
ady and

haleur)
tilisées en

m

leur en

heat
one can
Brezis
as next
C. R. Mecanique 332 (2004) 263–269

General minimum principles for quasilinear transport
and bioheat equations

Józef Joachim Telega, Maciej Stańczyk
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Abstract

The aim of this contribution is to derive minimum principles for quasi-linear linear transport (heat) equations in the ste
nonstationary case. Application to currently used nonstationary bioheat equations is sketched.To cite this article: J.J. Telega,
M. Stańczyk, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Principes de minimum généraux pour équations du transport quasi linéaires et de la chaleur non stationaires en
biomécanique. Le but de la contribution est de donner des principes de minimum pour l’equation du transport (de la c
quasi lineéaire dans le cas stationaire et non stationaire. L’application aux équations de la chaleur, couramment u
biomécanique est esquisée.Pour citer cet article : J.J. Telega, M. Stańczyk, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

A common conviction is that for nonpotential and initial-value problems, particularly for quasilinear
equations, one cannot find minimum principles. However, by using simple methods of convex analysis
derive such principles for a general type of elliptic, parabolic and hyperbolic differential inclusions. In fact,
and Ekeland [1,2] derived minimum principles for classical parabolic heat equations. The approach w
extended by Auchmuty [3] and Telega [4].
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1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2004.02.012
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An interesting feature of the method is that the variational functionals to be minimised are bounded from
by zero.

In this contribution we derive minimum principles for quasilinear transport (heat) equations by exploiti
general method developed by Telega [4]. In essence, two approaches are proposed. One involves an invers
(Green’s function). The second approach may be viewed as a generalization of the primal and dual p
expounded in [5]. It may be said that for nonpotential and initial-value conditions the primal and dual proble
inextricably coupled. Application to currently used nonstationary bioheat equations is sketched.

2. Stationary quasi-linear transport equation

The general setting was developed by Auchmuty [3] and Telega [4]. It has the form of the subdiffe
inclusion

F(u) + f ∈ ∂Φ(u)

In this section we apply the variational approach proposed in [3,4] to the transport Neumann bounda
problem

−div
[
a(x, u(x))∇u(x)

] = f in Ω(
a
(
x, u(x)

)∇u(x)
) · n = g onΓ

(1)

HereΩ is a bounded, sufficiently regular domain inR
N (physicallyN = 1,2 or 3), Γ = ∂Ω andn denotes the

outward unit normal toΓ . For the assumptions ona = (aij ) and existence of solutions to (1) the reader is refe
to the relevant references cited in [6].

Assume thata(x, ξ) = a0(x)+ a1(x, ξ), x ∈ �Ω, ξ ∈ R
N and that there exist positive constantsc2 � c1 such that

c1|ξ |2 � a0
ij (x)ξiξj � c2|ξ |2

for eachξ ∈ R
N and almost every (a.e.)x ∈ Ω̄ .

We set

Φ(u) = 1

2

∫
Ω

a0
ij (x)u,iu,j dx, F (u) =

[
div[a1(x, u(x))∇u(x)]

−(a1(x,u(x))∇u(x)) · n)

]
Ω

Γ

Then we have

∂Φ
(
u(x)

) =
[−div[a0(x, u(x))∇u(x)]

(a0(x,u(x))∇u(x)) · n)

]
Ω

Γ

and

Φ�(u�) = sup
u

{〈
u�,u

〉 − 1

2

∫
Ω

(
a0∇u

) · ∇udx
}

The duality pairing〈·, ·〉 is here to be understood in the sense of[W1,p(Ω)]′ × W1,p(Ω), p � 2. The dual
functionalΦ� has the form

Φ�(u�) = 1

2

〈
L−1u�

1, u
�
1

〉
|Ω + 1

2

〈
L−1u�

2, u
�
2

〉
|Γ

where

u1 =
[
u�

1

u�
2

]
Ω

Γ
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Obviouslyu∗
2 is to be taken in the sense of trace of a function onΓ . The linear operatorL−1 is the inverse operato

