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Abstract

A numerical solution of the Navier–Stokes equations coupled with the energy and linearised equation of state
performed in the unsteady Rayleigh–Bénard configuration for nearly supercritical3He in the exact conditions with whic
Meyer and Kogan (Phys. Rev. E 63 (2002) 056310) performed their experiments. We propose an interpretation of the
unexpected temperature oscillations at the convection onset in terms of coupled hotand cold piston effects. We have al
considered the stability of two layers (hot and cold) of a same supercritical fluid in an unstable configuration. The firs
show an analogy between the diffusion of species (Rayleigh–Taylor like instability) and thermal diffusion considered in this
study.To cite this article: S. Amiroudine, B. Zappoli, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Instabilités thermoconvectives dans les fluides supercritiques.La première partie de l’article concerne la convection
Rayleigh–Bénard instationnaire dans de l’3He supercritique telle qu’elle apparaît dans les conditions expérimentales de
et Kogan (Phys. Rev. E 63 (2002) 056310). Cette étude est menée en résolvant numériquement les équations de Na
couplées avec l’équation d’état linéarisée et celle de l’énergie. Les oscillations temporelles inattendues de la températur
été interprétées en terme de compétition entre les effets piston chaud et froid. Dans un deuxième temps, nous avons cons
la stabilité de deux couches superposées, chaude et froide d’un même fluide supercritique isobare en configuratio
Les premiers résultats confortent bien l’idée de l’analogie entre la diffusion desespèces (instabilité deRayleigh–Taylor) et
la diffusion thermique considérée dans cette étude.Pour citer cet article : S. Amiroudine, B. Zappoli, C. R. Mecanique 332
(2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The hydrodynamic stability of the steady heat conduction and incompressible or moderately compressible flui
layer is a classical problem, which obeys the Rayleigh criterion. For a compressible fluid and for fluid colu
large dimensions, the criterion based on the adiabatic temperature gradient (ATG) replaces the Rayleigh criter
for the onset of convection [1–4]. The effects associated with the ATG (well known in atmospheric science
not been studied in controlled laboratory experiments. As the compressibility diverges at the critical point (C
transition curve for the onset of convection has been shown experimentally [1], analytically [3] and nume
[2,4], to display a crossover from a Rayleigh-dominated regime to one determined by the ATG.

In the recent experiments of Meyer and and Kogan [1], temporal oscillations in the temperature fiel
observed above the onset of convection in a Rayleigh–Bénard cell filled with supercritical3He. The fluid, which
was contained in a cylindrical cell of large aspect ratio, is heated from below by a constant flux and the uppe
maintained at the initial temperature. Numerical simulations by different groups [4,5] have also characterized the
oscillations by using different methods. We explain here with the help of Navier–Stokes numerical simulation
that the cold piston effect (CPE, see [6] for details) initiated by the thermal plumes is responsible for the obse
temperature oscillations.

In continuity with the above study which is characterized by the unstable upper layer caused by the C
have considered the simulation of the stability of two superposed layers, hot and cold of the same sup
pure fluid, which are placed in an unstable configuration. The analysis of the growth rate of the instab
different wave numbers shows the existence of a cut-off wavenumber above which small wavelengths are s
The agreement between the numerical values and recent theories on the stability of a diffusion front of m
fluids confirms that a pure supercritical fluid, which presents a thermal gradient, may lead to the deve
of a gravitational instability. The density gradient (as in Rayleigh–Taylor instabilities) is not determined by th
diffusion of species but by thermal diffusion and high compressibility [7]. The results are given as a function
proximity to CP in order to establish stability diagrams of two superposed layers of a pure supercritical flui

2. Model

We consider a 2D rectangular cavity (2 mm long and 1 mm high), which is heated from below by a co
heat flux with periodic boundary conditionson the lateral walls in order to correctly represent the large as
ratio (∼=50) in the experiment of Meyer and Kogan [1]. The upper wall is maintained at a fixed tempe
T0 = (1+ ε)Tc, whereTc is the critical temperature andε represents the distance to the critical point. The cav
filled with supercritical3He, is initially at the critical density (ρc). All the thermophysical properties correspond
the experimental data [1]. In addition to the Navier–Stokes equations corresponding to the motion of the flui
the cavity, we consider the equation of energy and the linearised equation of state:

ρCp
dT

dt
= TβP

∂P

∂t
+ ∇(λ∇T ) + Φ; Energy

ρ = ρ0 + ρcχT (P − P0) − ρcβP (T − T0); State

whereβP is the thermal expansion coefficient,χT the isothermal compressibility,λ the thermal conductivity
Cp the specific heat at constant pressure,Φ = σij ∂Vi/∂xi the dissipation function withσij the stress tensor,Vi the
velocity components,P0 andT0 the initial pressure and temperature fields.

