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Abstract

This work is concerned with a two-phase material consisting of an elastoplastic matrix reinforced by linearly elastic fibres.
It is first shown that uniform strain fields can be generated in this heterogeneous material. A return-mapping based algorithm is
then proposed and used to find uniform strain loading paths. With the help of uniform strain fields, exact results, independent of
the transverse geometry and arrangement of the fibres, are derived for the effective elastic properties and for the effective initial
and current yield surface3o citethisarticle: Q.-C. He, H. Le Quang, C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Champs de déformation uniformes et résultats exacts dans un composite élastoplastique renforcé par des fibres.
Ce travail porte sur un matériau a deux phases, constitué d’'une matrice élastoplastique renforcée par des fibres linéairement
élastiques. Nous montrons d’abord que des champs de déformation uniformes peuvent étre générés dans ce matériau hétérogene.
Un algorithme basé sur le «return mapping » est ensuite proposiéis® afin de trouver des tragde chargement produisant
des champs de déformation uniformes. A l'aide de ceux-ci, des résultats exacts, indépendants de la géométrie et de la
distribution des fibres dans leur plan transverse, sont établis pour les propriétés élastiques macroscopiques et pour les surfaces
macroscopiques initiale et actuelle de seuil de plastiBiér citer cet article: Q.-C. He, H. Le Quang, C. R. Mecanique 332
(2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The fact that uniform fields may be produced in hetgmeous media under certain conditions is of prime
importance to micromechanics. Indeed, it allows us taveemicrostructure-independent exact results for the
effective properties of heterogeneous materials. The usefulness of such exact results turns out to be threefold.
Firstly, they serve directly for the determination of effeetproperties. Secondly, they constitute benchmarks for
analytical and numerical methods elaborated for the ptiediof linear and nonlinear effective properties (see, e.g.,
Ponte Castafieda and Suquet, [1], Miltf#]). Thirdly, they shed light on theependence of effective properties
on the microstructure.

In the pioneer works of Hill [3], Levin [4] and Cribb [5], the existence of uniform fields in heterogeneous
materials was tacitly recognized and employed to deduene today’s well-known exact elastic and thermoelstic
relations. For the last 15 years and especially since the important work of Dvorak [6], the concept of uniform
fields has been systematically studied and exploited taiobtnumber of exact results for the effective mechanical
and physical properties dinear heterogeneous materialseg the book of Milton [2] and the relevant references
cited therein). In the works of Milton [7], He [8] and He and Bary [9], exact results have also been established for
the effective properties afmooth nonlinear elastic and thermoelastic heterogeneous materials by extending the
concept of uniform fields to smooth nonlinear cases. However, to the authors’ best knowledge, no works have not
been reported about the existence of uniform fieldsamsmooth dissipative heterogeneous materials and about
the use of uniform fields to the derivation of exact results for them. The present paper deals with this open problem
by considering an elastoplastic fibre-reinforced conitpa@s a prototype of non-smooth dissipative heterogeneous
materials.

The notation adopted in this work is as follows. Scalars are denoted by Greek letters, and vectors by bold-
face minuscule Latin letters. Second- and fourth-order tensors are designated by light- and bold-face majuscule
Latin letters, respectively. The components of a vector, second- or fourth-order tensor are represented by the
corresponding light-face letter with a suitable number of subscripts.

2. Local constitutive laws

The two-phase material investigated in the present work is made up of aligned parallel continuous fibers
embedded in a matrix. The fiber and matrix phasesaaseimed to be individually homogeneous and perfectly
bonded together across their interface but no restrictions are imposed on the transverse geometry and distribution
of the fibers. The composite under consideration is taraogeneous along the fiber direction and heterogeneous
in the transverse plane.