(linear) to the operator determined by the following Neumann problem

−div
(
a0(x)∇u1(x)

) = u�
1 in Ω; (

a0(x)∇u1(x)
) · n = u�

2 onΓ

Hereu�
1 andu�

2 are prescribed.
The minimum principle associated with (1) means evaluating

α = inf
{
J (u)|u ∈ W1,p(Ω)

}
where

J (u) = Φ(u) + Φ�(u�
1, u

�
2) − 〈u�

1, u〉|Ω − 〈u�
2, u〉Γ

Hereu�
1 = f + div[a1(x, u(x))∇u(x)] in Ω, u�

2 = g − [a1(x, u(x))∇u(x)] · n onΓ . From Theorem 2 of the pape
[4] we conclude thatα � 0 andJ (û) = 0 if and only if û is a solution to (1);J (û) = minJ (u).

3. A setting avoiding the inverse operator

In the paper by the first author [4] the minimum principle for the following differential inclusion was deriv

F(u) + f ∈ ∂Φ1(Λu)

whereΛ is a linear and continuous operator, cf. [5]. To apply the general formulation developed in [4]
system (1) we take

Φ1(p) = 1

2

∫
Ω

a0
ij (x)pipj dx

Standard calculation gives the conjugate functional [5,7]

Φ�
1(p

�) = 1

2

∫
Ω

b0
ij (x)p

�
i p

�
j dx

whereb0 = (a0)−1.
Now Λu = ∇u and we calculate

〈Λu,p�〉 =
∫
Ω

(∇u) · p� dx = −
∫
Ω

(div p�)udx +
∫
Γ

(p� · n)udx = 〈Λ�p�, u〉

The adjoint operatorΛ� of Λ has thus the form

Λ�p� =
[−divp�

p� · n

]
Ω

Γ

By using the general results presented in Section 3.2 of the paper [4], we formulate the variational func

K1(u,q) = Φ1(∇u) + Φ�
1(q) − 〈

div
(
a1∇u

) + f,u
〉
V �×V

− 〈
g − (

a1∇u
) · n, u

〉
V ′
Γ ×VΓ

whereV = W1,p(Ω), VΓ = W1−1/p,p(Γ ) andV ′
Γ is the dual ofVΓ . The minimum principle means evaluating

inf
{
K1(u,q) | u ∈ V, q ∈ Lq(Ω), div q(x) = f (x)+ div

[
a1

(
x, u(x)

)∇u
]

in Ω,

q · n = g − (
a1

(
x, u(x)

)∇u(x)
) · n onΓ

} (2)

where 1
p

+ 1
q

= 1.

Remark 1. Minimization problem (2) couples the primal and dual problems. Indeed, ifa1 ≡ 0, then (2) yields a
classical pair of dual problems, now derived without using the duality theory expounded in Ekeland and Tem
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4. General setting for parabolic-type equations

Prior to the formulation of minimum principles for nonstationary bioheat equations we shall present two g
schemes. Consider first the following parabolic-like differential inclusion:{

κu̇(τ ) + ∂Φ
(
τ,u(τ )

) � F
(
τ,u(τ )

)
, 0< τ < τ0

u(0) = u0
(3)

Hereu̇ = du
dτ and we use the standard notationu(τ) = {u(x, τ ) | x ∈ Ω} wherex is a spatial variable. We assum

that the coefficientκ may depend on the spatial variable, but not on the time variable though such an exten
possible. We introduce the set of admissible functionsu:

K = {
v(τ ), τ ∈ [0, τ0] | v(0) = u0}

and the variational functional [4]:

J (v) =
τ0∫

0

{
Φ

(
τ, v(τ )

) + Φ∗[τ,F (
t, v(τ )

) − κv̇(τ )
] − 〈

F
(
τ, v(τ )

)
, v(τ )

〉}
dτ

+ 1

2

(∥∥κv(τ0)
∥∥2 − ∥∥κu0

∥∥2) (4)

Here‖ · ‖ stands for a properly defined norm, cf. [4]. In practice, ifΦ is a quadratic functional thenΦ∗ is
defined by an inverse operator (Green’s function).

