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Abstract

Anticonvection generated by the joint action of the external heating and heat sources (sinks) on the interface in t
with finite thicknesses is studied. Anticonvective structures in fluid systems subject to the anticonvective instability on
presence of heat sources (sinks) on the interface have been obtained. The nonlinear regimes of anticonvection in t
of three immiscible viscous fluids heated from above are investigated. The specific phenomena caused by direct an
interaction of anticonvective and thermocapillary mechanisms of instability are considered. In particular, different os
configurations where anticonvection arises mainly near the upper interface and thermocapillary convection appears mainly nea
the lower interface, have been studied.To cite this article: I.B. Simanovskii, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Action simultanée d’anticonvection et de thermocapillarité dans des systèmes multi-couches. On étudie l’anticonvection
engendrée par l’action simultanée d’un apport thermique venant de l’extérieur et à partir des sources (puits) de
se trouvant aux interfaces des couches d’épaisseur finie. On obtient les structures anticonvectives présentant une instab
anticonvective uniquement pour les systèmes fluides en présence de sources (puits) de chaleur à l’interface. On étudie
les régimes d’anticonvection non-linéaire dans un système de trois fluides visqueux immiscibles, chauffés par de
phénomènes spécifiques provoqués par une interaction directe et indirecte entre les mécanismes d’instabilité anticonvectifs
et thermocapillaires sont considérés. En particulier, on démontre l’existence des configurations oscillatoires diver
lesquelles l’anticonvection se produit principalement à proximité d’interface supérieur, et la convection thermocapillaire
apparaît près d’interface inférieur.Pour citer cet article : I.B. Simanovskii, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Fluid mechanics; Anticonvection; Stability; Thermocapillarity; Multilayer system

Mots-clés : Mécanique des fluides ; Anticonvection ; Stabilité ; Thermocapillarité ; Systèmes multi-couches

E-mail address: yuri11@inter.net.il (I.B. Simanovskii).
1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2004.02.027



598 I.B. Simanovskii / C. R. Mecanique 332 (2004) 597–604

ith
ates the
.
t
ient the
pinion
[2] that
iscible

ces. The
of

es
than that
one
the

ic and,
of
d when

heat
ions,
and
isms for
, that in
mi-
tability,
ber.

tions for
own that
n that in
ion,
ury

s
ility in a
ructures

t is
nd
ed
oni–
rangoni–
the
1. Introduction

It is known that there are two basic physical phenomena that produce convective instability in fluid systems w
an interface: buoyancy and thermocapillarity. When heating is from below, the buoyancy instability gener
Rayleigh–Benard convection, while the thermocapillary effect is the origin of the Marangoni–Benard convection

However, the Rayleigh instability isnot the only possible type of the buoyancy-driven instability. Although i
can be found in many textbooks (see, for example, [1]) that for fluids with a positive heat expansion coeffic
buoyancy convective instability of the mechanical equilibrium appears only by heating from below, this o
is not actually correct in the presence of the interface between two fluids. It was shown by Welander
when the temperature gradient is directed vertically upwards, the two-layer system, consisting of two imm
viscous fluids of semi-infinite thicknesses, may become unstable with respect to the monotonic disturban
specific non-Rayleigh mechanism of instability (anticonvection) takes place in the system. This mechanism
instability may appear only under defined conditions: the fluids with considerably different physical properti
must be considered. In particular, the heat expansion coefficient of the upper layer must be much smaller
of the lower layer, and the thermal diffusivity of the lower layer must be much higher than that of the upper
(or vice versa). The linear stability boundaries (for the layers of finite thicknesses) were determined in [3] and
finite-amplitude regimes of anticonvection were obtained in [4] (see also [5]).

For a long time it was a common opinion that the phenomenon of anticonvection was rather exot
as the matter of fact, only one physical system (water–mercury), satisfying the conditions for the existence
anticonvection was found [3]. It turns out, however, that the appearance of anticonvection can be simplifie
the interface serves as a source or sink of heat. Specificexamples of an active influence of the interface on the
transfer are absorption of light, evaporation, mass transfer through the interface, heterogeneous chemical react
and so on. In the presence of the uniformly distributed heatsource (sink) at the interface, the anticonvective
buoyancy instability mechanisms can act simultaneously. The interaction between both instability mechan
the water–mercury system was studied first by Nepomnyashchy and Simanovskii [6]. In [7,8] it was found
the presence of an interfacial heat source (sink) the anticonvection could be generated in any system of two se
infinite layers. The consideration of the anticonvection in semi-infinite layers reveals the existence of the ins
but it is not sufficient for the calculation of critical values of the temperature gradient and the critical wavenum
For this aim, the investigation of layers with finite thicknesses is necessary. The general analysis of condi
the appearance of anticonvection in the system of layers with finite thicknesses was made in [9]. It was sh
the anticonvection appears in the situation where the temperature gradient in one fluid is much smaller tha
another fluid. The difference between the temperature gradients sufficient for the appearance of the anticonvect
can be caused by the natural difference of thermophysical parameters of fluids, as in the case of the water–merc
system, or it can be produced artificially by heating or cooling the interface.