The matrix, referred to as phase 1, is assumed to have an elastoplastic behavigt lagtd S© denote its

strain and stress tensors, respectively. As usual in elastoplasfitityis decomposed into an elastic pﬁél) and

a plastic partz":

E® =D + E® (1)
The elastic stress—strain relation is taken to be linear and isotropic:

sO_ 1D (E(l) _ E,()l)), LY =\ Drer+ 2u(1)1 2)

where/ is the second-order identity tensiis the fourth-order idntity tensor on the space Sym of second-order
symmetric tensord, @ is the elastic stiffness tensart? andp V) are the constants of Lamé. In addition, the von
Mises criterion with a linear isotropic hardening is adopted:

(S, &) = | devs®| — \/gg(a) <0 3
g(a) = oe + ka @
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where|| devs™D || represents the norm of the stress deviatorti€v= (1— 1 ®1/3)SP, « the isotropic hardening
parameterge the initial yield stress, ankl the material hardening constant. Using the normality rule, we have the
following evolution laws:

. af devs® af 2

E(l) = = s Y= —y— =.]— 5
P =V 5s@ = Y devs @] YTV VT ©)

y=0, <0, yf=0 (6)

_ In order to obtain an explicit incremental stress—strain relation for the matrix, we first use (2)—(5) to calculate
£8P o) as follows:

F(SW, @) =2uM : ED — 2u+2k/3)y (7)
with
deu® — EY)

M= (8)
IdeM E® — ESYy|

Making the assumption that> —3u™® and accounting for the requirement thrat 0, we derive from the classical
consistency conditiorf = 0 that
_ 2u(M:EW),

T 2u+2k/3

where(x) is equal to 0 ifx < 0 and tox if x > 0. Next, it is easy to obtain the incremental stress—strain relation
for the matrix as follows:

9)

SO=LWED if f <0orbothf =0and deye™® - E;"): EP <0 (10a)
) 6D o .

@_(Lw_ @ _ @ _ p@y. O
S = (L 31k M® M)E if both £ =0 and deyE EgY):EY >0 (10b)

Note that the assumptidn> —3, Y does not exclude the description of softening elastoplastic materials (Nguyen
and Bui [10]).
The fibers, called phase 2, are taken to be linearly elastic and isotropic. Thus, its stress—strain relation is simply
given by
s@ — |_(2)E(2), L@ =)1@1x71+ ZM(Z)]_ (11)

wherer® andu @ are the Lamé constants of the fibers.

3. Existence of uniform strain fields

Let 2 denote the closed domain occupied by a representative volume element of the two-phase material
described above and l&2") stand for the corresponding closed sub-domain of phasel, 2). The boundary
of 2 is designated by £2. If the fiber direction is described by a unit vectgrthen any unit vecton normal to
the interfacel™ between2® and2@ is perpendicular to.

Consider the case where the plastic strBﬁ‘? and the isotropic hardening parametenf phase 1 are uniform
in the latter and their values are given and frozen. We look for a macroscopic Btgaioh that the homogeneous
boundary displacement condition

ux)=EX 0nas (12)
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induces a uniform strain field ove?. If £ is the resulting uniform strain field ove? ®, this means that
ED=FE@_-F (13)

It is known from Dvorak [6] and He [8] that such a uniform strain field exists if and only if the resulting stress
fields S over2® (i = 1, 2) satisfy the interface stress continuity condition, i.e.,

SOnt = s@nt (14)

for any unit vectom' perpendicular ts. By means of the orthogonal projection operatetsandP introduced
by He [8] as

PLn)=1—-P(N)=1—-n®nN®n®n (15)
(14) can be written in the equivalent but more convenient form:
PL()(sP - 5@) =0 (16)

Using (2), (11) and (13) in (16) and accountirg the plastic incomgessibilty condition trE,()l) =0 due to(5)1,

we obtain a system of 5 non-homogeneous linear equations with the 6 matrix compongrts nhknowns:
PLAME) 4+ 20E | = 2uWPHESD (17)

wherei = 1@ — 1@ andj = u® — 1@, Clearly, the non-homogeneous linear system (17) admits an infinite
number of solutions which result from the superposition of the solutions of the associated homogeneous linear
system withE,(Jl) =0 to a particular solution of (17) with?,gl) # 0. The existence of solutions to (17) implies the
existence of uniform strain fields in the elastoplastic composite under consideration.

