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Abstract

The Eulerian–Lagrangian methodis a popular and effective approach for handling multi-fluid problems involving substantia
shape variations. Specifically, one can consider the interface either as a sharp discontinuity, consistent with the fun
continuum theory, or as a smooth transition zone, reducing numerical difficulties in tracking distinct regions. In this article
we highlight the performance characteristics of both techniques. Computationally, both approaches can be devis
similar concepts, namely, the interface is represented by marker points and advected in a Lagrangian framework
mass, momentum, and energy conservation equations are solved on a fixed (Eulerian) Cartesian grid using a sec
projection method. The main difference lies in the way of accounting for the interfacial conditions and communication acro
the interface. The sharp interface method is more demanding computationally because the field equations in each
to be coupled with those in other materials/phases, by explicitly tracking the interfacial conditionsvia matching procedures
In return, second-order accuracy can be attained as compared to the first-order accuracy in the continuous interfac
Nevertheless, in physical applications,both approaches can be highly effective in handling a variety of multi-fluid problems
involving moving boundaries. Several examples are presented to highlight the various performance characteristics o
techniques.To cite this article: W. Shyy, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Techniques de calcul numérique pour frontières mobiles. La méthode eulerienne–lagrangienne offre une appro
populaire et efficace pour traiter des problèmes multi-fluidiques comportant des variations deforme. Spécialement, quan
l’interface est considérée comme une discontinuité, consistante avec la théorie du milieu continu, ou comme une
continue rapide, réduisant les difficultés numériques pour marquer les différentes régions. Dans ce papier, des éclair
sont apportés sur la performance des deux techniques. Sur le plan numérique, les deux approches sont développés su
concepts similaires, l’interface est représentée par des marqueurs soumis à l’advection dans le sens lagrangien et les équatio
conservation de la masse, de la quantité de mouvement et de l’énergies sont résolues sur une grille cartésienne fixe (
à l’aide d’une méthode de projection de second ordre. La différence essentielle réside dans la manière de prendre en
conditions de transmission à l’interface. La méthode où l’interface est considérée comme une discontinuité demande
supplémentaire au sens numérique parce que le champ de vitesses dans chaque zone doit être couplé avec ceux da
matériaux/phases, en assurant explicitement les conditions de transmission à l’interface par des procédures de raccordem
Par contre, une précision de second ordre pent être obtenue en comparaison avec le premier ordre de la méthode d
continue. Néanmoins, pour des applications physiques, les deux approches peuvent être très efficaces pour traiter un

E-mail address: wei-shyy@ufl.edu (W. Shyy).
1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2004.02.014
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problèmes multi-fluides qui comportent des frontières mobiles.Plusieurs exemples sont apportés pour illustrer les performa
des deux techniques.Pour citer cet article : W. Shyy, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Mots-clés : Mécanique des fluides numérique ; Problèmesdes frontières mobiles ; Système multiphase

1. Introduction

Multiphase flows, such as those involving droplets and bubbles, are frequently encountered in both
and normal-gravity conditions. Under micro-gravity applications, frequently, the interfacial dynamics becom
important and the moving boundary needs to be tracked carefully in order to understand the associated fluid
These problems are not easy to simulate accurately dueto the fact that they involve interfaces with unknown
and time varying shapes. Numerous techniques have beendeveloped for tracking interfaces between separa
materials, phases and properties. Categorically, there are moving grid (Lagrangian) [1–4] and fixed grid (E
approaches [4–6]. The main challenges for moving boundary computations include:

– Mass conservation within individual and overall domain;
– Numerical instabilities and wiggles caused by the property and flux discontinuities at the interface;
– Errors associated with calculating the geometric quantities, especially curvature, of the interface;
– 2D (planar or axisymmetric) models for phasetransport may become very complicated in 3D;
– Convergence problems for high density (viscosity) ratio or large surface tension;
– Objects break-up and coalescence;
– Difficulty of achieving more than first order accuracy.

