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Abstract

The aim of this contribution is to derive minimum principles for quasi-linear linear transport (heat) equations in the steady and
nonstationary case. Application to currently used nonstationary bioheat equations is sketdiethis article: J.J. Telega,
M. Stahczyk, C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Principes de minimum généraux pour équations du transport quasi linéaires et de la chaleur non stationaires en
biomécanique. Le but de la contribution est de donner des principes de minimum pour I'equation du transport (de la chaleur)
quasi lineéaire dans le cas stationaire et non stationaire. L'application aux équations de la chaleur, couramment utilisées en

biomécanique est esquis&®ur citer cet article: J.J. Telega, M. Stanczyk, C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

A common conviction is that for nonpotential and initial-value problems, particularly for quasilinear heat
equations, one cannot find minimum principles. However, by using simple methods of convex analysis one can
derive such principles for a general type of elliptic, parabolic and hyperbolic differential inclusions. In fact, Brezis
and Ekeland [1,2] derived minimum principles for classical parabolic heat equations. The approach was next
extended by Auchmuty [3] and Telega [4].
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An interesting feature of the method is that the variational functionals to be minimised are bounded from below
by zero.

In this contribution we derive minimum principles for quasilinear transport (heat) equations by exploiting the
general method developed by Telega [4]. In essence, two approaches are proposed. One involves an inverse operator
(Green’s function). The second approach may be viewed as a generalization of the primal and dual problems
expounded in [5]. It may be said that for nonpotential and initial-value conditions the primal and dual problems are
inextricably coupled. Application to currently used nonstationary bioheat equations is sketched.

2. Stationary quasi-linear transport equation

The general setting was developed by Auchmuty [3] and Telega [4]. It has the form of the subdifferential
inclusion
F(u)+ f €3 (u)
In this section we apply the variational approach proposed in [3,4] to the transport Neumann boundary value
problem
—div[aX, u(x)Vu(x)] = f in2

(a(x, u(x))Vux) -n=g onl" @

Here £2 is a bounded, sufficiently regular domain®? (physicallyN = 1,2 or 3), I' = 82 andn denotes the
outward unit normal td”. For the assumptions @n= (a;;) and existence of solutions to (1) the reader is referred
to the relevant references cited in [6].

Assume that(x, &) = a%(x) +al(x, &), x € 2, & e RN and that there exist positive constaris> ¢; such that

c1l€1? < a) (0)&E; < calE)?

for eaché e RV and almost every (a.ex)e £2.

We set
1 o [ diviatx, u())Vu(x)] 7 2
Py = E/a"-"(x)u”u” & Fw= [—(al(x, u(x)) Ve(x)) - n)} r
2
Then we have
_di 0
acb(u(x)) _ [ %lv[a (X, u(X))Vu(X)]:| 2
@ ux)Vux))-ny |1 I
and

D*(u*) = SUp{(u*, u) - %/(aOVu) -Vu dX}
u A

The duality pairing(-,-) is here to be understood in the sense[®f-7 ()] x WL7(£2), p > 2. The dual
functional®* has the form

* * 1 — * * 1 — * *
D*(u*) = §<L Lux, ul)\ﬂ + §<L Lus, “2>\1"

where

1 2
ul = [“11|
uy | I’
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Obviouslyu3 is to be taken in the sense of trace of a functiodrThe linear operatak —1 is the inverse operator
(linear) to the operator determined by the following Neumann problem

—div(@x)Vur(x) =uj in2; (%X Vur(x)-n=uj onr

Hereu] andu are prescribed.
The minimum principle associated with (1) means evaluating

a=inf{J@)lue WP (2)}
where
J(u) =@ (u) + O*(uy, ub) — (ui, u)e — (uy, u)r

Hereuy = f + div[al(x, u(x))Vu(x)] in £2, uy=g-— [al(x, u(x))Vu(x)] - n on I". From Theorem 2 of the paper
[4] we conclude that > 0 andJ (&) = 0 if and only if iz is a solution to (1);/ (i) = min J ().

3. A setting avoiding the inver se operator

In the paper by the first author [4] the minimum principle for the following differential inclusion was derived
F(u)+ f € 0P1(Au)

where A is a linear and continuous operator, cf. [5]. To apply the general formulation developed in [4] to the
system (1) we take

1
P1(p) =3 / ap () pip; dx
2
Standard calculation gives the conjugate functional [5,7]

1
010" = 2 / b0 p} ' i
2

whereh? = (a%) 1.
Now Au = Vu and we calculate

(Au, p*) =/(Vu)-p*dx=—/(divp*)u dx+/(p*-n)u dx = (A*p*, u)
2 2 r

The adjoint operaton* of A has thus the form
—divp*] £2
o[ 2]
p*-n | I
By using the general results presented in Section 3.2 of the paper [4], we formulate the variational functional:
Ki(u. Q) = 2(Vu) + 91(q) — (div(@'Vu) + fou)y. ) — (g = (@Vue) -n.u)y
whereV = W7 (2), Vp = Wi=YP.P(I") andV}. is the dual ofV-. The minimum principle means evaluating
inf{K1(u,q) |u €V, qe L1(2), diva(x) = f(x) + div[al (X, u(x)) Vu] in £, @
q-n=g— (at(x, u(x))Vu(x)) -nonr}

1.,.1_
wherep+q_1.