To specify the solutions to (17) in an explicit component way, let an orthonormal s, es} be chosen

with e coinciding with the fiber direction. Then, all the solutions of (17) take the following form:
NS A 2 1 2 1
—ife + @+ EG, — iuME,
20+ 1)
30 no A H_ 2 Ol
ipe+ Qa4+ u®EL _iuDE _ @
i Ap33 p22, E, = MA E’()ll) i %)) (18b)
20(i+ 1) po

whereg € ]—o00, oo[ is a strain control parameter vah can vary arbitrarily. When‘r?lpj =0, (18a) and (18b) reduce
to

(18a)

E11=¢, Ez=

E33=

_ 22
E =diage, ne, ne)  with n = —- / . (19)

w+A
This uniform strain is axisymmetric about the fiber direction.

4. Determination of uniform strain loading paths

In the foregoing section, the plastic strdj]él) and hardening parameterof phase 1 are taken to be uniform,
known and fixed; moreover, they are tacitly assumed to be compatible with the necessary and sufficient uniform
strain condition (16). In factE,()l) anda are two unknowns and vary generally with the macroscopic sifain
Consequently, the problem of determining uniform strain fields in an elastoplastic fibre-reinforced composite is
fundamentally a nonlinear problem. Further, this probmnot be generally solved analytically. In this section,
we propose a modified return-mapping algorithm which allow us to numerically find out uniform strain loading

paths wherEél) anda change.
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A comprehensive presentation of ttlassical return-mapping (or catoly-up) algorithm of elastoplasticity can
be found in the book of Simo and Hughes [11]. Compared with the classical problem of integrating an elastoplastic
law, the problem of determining a uniform strain loadirjtpincludes the additional requirement that (17) must
be satisfied. Hence, a macroscopic strain incremdnt at a generic step cannot be imposed in an arbitrary way.
First, assume that, at step the total straink,, the plastic strairE;()i) and the hardening parametey are
uniform and completely defined. The corresponding phase stresses are calculated by using the formulae (2)

and (11):
SP=LD(E, - ES))., $P=L?E, (20)
Further, the criterion (3) and the condition (17) are assumed to be satisfied af step

— 2

fo=2uP|deVE, — EG)) | - \[—3 (koty + 0e) <O (21)

PLA(r Ey) I + 20, ] = 20 VPLED (22)
Next, we proceed to determinmiform strain incrementa E,, by solving the following nonlinear problem:

L (ftiall>+ 1

PLA(trAE,)I + 20AE, | = — =2 _pty, 23

where
A _ — 2
£ =2u® | dey(E, + AE, — ESD)| - \/; (ko + oe) (24)

dewE, + AE, — Eg))

+1= — — 1
IdewE, + AE, — ES)|

These formulae are obtained by using the basic idea of the return-mapping algorithm (see, e.g., Moreau, [12], Simo
and Hughes [11]) and accounting for the requirement (17). Finally, for any solttihnto (23) together with (24)
and (25), we can calculate the uniform strain, thespit strain and the hardening parameter at stepl.:

(25)

Eni1=E, + AE, (26)
i+ @ ) M, /2
— n —_— —_— —
Ayn-l—l = 2[,L(l) n 2k/3s Ep(,,_;,_]_) = Epn + Ayn-l-l n+l, Optl =0y + SAViH-l (27)

Thus, we can compute all uniform strain loading paths for the elastoplastic composite and the resulting plastic
strain and hardening parameter of phase 1.

We remark that the initial assumption that the plastic strain teﬁégrand hardening parameterof phase 1
are uniform in the latter is a posteriori justified by the fact that a uniform loading path results in uniform stresses
and, consequently, uniform plastic strains in phase 1.