In the fixed grid approach, one can resort to the purely Eulerian approach such as the volume of fluid me
12] for free surface flows, or the enthalpy formulation [7,8] when phase change is involved. In these m
the interface is constructed after the field solution is obtained. In the purely Eulerian approach, the in
construction is decoupled from the field equation solver,which can cause difficulties such as uniqueness of
shape interpretation, and continuity and smoothness of the interface.

Alternatively, one can also employ the Eulerian–Lagrangian method, which explicitly tracks the interfa
utilizing the fixed grid with the aidof the Lagrangian component. Alternative approaches have been pro
in this category. In particular, the continuous interface method (CIM), such as the immersed boundary te
[5,8] or the level set method [9], has been popular. CIM defines the interface as a smooth transition zone and
be conveniently coupled with the field equations. With this approach, the interface is of finite thickness
reduces the order of accuracy of the overall solution to first order [10–12], or even lower. For example, a spur
velocity field can appear in the interface region [11,12]. While improved treatments can reduce the magn
the spurious velocity [12], in general, its presence and influence is non-negligible.

In the context of the Eulerian–Lagrangian method, the sharp interface method (SIM) has also been de
[13–17]. In SIM, the interface is considered to be a discontinuity separating two materials, with the field eq
handled by the fixed grid, while directly accounting for the presence of the interface by forming irregularly s
computational cells. At the modeling level, SIM is consistent with the concept of continuum mechanics becau
the interface is considered to be of zero thickness and there is no smearing in the algorithm to link ind
phases/materials. As demonstrated in [16], for fixed geometry problems, and in [15], for one-dimensional
boundary problems, SIM can maintain second order accuracy. However, for cases involving curved free boundar
no rigorous investigation of the performance of the sharp interface method has been performed.
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In this article, we assess the interfacial characteristics, in regard to the spurious velocity and the p
distributions, of SIM and CIM approaches for a static drop under the influence of capillarity and hydrosta
pressures. Next, we highlight solutions obtained for drop dynamics to illustrate the effect of capillarity and
transfer associated with the impact dynamics.

2. Analysis and modeling

The field equations for mass, momentum and energy transport, along with the corresponding int
conditions, can be found in [7,10,22]. In the following, we highlight the salient features associated wit
and CIM.

2.1. Sharp Interface Method (SIM)

The present sharp-interface method employs a combinedEulerian–Lagrangian strategy. As discussed in de
in [15–17], the present SIM has the following distinguishing features:

– the finite-volume method is adopted to ensure the conservation of mass, momentum and energy tra
each phase/material;

– specific governing equations are constructed for eachphases/materials, instead of using the single se
governing equations for the entire domain of all phases/materials. This enables the method to han
property (such as density) ratios across the interface with relative ease;

– sharp-interface with no numerical smearing;
– interfacial constraints are imposed as distinct boundary conditions, instead of being incorporated throug

source terms in the governing equations;
– theC2 cubic B-spline curve fitting method is employed to represent the interface [16,18]. A fairing algo

for curvature calculation makes it possible to use the current SIM to compute problems in which accur
curvature estimation is critical for simulating interfacial dynamics.

In addition, the present SIM also has the capability to treat the phase change at the interface. An illu
of the cell and interface intersection treated in the sharp-interface method is depicted in Fig. 1. It is noted
small fragments of cut-cells are absorbed into the neighboring cells in the same phase to form larger, t
cells. The interface, represented by suitable geometric representations based on massless markers, intersect
the underlying, fixed Cartesian grid. A compact interpolation method near the interface is adopted to retain
order accuracy and conservation property.

2.2. Continuous Interface Method (CIM) based on the immersed boundary technique

In this approach, the interface discontinuity is treated by the immersed boundary method originally prese
Peskin [5]. The interface is considered to be of small non-zero thickness within which the fluid properties
smoothly. An illustration of a typical computational domain composed of two immiscible fluids is given in Fig
The fluid domain denoted byΩ is covered with a fixed Cartesian grid. The interface between Fluid 1 and Flu
represented by the curveC, is present in the fluid domainΩ and is marked by particles (dots) that do not coinc
with the grid points. In the immersed boundary method, the information between the moving interface and
variables is exchanged through interpolation. Since the locations of the marker points in general do not
with the underlying grid points employed to solve the field equations, the velocity of the field equation, d
according to the Cartesian grid system is interpolated to obtain the marker velocity. The concept is illust
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Fig. 1. Illustration of the cell-interface intersection in the sharp interface method. Trapezoidal cells are formed near the interface.