Another interfacial physical effect that may cause a convective instability is the thermocapillary effect which
can generate stationary [10] and oscillatory motions [11–13]. In a real situation, different instability mechanism
may act simultaneously. The combined action of anticonvective and thermocapillary mechanisms of instab
two-layer system was considered in [14,15], where the steady convective motions with different spatial st
were obtained in the system.

Three-layer systems can differ considerably from systems with a single interface. The essentially new effec
the possibility of the interaction between two interfaces. Evidently, the indirect interaction of anticonvective a
thermocapillary mechanismsof instability (when both mechanisms act on different interfaces) cannot be realiz
in a two-layer system. The investigation of multi-layer systems was started in [16–18] where the Marang
Benard and Rayleigh–Benard convections were considered. The first experimental results on the Ma
Benard instability under microgravity conditions in a symmetric three-layer system confirm the existence of
oscillatory instability in theoretically predicted interval of parameters [19].
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An anticonvective mechanism of instability in a three-layer system was investigated in [20]. The com
action of anticonvective and thermocapillary mechanisms of instability in the case of multilayer fluid syste
discussed in [21].

2. Formulation of the problem

Let the space between two parallel rigid platesz = a1 andz = −a2 be filled by two immiscible viscous fluid
with different physical properties. The plates are kept at constant but different temperatures (the total tem
drop is θ ). A constant heat release of the rateQ0 (Q0 may be positive or negative) is set on the interface.
variables referring to the upper layer are marked by index 1, and the variables referring to the lower la
marked by index 2. Let us use the following notations:

ρ = ρ1/ρ2, ν = ν1/ν2, η = η1/η2, κ = κ1/κ2

χ = χ1/χ2, β = β1/β2, a = a2/a1, L = l/a1

Here ρm, νm, ηm, κm, χm, βm and am are, respectively, density, kinematic and dynamic viscosities, he
conductivity, thermal diffusivity, heat expansion coefficient and the thickness of themth layer (m = 1,2). As
the units of length, time, velocity, pressure and temperature we usea1, a2

1/ν1, ν1/a1, ρ1ν
2
1/a2

1 andθ , respectively.
The complete nonlinear equations of convection in the framework of the Boussinesq approximation (see [23])
both fluids have the following form:

∂ �v1

∂t
+ (�v1 · ∇)�v1 = −∇p1 + ��v1 + GT1 �γ

∂T1

∂t
+ �v1 · ∇T1 = 1

P
�T1 (1)

∇�v1 = 0

∂ �v2

∂t
+ (�v2 · ∇)�v2 = −ρ∇p2 + 1

ν
��v2 + G

β
T2 �γ

∂T2

∂t
+ �v2 · ∇T2 = 1

χP
�T2 (2)

∇�v2 = 0

whereG = gβ1θa3
1/ν2

1 is the Grashof number, characterizing the intensity of the external heating (g is the gravity
acceleration),P = ν1/χ1 is the Prandtl number for the liquid in layer 1, �γ is the unit vector directed verticall
upward. The conditions on the isothermic rigid horizontal boundaries are:

z = 1: �v1 = 0; T1 = 0 (3)

z = −a: �v2 = 0; T2 = s (4)

s = −1 for heating from above;s = +1 for heating from below.
Let us discuss the boundary conditions at the interfacebetween the two fluids. One should be very carefu

taking into account the deformation of the interface whenusing the Boussinesq approximation, because it is kn
that the interfacial deformation is a non-Boussinesq effect [22]. Indeed, the Boussinesq approximation is b
the assumptionεβ = β1θ � 1, G = O(1), and therefore the Galileo numberGa = G/εβ = ga3

1/ν2
1 � 1. However,

the balance of normal stresses on the interface shows that the interface deformation is proportional to/Gaδ,
whereδ = ρ−1 − 1 (see [23]). Because 1/Gaδ = εβ/Gδ is small unlessδ � 1, we come to the conclusion that
the framework of the Boussinesq approximation the interfacial deformation has to be neglected, if the den
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the fluids are not close to each other. The case of close densities is not considered in the present paper.
if the deformation is included in the consideration, while the corrections of the same order O(εβ) in the continuity
equation are neglected, this may lead to erroneous results (see [23]).