The minimum principle associated with problem (3) means evaluating

(P) α = J (u) = inf
{
J (v) | v ∈ K

}
Under physically plausible, rather weak assumptions,α � 0 andJ (u) = 0 if and only ifu is a solution to (3). One
of the important assumption requiresΦ(τ, ·) to be a convex and proper function for eachτ ∈ [0, τ0], cf. [3,4]

Consider now a more general setting, allowing one to avoid the inverse operator, proposed in [4],{
κu̇(τ ) + ∂Ψ

(
τ,Λu(τ)

) � F
(
τ,u(τ )

)
, 0< τ < τ0

u(0) = u0
(5)

HereΛ is a continuous linear operator,Λ : V → Y ; Λ∗ is its adjoint.
Since(ΨΛ)∗ = Λ∗Ψ ∗ and

(Λ∗Ψ ∗)(v∗) = inf
{
Ψ ∗(q∗) | Λ∗q∗ = v∗, q∗ ∈ Y ∗}

it can be shown that the minimum principle takes the form

(P1)

inf
v,q∗

{∫ τ0
0

[
Ψ

(
τ,Λv(τ)

) + Ψ ∗[τ, q�(τ )
] − 〈

F
(
τ, v(τ )

)
, v(τ )

〉]
dτ

+ 1
2

(∥∥κv(τ0)
∥∥2 − ∥∥κu0

∥∥2) ∣∣ v(τ ) ∈ K, q∗(τ ) ∈ Y ∗,Λ∗q∗(τ ) = F
(
τ, v(τ )

) − κv̇(τ )
}

5. Application to bioheat equations

Having developed the general scheme of formulation of minimum principles for parabolic-type proble
pass to the application to important bioheat equations. For relevant references on various bioheat equa
their applications the reader is referred to our paper [9] .
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5.1. Minimum principles for quasilinear nonstationary heat equation: general model for bioheat equations

Consider now the following quasilinear heat equation in a bounded, sufficiently regular domainΩ ⊂ R
3:

κṪ − div
[
a(x, τ, T )∇T

] = f (x, τ ) in Ω × (0, τ0)

T (x, τ ) = 0 onΓ0 × (0, τ0)(
a(x, τ, T )∇T

) · n = g(x, τ ) onΓ1 × (0, τ0)

T (x,0) = T 0(x) onΩ

(6)

HereṪ = ∂T
∂τ

stands for the temperature rate,Γ = ∂Ω, Γ = Γ0∪Γ1 whilst τ ∈ [0, τ0] denotes time. We assum
that

a(x, τ, T ) = a0(x, τ ) + a1(x, τ, T ) and ∃c1 � c0 > 0, ∀e ∈ R3 c0|e|2 � a0
ij (x, τ )eiej � c1|e|2

for eachτ ∈ [0, τ0]; moreovera0
ij = a0

ji, i, j = 1,2,3.
To formulate the variational functional of type (4) we set

Φ(τ,T ) = 1

2

∫
Ω

a0
ij (x, τ )T,iT,j dx

HereT,i = ∂T /∂xi . ThenΦ∗(τ, T ∗) = 1
2〈GT ∗, T ∗〉 The operator G is the Green operator solving the follow

boundary-value problem{−div
[
a0(x, τ )∇T

] = T ∗
Ω(x, τ ) in Ω × (0, τ0)(

a0(x, τ )∇T
) · n = T ∗

Γ1
(x, τ ) onΓ1 × (0, τ0)

We observe that nowT ∗ = (T ∗
Ω,T ∗

Γ1
). Furthermore we set

K = {
T (x, τ ) | T (x, τ ) = 0 onΓ0 × (0, τ0)

