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Abstract

The instability of position of a growing spherical crystal in an acoustic field is studied. Due to the Bjerknes force, a spherical
crystal, whose position is shifted from antenode of pressure, moves in the acoustitdfi&his displacement, stable in the case
of bubbles in a cavitation experiment, turns tube unstable in the case of crystallipati This effect is studied for an arbitrary
Atwood numberTo cite thisarticle: M. Ben Amar, C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’instabilité de Bjerknes au cours de la nucléation d'un cristal par onde acoustique. On étudie ici I'instabilité de
position d'un cristal sphérique dans unachp acoustique. Etant donné la force de Bjerknes, un cristal dont la position se
trouve décalée par rapport a un ventre de pression se déplace dans le champ acoustique. Ce déplacement, stable dans le cas
des bulles de cavitation, s’avere instable en cristdlti;. Cet effet est étudiéndonction du nombre d’AtwoodPour citer cet
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1. Introduction

Recently, Chavanne et al. [1] have shown that noticeabéepressure in a liquid can trigger the production of
a solid particle. The experiment was realized in a bath of Helium 4, at very low temperature (65 mK), at a pressure
set to the solid-liquid melting pressure piezo-electric hemiqsherical generator produces an oscillating acoustic
micro-wave which converges on an observation window. A sufficiently large over pressure allows the growth of a
crystal, which eventually remelts when the over-pressure becomes negative. A model of the growth dynamics of the
solid has been proposed in a previous publication [2]. fitmaerical results, although qualitatively in agreement
with the experiment, do not recover the observation of Chavanne et al. of a solid which remelts about 100 ns
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before the pressure becomes lower than the equilibrium pressure. One possible explanation for this early collapse
may be instabilities occurring during the growth of the nucleus, which may change its shape or its position in the
acoustic field. A good candidate for shape deformation beathe Rayleigh—Taylor itability, which is expected

to act during the growth phase, since the solid phase is more dense than the liquid [3]. In bubble cavitation, it is the
contrary; the Rayleigh—Taytanstability occurs during thdecrease of the bubble size, and especially at its collapse

[3]. In this Note, our aim is to study an instability of position in the acoustic field. The question is the following:
assuming that the crystal is not exactly at an antinode of pressure, does it try to move in the direction of this
antinode? If this position is stable (resp. unstable), it veithain in (resp. leave) the vicinity of its initial position.

Since the experimentalists detect the growth of the crystal, via density measurements at a fixed position, the answer
has some importance. Anyway, the calculation can be made only for homogeneous nucleation where the base state
is a spherical crystal. The transposition to an inhomogeneocigation process is notraightforward, since the

crystal may remain stuck to the glass plate. However, it may be a lead into the understanding of the precocious
collapse found experimentally. The dad this Note is to focus on this instability, as a function of the Atwood
number, or density contrast, which is small in the caseystallization but of order one for bubble nucleation.

2. Interfacial lawsfor a spherical crystal

Crystal growth is governed by mass, momentum and energy conservation. These conditions have been listed
explicitly in [2]. To simplify the analysis, we restrict our attention to the hard-sphere limit: we neglect waves in
the solid, assuming the Young modulus infinite. In this case, the fluid vel®git simply related to the growth
rate of the crystak: Vi= —BR , with the Atwood number given bg = (o, — p7)/py. Inthe Helium case, the
density of the soligp; is slightly larger than the density of the liquig: and the Atwood number is of orderl0
The momentum conservation is then

. . 2

Pt k2= py (Vs = R+ Pp+ (1)
where Py, and Py mean the pressure in the solid and the fluid phases, respecfivbing the surface tension.
Since the exchange of heat can be neglected in the dadeliom (no measurable fant heat, infinite Peclet
number, ...), it has been shown [2,4,5] that the Gibbs—Tdwmmelation [6,7] maintains the averaged pressure at
the interface:
2
% ps+pf 2

Ps — Pf

wherePy is the equilibrium pressure of the planar front, estied to be around 25 bars. Hereafter, it will be chosen
as our reference pressure. We do not consider here tetdkeffects which are also very weak for Helium [8].

The fluid velocityV; satisfies the Euler equation (no viscosity for a superfluid) so the velocity potential (defined
by Vr = V&) satisfies the wave equation which has a general solution

F(t— i
_F@—=r/cy) n qjosm(kr)
r kr

(Ps+ Pp) — 2Py =

D=

coske rt) 3)

when the spherical symmetry is assumg&ds an arbitrary function@g represents the amplitude of the imposed
acoustic fieldd (r, t), assumed spherical, given the geometry of thsonic generator. In the close vicinity of
the crystal, since the velocities in the liquid areahismaller than the sound velocity, one can expBo—r/cy)
at smallr near the crystal. The velocity in the liquid then becomes:
L @

(1)

This means that we reduce the wave equation to theslcaptquation, an approximation which is usually made in
sonoluminescence and bubble cavitation. In the case of Helium, the maximum growth rate is estimated to be one

Vi=Voy=
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third of the sound speed, which gives for the fluid velodity~ Bcy/3 and justifies the Laplace approximation
sinceB ~ 0.1. A more precise treatment can be found in [9]. The background velocity is negligible as soon as the
crystal radius is small.