Remark 1. Minimization problem (2) couples the primal and dual problems. Indeeat, # 0, then (2) yields a
classical pair of dual problems, now derived without using the duality theory expounded in Ekeland and Temam [5].
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4. General setting for parabolic-type equations

Prior to the formulation of minimum principles for nonstationary bioheat equations we shall present two general
schemes. Consider first the following parabolic-like differential inclusion:
{m(z) + 9 (t,u(r)) > F(r,u(r)), O<t<10 3)
u(0) = u®

Hereu = g—‘r‘ and we use the standard notatign) = {u(x, 7) | x € 2} wherex is a spatial variable. We assume
that the coefficient may depend on the spatial variable, but not on the time variable though such an extension is
possible. We introduce the set of admissible functions

K ={v(r), €0, 70| v(0) = u°}
and the variational functional [4]:

0
J(v) = /{@(t, v(r)) + @*[7, F(t,v(v)) — k(D) = (F(r, (1)), v(v))} dr

0
1
+ 5 (kv |* — eu]) (4)

Here| - || stands for a properly defined norm, cf. [4]. In practiceifis a quadratic functional the@* is
defined by an inverse operator (Green'’s function).
The minimum principle associated with problem (3) means evaluating

(P) a=Jw) =inf{J(v)|veK]

Under physically plausible, rather weak assumptions,0 andJ («) = 0 if and only ifu is a solution to (3). One
of the important assumption requir@gz, -) to be a convex and proper function for each [0, o], cf. [3,4]
Consider now a more general setting, allowing one to avoid the inverse operator, proposed in [4],

{Ku(z)+aw(r, Au(1)) 3 F(r,u(v)), O0<t <10 5)
u(0)=ug

Here A is a continuous linear operatot,: V — Y; A* is its adjoint.

Since(¥ A)* = A*¥* and

(A*TH (") = inf{lII*(q*) | A*g* =v*, g% € Y*}
it can be shown that the minimum principle takes the form
inf { oro[llf(r, Av(D)) + ¥, ¢* ()] — (F (7, v(1)), v(1))] dr
Py "7
+ 1 (o) |* = [cu®|?) | v(r) €K, g*(x) € Y*, A*q*(x) = F(r, v(7)) — k(1))

5. Application to bioheat equations

Having developed the general scheme of formulation of minimum principles for parabolic-type problems we
pass to the application to important bioheat equations. For relevant references on various bioheat equations and
their applications the reader is referred to our paper [9] .
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5.1. Minimum principles for quasilinear nonstationary heat equation: general model for bioheat equations

Consider now the following quasilinear heat equation in a bounded, sufficiently regular deniR®:
kT —div[ax, 7, T)VT] = f(x, 1) in£2 x (0, 10)

Tx,7)=0 onlyp x (0, 1p) ©)
(a(x, T, T)VT) -‘n=gX, 1) onI1 x (0, o)
T(x,0) =T%x) ons

HereT = %—Z stands for the temperature rafe= 952, I" = I'oU I'; whilst € [0, o] denotes time. We assume
that

ax,t,T)= aO(X, )+ al(X, t,T) and 3dc1>co>0, Vee RS co|e|2 < aioj (x,7)ejej < c1|e|2
for eachr € [0, 7o]; moreover?, =a9%, i, j =1,2,3.
To formulate the variationaf functional of type (4) we set
115
d(t, T)ZE aij(X,‘L')T,iT)jdX
17

HereT; =0T/dx;. Then®*(z,T*) = %(GT*, T*) The operator G is the Green operator solving the following
boundary-value problem

{ —div[a%(x, ))VT] =T} (x, 1) in £2 x (0, 70)
(&%, 1)VT) -n=Tf (x,7)  onI1x (0, )
We observe that noW™* = (T35, T;El). Furthermore we set
K={T(x 1) T(x,7)=00nIpx (0, 0)}
To(x, 1) = f(X, 7) +div[al (X, 7, )VT (X, 7)] =k ()T (X, 7)
Th (X, 1) =g, 1) — [a'(X, T, T)VT (X, 7)] - n
The minimum principle is a particular case of probléR) and the variational functional takes now the form:

J(T) = %fJOf[%a?j(x,z)rirj + G, DTS (X, )T (X, )] dx de
Ak

+3 /0% 1, GOGOTH (X, DT (%, 1) Al dr — [0/ T (, )T (X, 7) dxde
— [ TH 6 DT, D) Al de + 5 [o[(« T (x, 1) = (k0 T0(0))?] dx

Let us pass now to the formulation of the principle of ty@a X for the some nonstationary quasilinear initial-
boundary value problem (6). In this cagd” = VT and