}
T ∗
Ω(x, τ ) = f (x, τ ) + div

[
a1(x, τ, T )∇T (x, τ )

] − κ(x)Ṫ (x, τ )

T ∗
Γ1

(x, τ ) = g(x, τ ) − [
a1(x, τ, T )∇T (x, τ )

] · n

The minimum principle is a particular case of problem(P) and the variational functional takes now the form

J (T ) = 1
2

∫ τ0
0

∫
Ω

[1
2a

0
ij (x, τ )T,iT,j + G(x, τ )T ∗

Ω(x, τ )T ∗
Ω(x, τ )

]
dx dτ

+ 1
2

∫ τ0
0

∫
Γ1

G(x, τ )T ∗
Γ1
(x, τ )T ∗

Γ1
(x, τ )dΓ dτ − ∫ τ0

0

∫
Ω

T ∗
Ω(x, τ )T (x, τ )dx dτ

− ∫ τ0
0

∫
Γ1

T ∗
Γ1

(x, τ )TΓ1(x, τ )dΓ dτ + 1
2

∫
Ω

[(
κ(x)T (x, τ )

)2 − (
κ(x)T 0(x)

)2]dx

Let us pass now to the formulation of the principle of type (P1) for the some nonstationary quasilinear initi
boundary value problem (6). In this caseΛT = ∇T and

Λ∗p∗ =
[−divp∗

p∗ · n

]
Ω

Γ1

Problem (6) has now the form (5) where

Ψ (τ,ΛT ) = 1

2

∫
Ω

(
a0(x, τ )ΛT

) · ΛT dx

The variable conjugate toΛT is the fluxq = (qi). We find

Ψ ∗(τ,q) = sup

{∫
Ω

qipi dx − Ψ (τ,p) | p ∈ Y

}
= 1

2

∫
Ω

bij (x, τ )qiqj dx
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whereq ∈ Y ∗, b = (a0)−1, andY = Y ∗ = L2(Ω)3.
The minimum principle (P1) means now evaluating:

α = infT ,q
{∫ τ0

0

∫
Ω

1
2

[(
a0(x, τ )∇T (x, τ )

) · ∇T (x, τ )+ (
b(x, τ )q(x, τ )

) · q(x, τ )
]
dx dτ

− ∫ τ0
0

∫
Ω

[
f (x, τ )+ div

(
a1(x, τ )∇T (x, τ, T )

)]
T (x, τ )dx dτ

− ∫ τ0
0

∫
Γ1

[
g(x, τ ) − (

a1(x, τ, T )∇T (x, τ )
) · n

]
T (x, τ )dΓ dτ

+ 1
2

∫
Ω

{[
κ(x)T (x, τ0)

]2 − [
κ(x)T 0(x)

]2}dx | T ∈ K, q(·, τ ) ∈ L2(Ω)3,

− divq(x, τ ) = f (x, τ )+ div
(
a1(x, τ, T )∇T

) − κ(x)Ṫ in Ω × (0, τ0),

q(x, τ ) · n = g(x, τ )− a1(x, τ, T ) · n onΓ1 × (0, τ0)
}

(7)

Remark 2. We observe that ifa1 ≡ 0 and the heat transfer problem is stationary(Ṫ = 0) then (7) yields the
standard pair of dual extremum problems. Recall thatα = 0. If a1 ≡ 0 and the problem is nonstationary then t
primal problem (minimum over T) and the dual problem (minimum overq) remain coupled through the constrai

−divq = f − κṪ in Ω × (0, τ0)

5.2. Important bioheat equations

We are going to outline the formulation of minimum principles for currently used bioheat equations.
Pennes equation[10] extended to anisotropic tissues assumes the following form:

κt (x)Ṫt (x, τ ) = div
(
λt (x)∇Tt(x, τ )

) + wb(x, τ )cb
[
Ta − Tt (x, τ )

] + qv(x, τ )

The subscriptsa, b andt refer to artery, blood and tissue, respectively;wb denotes the blood perfusion,cb is
the specific heat andqv stands for the internal heat generation.