The boundary conditions on the interface include conditions for the tangential stresses:

z = 0: η
∂v1x

∂z
− ∂v2x

∂z
− ηM

P

∂T1

∂x
= 0 (5)

η
∂v1y

∂z
− ∂v2y

∂z
− ηM

P

∂T1

∂y
= 0 (6)

the continuity of the velocity field:

v1 = v2 (7)

the continuity of the temperature field:

T1 = T2 (8)

and the continuity of the heat flux normal components:

κ
∂T1

∂z
− ∂T2

∂z
= −κ

GQ

G
(9)

HereM = αθa1/η1χ1 is the Marangoni number,GQ = gβ1Q0a
4
1/ν2

1κ1 is the modified Grashof number determin
by the intensity of the interfacial heat release. The boundary-value problem (1)–(9) for any choice of par
has the solution:

�vm = 0, Tm = T 0
m(z), pm = p0

m(z), m = 1,2 (10)

corresponding to the mechanical equilibrium state. The temperature gradients in the equilibrium state are:

A1 = dT 0
1

dz
= − sG + aκGQ

G(1+ aκ)
, A2 = dT 0

2

dz
= −κ(sG − GQ)

G(1+ aκ)
(11)

In the following sections we shall investigate the cases = −1 (heating from above).
The origin of anticonvective mechanism of instability is explained in [3,15].

3. Anticonvection with heat release on the interface

In this section we consider the example when, in the absence of heat release on the interface, there is
anticonvection in the system. It will be shown that the presence of the interfacial heat release leads to the appear
of the anticonvective motion. We present the results of the direct numerical solution of the eigenvalue prob
the real two-liquid system silicone oil – 10cs – ethylene glycol with the following set of parameters:η = 0.549,
ν = 0.6493,κ = 0.6194,χ = 1.096,β = 1.4516; the Prandtl numberP = 94. The calculations were made wi
a = 1. One can expect the appearance of anticonvection for two cases: intensive heat sources(GQ > 0) and
intensive heat sinks(GQ < 0). The anticonvection is the only possible instability mechanism if the temper
gradients are positive in both layers. Such a temperature profile is obtained in two cases: (a)sG < −aκGQ,
GQ > 0; (b) sG < GQ < 0. The neutral curve corresponding to the case of heat sources(GQ = 6000), is shown in
Fig. 1 (line 1). The minimum of this neutral curvesG ≈ −3729 is less than−aκGQ ≈ −3718, thus both gradien
A1 and A2 are positive, and the anticonvection is the only instability mechanism. Note, that at the min
the ratioA1/A2 ≈ 2.4 × 10−3, i.e., there is a strong heating from above in the bottom layer, and nearly n
stratification in the top layer. Line 2 in Fig. 1(GQ = −8835) corresponds to the opposite caseGQ < 0, sG ≈ GQ



I.B. Simanovskii / C. R. Mecanique 332 (2004) 597–604 601

adient in

above
the

vection.
.
viations
neg-
er (with
bottom

een
d, so that
ture

layer, in
tructure
is
egative

ructure
Fig. 1. Neutral curves forGQ > 0 (line 1) andGQ < 0 (line 2).

characterized by the nearly vanishing temperature gradient in the bottom layer, and the strong positive gr
the top layer.

Now let us present the results of the nonlinear simulation of the two-dimensional anticonvection in the
mentioned system. The calculations were made withL = 4, a = 1. Recall that in the absence of heat release
anticonvection in this system is impossible. The nonlinear simulation confirms the existence of anticon
A typical anticonvective flow structure in the case of heat sources (G = 3717,GQ = 6000) is shown in Fig. 2
The streamline patterns are shown in Fig. 2(a), while Fig. 2(b) presents the fields of the temperature de
Tm(x, z) − T 0

m(z), whereT 0
m(z) is the equilibrium temperature field. In the middle of the cavity, there exists a

ative deviation of the temperature (Fig. 2(b)) that produces an extensive descending motion in the top lay
nearly vanishing temperature gradient), and a relatively weak viscosity induced ascending motion in the
layer (with the strong positive gradient) near the interface(Fig. 2(a)). However, because of the difference betw
the temperature gradients in both fluids, heat transfer to the boundary caused by both motions is balance
a stationary anticonvective flow takes place. Near the lateral boundaries, a positive deviation of the tempera
generates an ascending motion in the top layer and a descending motion near the interface in the bottom
a similar way. Note that thermal and viscous coupling between two layers generates a multi-store flow s
in the bottom layer. Let us note that at the same values ofG andGQ another type of the anticonvective motion
possible which is characterized by a positive deviation of the temperature in the middle of the cavity and a n
deviation of the temperature near the lateral boundaries. In the opposite casesG < GQ < 0 (0 < A2 � A1) the
most intensive motion is realized in the bottom layer, and the weak, induced motion with a multi-store st
appears in the top layer.
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Fig. 2. (a) The streamline patterns, – – 0.0157, - - 0.00787,· · · 0, -·- −0.00787, –·– −0.0157; and (b) the fields of the temperature deviatio
– – 0.0036, - - 0.0022,· · · 0.000792, –·– −0.000613, -·- −0.00202.

