwave fie
It can explain also the experimental observation of a density decrease when the crystal is always under
perhaps the crystal moves in the acoustic field and so does not feel the available over-pressure. More
displacement decreases the kinetic energy of the flow. Anyway, it turnsout that this effect is weak and is perha
relevant for noticeable pressure values. Remember that the correct dimensionless parameter isP0/(ρf c2

f ) which
remains small in the Helium experiment: about 0.01. The effect is weak if we assume negligible the initial value
of the crystal velocityḋ, but may also be important depending on this value. It may thus be an explanati
discrepancies between experimental and theoretical results.
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