Fig. 1. Illustation de l’intersection cellule-interface pour la méthode de l’interface discontinue. Des cellules trapézoïdales sont formées
voisinage de l’interface.

Fig. 2. Main features of the immersed boundary technique: (top) schematic of two immiscible fluids; (left) marker points considered fo
estimation of the force at pointP ; (bottom) grid points considered for theinterface velocity around the markerX.

Fig. 2. Caractéristiques principales de la technique des frontières mobiles : (dessus) dessin de deux fluides immiscibles ; (gauche) marqueu
considérés pour l’estimation de la force au pointP ; (droite) maillage considéré pour la vitesse interfaciale autour du marqueurX.
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Figs. 2 (b) and (c). With the interface location known with respect to the grid, the material properties are a
in each fluid based on a Heaviside step function. For example the densityρ is distributed as

ρ = ρ1 + (ρ2 − ρ1)H(ξ) (1)

whereH(ξ) is the discrete Heaviside step function defined here as:

H(ξ) =




0 if ξ � −γ

1 if ξ � +γ

dim∏
m=1

1

2

(
1+ ξm

γ
+ 1

π
sin

πξm

γ

)
otherwise

(2)

In the above equation,ξ = x − xk, dim is the space dimension,γ = 2h is the transition distance whereh is the cell
width, x is the grid coordinate, andxk is the interfacial marker coordinate. Since the location of the Lagran
interface points does not coincide with the fixed Eulerian grid points, the velocity field stored at the cell-ce
each grid is interpolated to obtain the velocity of the interface points, and the interface force acting on the ma
points is spread to the nearby grid points via a discrete Delta function. The discrete Delta function in this
taken as:

δ(ξ) =




dim∏
m=1

1

2γ

(
1+ cos

πξm

γ

)
if |ξ | � γ

0 otherwise

(3)

At each time step, the interface position is advected in a Lagrangian way and a procedure to enfor
conservation of the droplet within specified criteria (here taken as 0.01%) is applied.

2.3. Solution procedure

The projection method or fractional-step method is employed to solve the coupled mass and mo
equations. Specifically, the second-order accurate, two-step fractional step method presented in Ye et al. [16
and Francois and Shyy [22] is used to solve the flow equations. The mass and momentum equations are d
using a finite-volume formulation on a fixed Cartesian mesh using a cell-centered collocated arrangement f
variables. As detailed in [17], to ensure mass conservation, a face-cell velocity variableis introduced for computing
the volume flux. The convection terms are discretized with a second order accurate Adams–Bashforth scheme, th
diffusion terms with a second order Crank–Nicolson scheme. To speed up the computation, a multigrid techni
can be employed to solve the pressure equation [22,23].

3. Results and discussion

3.1. Interfacial characteristics of a static drop

For the present test problem, the density ratioρl/ρv between the liquid drop and surrounding gas varies fro
to 1000. The largest ratio corresponds to the circumstance between water and air under the standard atm
condition. With a spherical drop in static equilibrium, there are two uniform pressure fields inside and out
the drop boundary, namely, the pressure inside isp0 + 2σ/R and outside isp0. The difference balances the surfa
tension effect, according to the Young–Laplace condition [7]:

�pexact= 2σ

R
(4)
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whereσ is the surface tension andR is the radius of the droplet. In the present study,σ is set to 1.0 N/m and
R equals to 0.25 m; the exact pressure difference�pexact, therefore, should be equal to 8.0 N/m2. The numerica
result of the pressure difference iscompared against this exact value.