4. Interaction of anticonvection and thermocapillarity in multilayer systems

Now we consider the case of multilayer system. Let a rectangular cavity with rigidboundaries be filled by thre
immiscible viscous fluids. Indices 1 and 3 are related to the exterior layers, and index 2 is related to the mid
The plates are kept at different constant temperatures (the total temperature drop isθ ). It is assumed that surfac
tension coefficients on the upper and lower interfacesσ andσ∗ decrease linearly with temperatureσ = σ0 − αT ,
σ∗ = σ0∗ − α∗T . The Boussinesq approximation is used for the description of convection. Let us introdu
following notation:

ν∗ = ν3/ν1, ν = ν3/ν2, η∗ = η3/η1, η = η3/η2, κ∗ = κ3/κ1, κ = κ3/κ2

χ∗ = χ3/χ1, χ = χ3/χ2, β∗ = β3/β1, β = β3/β2

α = α∗/α, a∗ = a1/a3, a = a2/a3, L = l/a3

Hereνm, ηm, κm, χm, βm andam are, respectively, kinematic and dynamic viscosities, heat conductivity, the
diffusivity, heat expansion coefficient and the thickness of themth layer (m = 1,2,3).

At the interfaces, normal components of velocity vanish and the continuity conditionsfor tangential component
of velocity and viscous stresses, temperatures and heat fluxes also apply.
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We consider the model system heated from above which is characterized by the following set of paramete
η = 0.2, ν = 1, κ = 0.1,χ = 0.1,β = 0.01,η∗ = 0.04,ν∗ = 1, κ∗ = 0.1,χ∗ = 0.07,β∗ = 0.01,α = 1, a = a∗ = 1.
This choice is based on the fact that this system displays an anticonvective instability [20]. With the incr
the Grashof number, the mechanical equilibrium state becomes unstable and the steady motion is realiz
system asG∗ � 2900. For the system under consideration, conditionsfor the appearance of the anticonvect
are satisfied on the upper interface.The thermocapillary convection (M �= 0, G = 0) also appears near the upp
interface. Unlike the case of anticonvection, the intensities of the thermocapillary convection in both top and
layers are of the same order. The directions of rotation coincide for anticonvective and thermocapillary mo

The qualitatively new situation appears if both instability mechanisms act on different interfaces [21]. S
indirect interaction is possible only in multi-layer systems. With the change inα (all the other parameters are t
same), the role of two interfaces in the generation of the thermocapillary convection (M �= 0,G = 0) also changes
If 1 < α < 180 the thermocapillary convection is generated by both interfaces, and ifα > 180, the thermocapillar
motion takes place mainly near the lower interface. We take the previous system withα = 200. With the increase
of M the mechanical equilibrium state becomes unstable and the oscillatory motion appears in the system
from the threshold, oscillations have a rather simple, almost sinusoidal form. ForM > 17500 oscillations becom
unstable and the steady motion takes place in the system. Inclusion ofG may lead to the destruction of oscillatio
of the thermocapillary nature (for the relatively small values ofG andM) and establishment of the steady state
the system. At the larger values ofG andM the new type of oscillations, essentially connected with the ind
interaction of both mechanisms of instability is realized. We would like to emphasize that even in the situatio
for pure anticonvection and for pure thermocapillary convection only the steady motion takes place, the co
action of both mechanisms of instability may lead to the appearance of oscillations.

5. Conclusion

Anticonvection generated by the joint action of the external heating and heat sources (sinks) on the inter
in the layers with finite thicknesses is studied. Numerical simulations of the finite-amplitude anticonv
regimes have been made for the real two-liquid system. Anticonvective structures in fluid systems su
the anticonvective instability only in the presence of heat sources (sinks) on the interface have been o
We considered the system of three immiscible viscousfluids with undeformable interfaces filling a closed cavit
when heating is from above. Direct and indirect interactions of anticonvective and thermocapillary mech
of instability are studied. The specific type of convective oscillations, essentially connected with the indir
interaction of both mechanisms of instability is discussed.
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