The above equations are solved numerically by the finite volume method using the SIMPLER algorith
The discretisation is 1st order Euler in time and uses the power-law scheme of Patankar [8] in space.
uniform mesh in a staggered grid has been used and numerical stability in terms of time-step and mesh
been carefully checked. All the interesting physical phenomena being on a longer time scale (i.e. the pisto
time scale, see [2] for details) than the acoustic time scale,an acoustic filtering procedure has been included in
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numerical code. This implies: (i) a reduction of computer time because of higher time steps; and (ii) a depen
of pressure in time determined by mass conservation.

3. Thermal oscillations at the Rayleigh–Bénard threshold in supercritical3He

For a compressible fluid with large dimensions of the cavity or a highly compressible fluid in the labo
the stabilized adiabatic temperature gradient ATG≡ (−gρ/βP )(χT − χS) = −gTcβP /Cp , modifies the usua
definition of the Rayleigh number for the onset of convection (hereχS is the isentropic compressibility andg
the gravity). It is given by [9]:Ranew = Ra(1 − ATG · L/	T ) � Rac(∼= 1708). We have run simulations base
on the experimental data [1] (κ = 10−9 m2/s, Cp = 5.18× 105 J/kg/K, χT = 4.3 × 10−4 Pa−1, β = 52 K−1

and the critical values:Tc = 3.318 K, ρc = 41.4 kg/m3 andPc = 1.17 bar) withε = 0.01 and for different hea
fluxes. Fig. 1(a) shows the temperature field at the steady state as a function of heat flux and for different v
Ranew. The numerical results agree well with the experimental ones, which is confirmed by the time evolu
the temperature field (Fig. 1(b)) for a heat flux of 4.7× 10−3 W/m2. The maximum error is of the order of 22
and a good synchronization is obtained for the oscillations. This case corresponds to the damped oscillation
the instability diagram established by Meyer and Kogan [1], as in Fig. 2 for a heat flux of 6.65× 10−4 W/m2. It
constitutes the basis for our interpretation of these oscillations.

(a) (b)

Fig. 1. (a) Comparison in a log-log scale between experimental (Q) [1] and numerical results (F) of the steady state (ss) temperature a
function of heat flux forε = 0.01. (b) Experimental (F) and numerical (solid line) temperature fields as a function of time at the lower pla
a heat flux of 4.78× 10−3 W/m2.

Fig. 2. Numerical temperature field as a function of time on the bottom layer for a heat flux of 6.65× 10−4 W/m2.
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Fig. 3. Temperature field [(T − T0) µK)] at t = 36 s for a heat flux of 6.65× 10−4 W/m2. The different points correspond to the localizati
of the temporal evolution of the temperature field on Fig. 4.

Fig. 4. Temperature differences as a function of time for different heights and a heat flux of 6.65 × 10−4 W/m2: (- F -: x = 0.25 mm,
y = 0.5 mm, -2 -: x = 0.5 mm,y = 0.2 mm, -Q -: x = 0.5 mm,y = 0.4 mm, -× -: x = 0.5 mm,y = 0.6 mm, -∗ -: x = 0.5 mm,y = 0.8 mm,
- " -: x = 0.5 mm,y = 1 mm).

Two diffusive boundary layers form on the top and bottom plates of the cavity after the beginning of h
A competition between the two piston effects exists during this diffusive period until the beginning of conv
with the appearance of thermal plumes. Fig. 3 shows the temperature field att = 36 s and different points where th
temperature is numerically evaluated for a heat flux of 6.65× 10−4 W/m2 and Fig. 4 represents the time evoluti
of the temperature field for these different heights atx = 0.5 mm. Aty ∼= 0.8 mm, the change of slope att = 32 s
corresponds to the beginning of convection; then att = 34 s, another change of slope is seen at this same loc
corresponding to the incoming of hot fluid by the thermal plume. This increase of temperature gradient p
an increase of the CPE [6], which involves a homogeneous decrease of the temperature in the bulk ev
latter always brings hot fluid from the bottom plate. This homogeneous decrease of the temperature is the
of the piston effect. The temperature of the bottom plate has thus to decrease because the heat flux is imp
on that plate. Two antagonistic effects take place: an increase of the temperature due to convection and dec
corresponding to the piston effect.