In the present study, the drop is located at the center of a circular cylinder. Boththe height and the diamete
of the cylinder are twice the drop diameter. Given the axi-symmetric nature of the problem, only half
computational domain is considered, with the bottom boundary being the symmetric axis. On other bound
the domain, zero viscous stress conditions are specified for velocity field and the zero gradient condition is adop
for pressure. A fixed, uniform Cartesian grid is employed.The initial condition consists of constant pressure in
entire domain, with different density values assigned inside and outside of the drop.

(a) (b)

Fig. 3. The overall pressure and velocity distributions for a drop in static equilibrium (a) pressure, (b) velocity vectors. The maximum
theu- andv-component of the spurious velocity are 4.687× 10−10 and 4.279× 10−10, respectively.

Fig. 3. Distribution des pressions et des vitesses pour une goutte en équilibre statique (a) pression, (b) vecteurs vitesse. Les valeurs maxim
des composantesu et v de la vitesse fluctuante sont 4,687× 10−10 et 4,279× 10−10, respectivement.

Fig. 4. Pressure profiles along thehorizontal and vertical center lines.

Fig. 4. Profils de pression le long des lignes centrales horizontale et verticale.
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Fig. 5. Velocity profiles along the horizontal and vertical center lines: (a) horizontal-velocity component; (b) vertical-velocity component.

Fig. 5. Profils de vitesse le long des lignes centrales horizontale et verticale : (a) composante horizontale de la vitesse ; (b) composante vertic
de la vitesse.

The case with a density ratio of 1000 is considered first. Unless noted otherwise, the ratio of the drop radi
grid size,R/�x, is 50, namely, with 100×200 grid (along radial and longitudinal directions, respectively) cove
the entire computational domain. Fig. 3 shows the pressure distribution and velocity vectors (with all vecto
be of the unit magnitude) in the domain. Detailed profiles along both horizontal and vertical directions are
in Fig. 4. Figs. 3 and 4 demonstrate that the sharp interface method with the cut-cell treatment can cap
crisp pressure distribution across the interface. Fig. 5 depicts the profiles of the velocity components in bothx

andy directions. In contrast to CIM (see, e.g., [19]), which typically yields substantial spurious velocity
produces errors virtually at the round-off level. The curvature computation is a key in many interfacial tra
problems; they are also very difficult to compute accurately because of the non-linearcombination of first and
second derivatives. To assess the performance of SIM, Fig. 6 presents the computed curvature, plotted
entire circumference of the drop boundary. An accurateestimation has been obtained with little noise associ
with the result.
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Fig. 6. The computed curvature along the circumference of the drop
interface, from 0 to 360 degrees.

Fig. 6. Courbure calculée le long de la circonférence de l’interface de
la goutte, de 0 à 360 degrés.

Fig. 7. Comparison between the sharp and continuous inte
methods based on the error norms defined in Eq. (6).

Fig. 7. Comparaison entre les méthodes avec une interface disco
tinue et une interface de transition continue basées sur les no
d’erreur définies dans l’Éq. (6).

Table 1
Effect of the grid size for a spherical drop in static equilibrium

R/�x ρl/ρv �pnum/�pexact Pressure error normL2B

5 1000.0 0.9988 1.509E-03
10 1000.0 0.9998 2.452E-04
50 1000.0 1.000 1.612E-05

100 1000.0 1.000 6.632E-06

Next, we assess the order of accuracy of the SIM solution. The assessment is based on the overall pres
difference, defined as:

�pnum= 1

Nin

Nin∑
n=1

Pn − 1

Nout

Nout∑
n=1

Pn (5)

where,Nin is the number of cells inside the bubble andNout is the cells outside;pn is the pressure in each ce
In Fig. 7 and Table 1, the solutions of SIM and CIM (using the immersed boundary method) are compar
varying grid size,�x. The relative error between the theoretical andnumerical pressure difference can be expres
in terms ofL2-norm.L2-norm of the error was defined as:

L2B =
√√√√ 1

Nin

Nin∑
n=1

(Pnum− Pexact)2

P 2
exact

(6)

Fig. 7 and Table 1 confirm that SIM offers noticeably lower error with approximately overall second-order accura
For comparison purpose, representative results based on the CIM [19] are also depicted in Fig. 7; it yie
order accuracy and the errors are several orders of magnitude larger for all grid resolutions. For more informatio
we refer to Ye et al. [20]. The results reported here are representative; the essence of the findings does not ch
with respect to the pressure and surface tension values.