5. Microstructure-independent exact results

Denoting the volume average of the local stress tensor fieldl, kge effective stiffness tensor Ry, and the
macroscopic plastic strain b§, (which is not the simple volume average of the local plastic strain field), the
effective elastic stress—strain relation of the composite takes the form

S=L(E - Ep) (28)

As no limitations are imposed on the transverse geometry and distribution of the fibres, the effective stiffness
tensorL is generally monoclinic with respect to a transverse plane of the fibres. Now, with the help of uniform
strain fields, we proceed to establish exact relations betive¢rf? andL @,
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Let us define the orthogonal projection operaoby
Ker[PH(L® —L@)] ={E: E=QE, E € Sym) (29)

where Ker stands for the kernel of a linear operator. The complementary orthogonal projection opérégor
given by

Qt=1-Q (30)
In fact, the operato® characterizes the solutions of (17) wiﬂ{;l) =0. By (19), we obtain

1
Q=1-Q'=HQ®H withH=————{diag1,7,7) (31)

V14252

Next, using a procedure owing to He and Bary [9] (se® &hen and Zheng [13]), we can show that there are the
following exact relations:

QIL(Q'LQH) ' —1)(L —L))Q=0 (32a)
QL(Q'LQH)  —1)(L-L@)Qt =0 (32b)
Above, L is the differencel = L® — L@, (Q*LQ*)~1 is the inverse to be understood in the sense that
Q*LQHHQILQH) = QLQH(QILQH T =Q*, () is the volume average, arfd) = VLD 4 2L @
with ¢ being the volume fraction of phaseWe remark that the coordinate-free exact results (32a) and (32b) are
identical to the relevant ones given by Dvorak [6] in matrix component forms.
Once a uniform strain loading path is determined bing the method presented in Section 3, we can exactly

find out two points on the effective yield surface, even though the form of the latter is unknown. For simplicity,
consider the particular case where the uniform loading path is axisymmetric with respect to the fibre direction

n = e;. Correspondingly, the componentsl@gl) are such thaE‘()lz)zz E‘%)s andEF()},). =0fori # j, and Egs. (18a)
and (18b) reduce to '

M(l)
— ~_¢p,
2(ja +2)
wheren, is defined in Eq. (19) anel, = —2EF()?2= —2EF()%)3. Clearly, (33) includes (19) as a particular case. Next,

using the formulae (2), (11) and (13) and accounting for the factEﬁ?{: —(Eé12)2+ EF(,13)3) = &p, We calculate
the non-zero stress components of phases 1 and 2 as follows:

Ein=e, Ex=E3s=ne— Eij=0 (i#}) (33)

D e
Sﬁ?==(2u“’+-¥4—7)8——u“)<2+—A A>ep (34a)
ntA HtA
) 1
s = (Zu@ + £ A)s— L e (34b)
ntA ntA
D @D @ _ @ M(l))L(Z) _ ,u,(z))»(l) ;L(l)()»(z) + M(Z))
Sy =833 =Sy =S33 = = €— = €p (34c)
n+A WL+ A
The corresponding macroscopic stress tefssrgiven byS = (§) = cMs® 4 253 je.,
_ 0 @y
Sy = (2<u> el {)e - <20(l),u(l) + ’ﬂ—())ep (35a)
u+A A+ A
_ 1@ _ ;5D D@ 4 ,@
Szz=533=u - e e (A Jf“ )8p (35b)
u+A A+ A

Sij =0 fori#j. (35¢)
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Introducing the expressions of the stress compong(ﬁtmf phase 1 into the criterion (3) together with (4) and
assuming that the elastic properties of phases 1 and 2 are well-ordered in the sense that

A= (O —2@)(u® — @) >0 (36)
we obtain
A+ ) (k @ 3+ M) (k @
_(p+ )(Aot—i-ACfe) +(1_ A,u A>8 <e< (n+ )(AOl-i-ACTe) 4 <1_ AM A)Sp (37)
u® 204 3)) 20+ 3A u® 20+ 3)) 20+ 3\