Fig. 5 shows the temperature atx = 0.5 mm as a function of the vertical position. We can notice a typical pi
effect profile between 22 s and 32 s in the diffusive regime, then two convective profiles (t = 36 s,t = 38 s). The
temperature gradient aty = 1 becomes more and more important and reaches a maximum att = 38 s. Between
38 s and 40 s, we note a sharp decrease of the temperature in the bulk which involves a decrease of the tempera



S. Amiroudine, B. Zappoli / C. R. Mecanique 332 (2004) 345–351 349

f
rms the
aximum
gligible.
perature

en
ping.

ed just
m.
a front

n
ature
nfinite
he
rowth

he

e
all
shown
th given
is,
Fig. 5. Vertical temperature profiles atx = 0.5 mm and at different times for a heat flux of 6.65× 10−4 W/m2. (—Q—: t = 22 s, - -� - -:
t = 32 s, -· -F- · -: t = 36 s, - -2- -: t = 38 s, -·· -"- ·· -: t = 40 s).

of the bottom plate where the heat flux is fixed. Fig. 4 shows also the evolution of the temperature atx = 0.25 mm,
y = 0.5 mm, where the magnitude of the velocity field is very weak (3–4 µm/s, whereas it is of the order o
500 µm/s in the center of the thermal plume), which proves also the absence of convection and confi
signature of the piston effect. The decrease of the temperature in the bulk between 34 s and 40 s, with a m
at 38 s, is due to the competition between the hot and cold piston effects because thermal diffusion is ne
The oscillatory phenomenon is then simple to explain: when the temperature of the bulk decreases, the tem
gradient at the top plate decreases, involving a weakening of the cold piston effect. The hot piston effect th
becomes dominant and a new ‘hot phase’ is initiated andthe scenario described above reproduces with a dam

4. Stability of two layers (hot and cold) placed in an unstable configuration

In the previous section, the diffusion layer along the upper plate, which is heavier than the fluid locat
below it, gives birth to drips (Fig. 3) through a gravitational instability evocative of a Rayleigh–Taylor mechanis
The surface tension being a priori null (single-phase pure fluid), we have oriented our study towards
diffusion instability, similar to that encountered in miscible fluids [10]. We have thus considered a simple situatio
in which an isobaric cavity of infinite extension is filled with a supercrititical fluid, the top-half initial temper
of which is lower than that of the bottom-half. Periodic conditions at the lateral walls represent the i
extension of the cavity as seen in the geometrical sketch of Fig. 6. Our main goal is to numerically study t
stability of the thermal diffusion interface between the two halves of the cavity, via the analysis of the g
rate of the fluctuations. These fluctuations are simulated by the introduction of a sinusoidal initial perturbation
of a field (for example the vertical velocity) at the interface:v(x, y = 0.5, t = 0) = Acos((2π/λ̃)x), whereA

is the amplitude and̃λ is the wavelength. The dynamical growth of the interface, i.e. the determination of t
growth rateσ(k), wherek(= 2π/λ̃) is the wavenumber of the fluctuation introduced att = 0, is deduced from
the values of the vertical velocity at a point and at two timest1 andt2 with corresponding amplitudesA1 andA2:
σ = Ln(A1/A2)/(t1 − t2).

We consider two initial reduced density differences((ρ1 − ρ2)/ρ1 = 10−2,10−3) and we have used th
experimental thermophysical properties of3He [1]. The existence of a cut-off wavenumber above which sm
wavelengths are damped by diffusion is consistent with the conclusions of Kurowski et al. [10]. They have
that the simultaneous effects of viscosity and diffusion is necessary for the existence of a cut-off waveleng
by: λ̃c = 2π(16νD/(3gR))1/3, whereD is the interdiffusion coefficient in the case of miscible fluids (which
by analogy in our case, the thermal diffusion coefficient),g is gravity andR = (ρ1 − ρ2)/(ρ1 + ρ2) measures the
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Fig. 6. Geometry of the 2D model.

Fig. 7. Theoretical and numerical cut-off wavenumbers as a function of(T − Tc)/Tc for different values of the density differenc
	ρ = (ρ1 − ρ2)/ρ1.

density difference. Fig. 7 shows a good agreement between the theoretical [10] and the numerical resul
allows to justify the analogy between miscible liquids and thermally non-homogeneous isobaric supercritical flu

The space scales of the micro-drops formed by the instability are weak and it thus appears that the p
homogenization of a critical fluid on the ground can comprise a phase of micro-mixture during which the
drops are formed. These are then homogenized on a temporal scale, which is thus much shorter than the
of diffusion on the typical dimension of the cavity.

5. Conclusions

These two studies show the unforeseen behaviour of supercritical fluids in terms of thermal instabilities
first configuration where the fluid is heated from below, the onset of Rayleigh–Bénard convection is accompa
by thermal oscillations which can be explained by the interaction of the cold piston effect initiated at the upp
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isothermal wall by the convective plume and the hot piston effect due to the heating of the lower wall. As
second study, it shows that a pure supercritical fluid at two different temperatures can behave as two distin
miscible and the other. The current continuation of this work attempts to explore thestability conditions when the
depth of the top-colder layer is very small compared the bottom hotter one.
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