One determines the pressure thanks to the Bernoulli equation:

F't) 1 sin(kr)

with Po = pyPo(kcy).

sin(ke rt) 5)

r

3. Instability of position during nucleation

The growth of a crystal can be perturbed by varioudabilities, among them the Rajgh—Taylor instability
which may be responsible for a shape instability, whickels the spherical symmetry. Here, we want to study the
instability of position of the nucleus in the acoustic wadecording to cavitation theory, bubbles subject to an
acoustic standing wave field move to gather at pressure nodes or antinodes. In the case where they are not exactly
at the correct position, these bubbles can execute erratiomsgpsometimes with shape oscillations. In any case,
on average over a large number of cycles, the averaged position of these bubbles is fixed, as shown numerically
by [10], but their position can vary periodically, the period covering many acoustic cycles. In our case, the problem
is slightly different since we are concerned with a transient regime. Indeed, in the experiment of [1], the nucleation
of the crystal occurs after a few periods of the acoustic wave and the crystal grows then melts during the same
period. So our problem is not exactly an averaged effect after a long time but an instantaneous motion which may
be of interest if the focusing of the wave on the plate of the window is not perfect. The nucleus may move from the
window, and it then escapes possible density measursmgmre calculation is made in the frame of the crystal and
not in the laboratory frame. So in this frame, the center position is fixed. Assuming that the crystal displacement is
d along thex-axis, the Laplace velocity potential centered at the crystal is then
@f‘:-w—}ﬁf‘(t)R(t)3ﬁ+¢oo(r, 1) (6)
r 2 r
We define the monopole of each quantity, for examplegier ¢, = — 35, (t)%’z)g. It denotes the first coefficient
in the Fourier series. So we deduce from mass conservation:

bp=d (7)

The Bernoulli equation must be written in the laboratory frame where the velocity potential is dén,otmi
the laboratory frame, Eqg. (5) is transformed into:

Dy =0,0p —dé,-Vb; (8)
which gives:
Py = —[? + a,(@umaﬁ)ﬁ] - chose(i2 + by cos@)
(1) 2R R
+ %dﬁf Sif 6 — (ke 1) o Sin(fr) sin(ke /1) 9)

We assume negligible the spatial derivative of the background pressure. Finally, we get:

F(1) ) cosd . F(t) 1.,
[m + 3,(vf(t)R(t)3)W +dcos@R(I)2 + Edvf(s cog6 — 1)}
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1 F 2 A2 2 1 . 2 F A
-S|\ z) +9 cos) +Zsm9 +2ﬁvf0089

Poo(nt)=Xfox  B(F .\2 FoN. N
+T+§(F—R> +,3<ﬁ—R>(vf—d)COSO_2m (10)

)'c'fb is a local potential due to a force per unit volume acting at the crystal surface whose origin comes from the
Bjerknes force. By definition, the Bjerknes forcefis= — [ P..1i dS, the surfaces being the crystal surface. We
assume a spherical standing wave field:

Poo(r, 1) = Posin(kr) / (kr) sin(ke 1)

with » ~ (R + d cos9) at the surface of the crystal if the mismatch is small.
The force along the-axis, to linear order i@ is then:

Fpo=— / Py - 11dS = Poj1(kR)(kd) (27 R?) sin(ke s1) / co 6 sing do (11)
0

The quantityj; (#) is the spherical Bessel function of first order, related to the spherical Bessel function of zero
order jo(u) = sin(u)/(u) by the relationj1 (1) = — jo(u). It gives a force per unit volume along theaxis:

3Fp x
I = ks

This calculation assumes th&t> d, an approximation not valid at the nucleation threshold. An exact calculation
gives:

= Po(k?d) sin(kes1)/3

0 3 .
fox =~ ZaRP8R sin(ke s H)[M(Uy) — M(U-)] (12)
M (U) being given by:
M(U) = k*(R? +d?) cosU — U?cosU + 2U sinU + 2 cosl/ (13)

with Uy = k(R +d) andU_ = k(R — d).

As expected the Bjerknes force is unstable when the crystal is close to an antinode of pressure: the side of the
crystal near the focus of the acoustic wave is submitted to a higher pressure than the other side, so the crystal is
pushed and moves off the focus. Due to the principle of action and reaction, the crystal exerts a force on the flow.
Since Bernoulli equation governs this flow, when the crystal is at rest, we assume that the density of force for the
flow is — f;, which gives a potential contributichf;,.

We average the Bernoulli equatiorsin?6) = 3 [¢ sinf sin?6 do = 2(co€6) = 2/3. So we find that the
Bernoulli relation is modified only by one contribution, which comes from the square of the fluid velocity at
the crystal:V2 = F2/R% = (BR)? is transformed intd/2 + 352.

Isolating the contribution in casand replacing” and? s by their valuesF = —R?R andi s = d, we derive
an equation fotl, the distance between the focus and the crystal:

dR 4 3Rd = 2R Pok?d sin(ke 1)/ (3p) (14)

4. Discussion of theresultsand conclusion

We recover quite the same equation as for bubble cavitation. It is independent of the Atwood number. The
difference comes only from realistic experimental considerations. During crystallization, the microwave is focussed
on the glass plate and the crystal grows near the focus. Any mismatch of position of the center with the focus



M. Ben Amar / C. R. Mecanique 332 (2004) 361-365 365

increases during the crystallization process and can expldisplacement of the crystal in the microwave field.

It can explain also the experimental observation of a density decrease when the crystal is always under pressure:
perhaps the crystal moves in the acoustic field and so does not feel the available over-pressure. Moreover, this
displacement decreases theddin energy of the flow. Anyway, it turnsut that this effect is weak and is perhaps
relevant for noticeable pressure values. Repenthat the correct dimensionless parametel?oi/S(pfc?) which

remains small in the Helium experiment: about 0.01. Tieceis weak if we assume gégible the nitial value

of the crystal velocityd, but may also be important depending on this value. It may thus be an explanation for
discrepancies between experimental and theoretical results.
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