For any value ot verifying (37), the corresponding macroscopic stress tensor calculated by (35a)—(35c) is inside or
on the effective yield surface associated to a pair of valueg ahda which are compatible with the axisymmetric
uniform loading path under consideration. In particular, when the minimum and maximum vakuesasicribed

by (37) are taken, the formulae (35a)—(35c¢) give two macroscopic stress ténsansl S+ corresponding to two
points on the effective yield surface.gRisely, the non-zero matrix componentssof and S* have the following
expressions:

— 2() (2 + ) + (W) 2 3(

K el ek kL O M(Z)(M - 2c<2>)sp (38a)
nD 20 +31) 20+ 3A

L D@ _ @3 @35, 4 2, @

SH=Sh=%" WA ko) — P a0 (38b)

u®2p+34) 20+ 34
These formulae clearly show that affects the hardening of the composite. Settipg- 0 ande = 0, the resulting
stress tensor$~ andS™ given by (38a) and (38b) correspond to two points on the effective initial yield surface.

It should be emphasized that all foregoing results hold regardless of the transverse geometry and distribution
of the fibres. In other words, these results are relevant only to the phase volume fractions and properties of the
composite.

6. A numerical example

As an example of application, we consider a composite consisting of an aluminum matrix reinforced by boron
fibres. The phase volume fractions and properties are given as follows:

— Aluminum:¢® =0.95, A =37 MPa uD =21.1 MP3 0. =0.45 MPa k =1 MPa
— Boron:¢c®@ =0.05, 1® =1057 MPa p®@ =158 MPa.

Solving the nonlinear problem formulated by (23)—(25), an axisymmetric uniform strain loading path is found
out and presented in Fig. 1(a). The resulting plastic stgaiong the fibre direction is illustrated in Fig. 1(b), and
the corresponding macroscopic stress—strain relations are shown in Fig. 1(c) and (d).

In particular, forep = « = 0, the two initial yield stress tensots"™ and S~ have the following numerical
component values

ST =diag(0.757,0.161, 0.161), S~ =diag—0.757, —0.161, —0.161)
When, for examplegp = « = 0.03, the numerical component values of the yield stress telfSoesdS~ become
ST =diag3.031, 1.685, 1.685), S~ =diag(1.417,1.341, 1.341)

Above, the unit of the stress components is MPa.
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Fig. 1. () An axisymmetric uniform strain loading path; (b) the resulting plastic strain along the fibre direction; (c) the macroscopic stress—strai
relation S11 — E11; (d) the macroscopic stress—strain relatiyp — E11 or S33 — E11.

7. Final remarks

As in the case of a linearly or nonlinearly elastic fibre-reinforced composite, the existence of uniform strain
fields in an elastoplastic fibre-reinforced composite is due to the fact that it is homogeneous along the fibre
direction. However, since the behavior of the constituehtke latter is loading-patdependent and non-smooth,
the determination of uniform strain fields is much more difficult. In particular, the theorem of implicit functions,
which is the key to extending the concept of uniform fields to smoothly nonlinear elastic heterogeneous materials
(He [8], He and Bary [9]), is no longer applicable. The return-mapping based algorithm of Section 3 is an efficient
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way to find out loading paths generating uniform strain fields in the considered elastoplastic fibre-reinforced
composite. This algorithm can be generalized to more dizated elastoplastic fibre-reinforced composites. In
Section 4, a uniform loading path axisymmetric about the fibre direction was considered and exploited to derive
exact results for the effective yield surface. The paiisy of having non-axisymmetric uniform loading paths
should be examined in a forthcoming work. In fact, for a linearly or nonlinearly elastic fibre-reinforced composite
consisting of isotropic phases, the uniform strain fields can be only axisymmetric with respect to the fibre direction.
It seems that this would not be the only possibility for an elastoplastic fibre-reinforced composite.
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