_ [—divp*} 2
A*p* =
p*-n | I

Problem (6) has now the form (5) where

1
v (r, AT) =5 /(ao(x, T)AT) - AT dx
2
The variable conjugate td T is the fluxq = (¢;). We find

e ) — e L .
v*(r,q)=su gipidX—¥(t,p)|peyY =3 bij(X, T)giqj dX
2 2
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whereq e Y*, b= (a%1, andy = Y* = L2(2)3.
The minimum principle’P1) means now evaluating:

a=infrql 5% 5[ (%X, VT (X, 7)) - VT (X, 7) + (b(X, T)a(X, 7)) - 4(X, T)] dx de
— o[ fx, T) +div(al(x, 1)VT (x, 7, T)) T (x, 7) dx dr
— 0%/ [ex ) = (@' %, 7, T)VT (x, 7)) - n]T (x, 7) I de

+3 Jol[ko0Tx, 70)]2 - [K(X)TO(X)]Z} dx| T €K, q(-, 1) € L4(2)3,
—divgx,7) = f(X, ) + div(al(x, T, T)VT) —k(x)Tin £ x (0, 70),
qx,7)-n=gx, ) —a'(x,z,T)-nonr x (0, )} (7)

Remark 2. We observe that il = 0 and the heat transfer problem is station&fy= 0) then (7) yields the
standard pair of dual extremum problems. Recall that 0. If a> = 0 and the problem is nonstationary then the
primal problem (minimum over T) and the dual problem (minimum ayaemain coupled through the constraint:

—divg=f —«T in$2 x (0, 1)
5.2. Important bioheat equations

We are going to outline the formulation of minimum principles for currently used bioheat equations.
Pennes equatiofi0] extended to anisotropic tissues assumes the following form:

ki () T3 (X, T) = divV(A () VT (X, T)) + wp (X, T)cp[ Ta — Ty (X, )] + qu (X, T)

The subscripta, b and: refer to artery, blood and tissue, respectivedy; denotes the blood perfusiosy, is
the specific heat angl, stands for the internal heat generation.

This model (in its isotropic form) was proposed by Pennes [10] on the basis of measurements of temperature
in the resting human forearm. The fundamental underlying assumption of this model is that the blood arrives at
the local tissue capillary bed at the arterial temperature and instantaneously equilibrates with the surroundings.
This means that the blood—tissue heat exchange takes place only on the level of capillaries. This assumption was
frequently criticized by numerous authors, see [9] for the discussion of this criticism. Nevertheless, the Pennes
equation is by far the most popular and viable model nowadays, cf. [11].

In the case of Pennes mod€l= ,, al =0, and

f(xs T) - U)b(x, T)Cb[TI(X7 T) - Ta] + qU(X7 T)
Directed perfusion mod¢12] is described by the following bioheat equation:
K 0T, (x, T) = div(d, (O VT,) — ppcsU - VT, + g,

Now alsoal = A;, al = 0whilst £ (x, 1) = ¢, — ppcpU - VT;. HereU denotes the Darcy filtration velocity assumed
as known.

This model was proposed by Wulff in 1974 [12] as an alternative to the Pennes equation. The assumption used
here is quite opposite to that used by Pennes. Namely one assumes that the blood-tissue heat transfer occurs on
each level of the vascular tree and it is perfect, so that the blood is always thermally equilibrated with tissue. This
fact gives rise to the convective term on the right-hand side of the equation.

Weinbaum and Jiji simplified bioheat equatidr8]: The observation that most of the blood vessels exists only
in the form of artery-vein pairs with countercurrent flow led Weinbaum and Jiji to suspect that the countercurrent
heat exchange mechanism is of primary importance. Based on their previous anatomical observations they derived
a model of a continuum which is approximately equivalent to the solid with the network of countercurrent vessels
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embedded into it [13]. The vessels are characterized by their local direlgtipe: (;), andl; i =1, 2, 3) are the
directional cosines of the vessel pairs:

Ak (X, THT]

o = div(xeﬁ(x, THVT) +qu(X, Ty) — [®(X, Ty) - VT;(x, 7)] div(I(X))

Here®(x,T) = %I(x) andA®f(x, T) = 1, (1 + @(x, T) ® |(x)), wheren is the local number density of
t
vesselsg is their radiusPeis the Peclet number and is the conduction shape factor (which is the function of
the vessel dimensions). For more details on the last bioheat equation the reader is referred to [9] or to the original
paper [13]. )
In this case we have to consider slightly more general version of Eg.WBgre«T is to be replaced

2 2)L2 P 2
by 2T Now al (x) = ()8, at(x, Th) = kt%
a®() +al(x, ;) = a(x, T,). Moreover,f (X, 7, T;) = qu(X, T,) — [®(X, Ty) - VT;1div(1(x)).

lil;, whereal(x) > 0, for all x € £2 and

6. Final remarks

General approach developed by Telega in [4] and extended in Section 4 of the present paper enabled us to derive
minimum principles for linear and quasilinear bioheat equations, including the equation studied in [14]. One can
extend the procedure outlined in Sections 4 and 5 to strongly nonlinear equations, if such a need arises.

By generalizing the procedure outlined in Section 4 we can derive extremum principles for the coupled system
of equations modelling polymerisation of PMMA in cement prostheses. For details on the relevant system the
reader is referred to [8,15,16].
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