This model (in its isotropic form) was proposed by Pennes [10] on the basis of measurements of tem
in the resting human forearm. The fundamental underlying assumption of this model is that the blood a
the local tissue capillary bed at the arterial temperature and instantaneously equilibrates with the surro
This means that the blood–tissue heat exchange takes place only on the level of capillaries. This assum
frequently criticized by numerous authors, see [9] for the discussion of this criticism. Nevertheless, the
equation is by far the most popular and viable model nowadays, cf. [11].

In the case of Pennes modela0 ≡ λt , a1 ≡ 0, and

f (x, τ ) = wb(x, τ )cb
[
Tt (x, τ ) − Ta

] + qv(x, τ )

Directed perfusion model[12] is described by the following bioheat equation:

κt (x)Ṫt (x, τ ) = div
(
λt (x)∇Tt

) − ρbcbU · ∇Tt + qv

Now alsoa0 ≡ λt , a1 ≡ 0 whilst f (x, τ ) = qv −ρbcbU ·∇Tt . HereU denotes the Darcy filtration velocity assum
as known.

This model was proposed by Wulff in 1974 [12] as an alternative to the Pennes equation. The assumpt
here is quite opposite to that used by Pennes. Namely one assumes that the blood-tissue heat transfer
each level of the vascular tree and it is perfect, so that the blood is always thermally equilibrated with tissu
fact gives rise to the convective term on the right-hand side of the equation.

Weinbaum and Jiji simplified bioheat equation[13]: The observation that most of the blood vessels exists
in the form of artery-vein pairs with countercurrent flow led Weinbaum and Jiji to suspect that the counter
heat exchange mechanism is of primary importance. Based on their previous anatomical observations the
a model of a continuum which is approximately equivalent to the solid with the network of countercurrent v
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embedded into it [13]. The vessels are characterized by their local direction:l(x) = (li ), andli (i = 1,2,3) are the
directional cosines of the vessel pairs:

∂[κ(x, Tt)Tt ]
∂τ

= div
(
λeff(x, Tt)∇T

) + qv(x, Tt ) − [
Φ(x, Tt ) · ∇Tt (x, τ )

]
div

(
l(x)

)
HereΦ(x, T ) = πna2λbPe2

4σλ2
t

l(x) andλeff(x, T ) = λt (I + Φ(x, T ) ⊗ l(x)), wheren is the local number density o

vessels,a is their radius,Pe is the Peclet number andσ is the conduction shape factor (which is the function
the vessel dimensions). For more details on the last bioheat equation the reader is referred to [9] or to the
paper [13].

In this case we have to consider slightly more general version of Eq. (6)1 where κṪ is to be replaced

by ∂[κ(x,Tt )Tt ]
∂τ

. Now a0
ij (x) = λ0

t (x)δij , a1
ij (x, Tt) = λt

π2na2λ2
b(Pe)2

4σλ2
t

li lj , where a1
t (x) > 0, for all x ∈ Ω and

a0(x) + a1(x, Tt) = a(x, Tt). Moreover,f (x, τ, Tt ) = qv(x, Tt ) − [Φ(x, Tt) · ∇Tt ]div(l(x)).

6. Final remarks

General approach developed by Telega in [4] and extended in Section 4 of the present paper enabled us
minimum principles for linear and quasilinear bioheat equations, including the equation studied in [14]. O
extend the procedure outlined in Sections 4 and 5 to strongly nonlinear equations, if such a need arises.

By generalizing the procedure outlined in Section 4 we can derive extremum principles for the coupled
of equations modelling polymerisation of PMMA in cement prostheses. For details on the relevant sys
reader is referred to [8,15,16].
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