W. Shyy / C. R. Mecanique 332 (2004) 375–386 383

]

s

Fig. 8. Water droplet impinging on polycarbonate surfaceRe = 3200, We = 30, Fr = 17. Left column images of Kim and Chun [21
experimental results. Right column presents numerical simulation.

Fig. 8. Gouttelette d’eau faisant un impact sur une surface en polycarbonateRe = 3200, We = 30, Fr = 17. À gauche, une colonne d’image
des résultats expérimentaux de Kim et Chun [21]. À droite, une colonne montrant les simulations numériques.
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Fig. 9. Droplet shapes at different time instants for varied static contact angles.

Fig. 9. Formes des gouttes à différents instants pour divers angles de contact statique.
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3.2. Impact of a liquid drop on a polycarbonate surface

The computations of a water droplet impinging on a polycarbonate surface are now compared w
experiments of Kim and Chun [21]. Initially, a spherical droplet of diameterd is placed on the surface and giv
an impact velocityU . The bottom wall of the computational domain, where the drop impacts, is kept at a co
temperatureTw = 1.0, and the top and side walls are adiabatic. Initially, both the liquid and gas phases
T0 = 0. The contact angle in the simulation is held unchanged. For more information, we refer to Francois a
Shyy [10,22]. A direct comparison between 3D view generated from numerical simulation and the photogr
the droplet shapes is shown in Fig. 8 at the corresponding time instants, for water and ink, respectively.
cases the results are in reasonably good agreement with the experiment. For the density, viscosity an
tension values of water and ink, we have employed the same values that are reported in [21]. We have co
the gas phase 1000 time less dense and 20 times less viscous than the liquid phase. The non-dimension
for the water drop areRe = 3200, We = 30 andFr = 17, where the Reynolds(Re), Weber(We) and Froude(Fr)
numbers are:

Re = ρlUd

µl

(7)

We = ρlU
2d

σ
(8)

Fr = U2

gd
(9)

3.3. Effect of contact angle on deformation

Three contact angle values are considered: 60◦,80◦,100◦, and 120◦ to help assess the influence of the cont
dynamics. These computations are all done forRe = 100 andWe = 20. The instantaneous droplet shapes
presented in Fig. 9 for two contact angles, 60◦ and 120◦. One notices that for larger contact angle valu
both maximum and equilibrium values of the spreading coefficient decrease and the amplitude of the r
oscillations becomes greater, eventually reaching a point beyond which the droplet bounces back, as happen
θ = 120◦. Of course, in reality, the contact angle varies as function of the speed and direction of the contact
This and related aspects have been studied. For more information, we refer to Francois and Shyy [10,22].

4. Conclusions

The SIM is fundamentally consistent with continuum theory, while the SIM offers more numerical conve
because one does not have to distinguishdifferent zones or materials individually. The SIM is more demandin
computationally because the field equations in each phase need to be coupled between different materials/pha
and explicitly linked with the interfacial conditions. In return, second-order accuracy is achieved as compa
the first-order accuracy in CIM, indicating that the SIMcan handle more complicatedproblems requiring higher
accuracy. Our view is that for many multi-fluid problems, such as the drop and bubble dynamics, the CIM
work quite well in practice [8,10,22]. This is especially true in view of the substantial uncertainties in tra
properties. On the other hand, if details of the interfacialcharacteristics are critical and demanding in estimat
then the SIM will be a suitable approach. A good example is the solidification dynamics at the morphologic
[4,14,15]. Many outstanding problems, especially those in three spatial dimensions, involving topological c
such as break-up and merger, and requiring accurate geometric estimations remain challenging. There is am
room for further development in this scientifically interesting and practically important area.
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