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Abstract

This work is concerned with a two-phase material consisting of an elastoplastic matrix reinforced by linearly elasti
It is first shown that uniform strain fields can be generated in this heterogeneous material. A return-mapping based alg
then proposed and used to find uniform strain loading paths. With the help of uniform strain fields, exact results, indepe
the transverse geometry and arrangement of the fibres, are derived for the effective elastic properties and for the effec
and current yield surfaces.To cite this article: Q.-C. He, H. Le Quang, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Champs de déformation uniformes et résultats exacts dans un composite élastoplastique renforcé par des fibr
Ce travail porte sur un matériau à deux phases, constitué d’une matrice élastoplastique renforcée par des fibres lin
élastiques. Nous montrons d’abord que des champs de déformation uniformes peuvent être générés dans ce matériau
Un algorithme basé sur le « return mapping » est ensuite proposé et utilisé afin de trouver des trajets de chargement produisa
des champs de déformation uniformes. A l’aide de ceux-ci, des résultats exacts, indépendants de la géométrie
distribution des fibres dans leur plan transverse, sont établis pour les propriétés élastiques macroscopiques et pour l
macroscopiques initiale et actuelle de seuil de plasticité.Pour citer cet article : Q.-C. He, H. Le Quang, C. R. Mecanique 332
(2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Computational solid mechanics; Fibre-reinforced composites; Elastoplasticity; Exact results; Microstructure

Mots-clés : Méchanique des solides numérique ; Composites renforcés par des fibres ; Elastoplasticité ; Résultats exacts ; Microstruc

✩ This work was presented at the NATO Advanced Research Workshopon “Nonlinear Homogenization andits Application to Composites
Polycrystals and Smart Materials”held on June 23–26, 2003, Kazimierz, Poland.

* Corresponding author. Tel.: +33-(0)1-60-95-77-86; fax: +33-(0)1-60-95-77-99.
E-mail address: he@univ-mlv.fr (Q.-C. He).
1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2004.03.001



548 Q.-C. He, H. Le Quang / C. R. Mecanique 332 (2004) 547–555

ime
the
threefold.

for
.g.,

es

eous
lstic
niform
ical
ces
hed for
the
have not
out
problem
eous

y bold-
ajuscule
d by the

s fibers
ctly
istribution
eous

der
on
1. Introduction

The fact that uniform fields may be produced in heterogeneous media under certain conditions is of pr
importance to micromechanics. Indeed, it allows us to derive microstructure-independent exact results for
effective properties of heterogeneous materials. The usefulness of such exact results turns out to be
Firstly, they serve directly for the determination of effective properties. Secondly, they constitute benchmarks
analytical and numerical methods elaborated for the prediction of linear and nonlinear effective properties (see, e
Ponte Castañeda and Suquet, [1], Milton,[2]). Thirdly, they shed light on the dependence of effective properti
on the microstructure.

In the pioneer works of Hill [3], Levin [4] and Cribb [5], the existence of uniform fields in heterogen
materials was tacitly recognized and employed to deduce some today’s well-known exact elastic and thermoe
relations. For the last 15 years and especially since the important work of Dvorak [6], the concept of u
fields has been systematically studied and exploited to obtain a number of exact results for the effective mechan
and physical properties oflinear heterogeneous materials (see the book of Milton [2] and the relevant referen
cited therein). In the works of Milton [7], He [8] and He and Bary [9], exact results have also been establis
the effective properties ofsmooth nonlinear elastic and thermoelastic heterogeneous materials by extending
concept of uniform fields to smooth nonlinear cases. However, to the authors’ best knowledge, no works
been reported about the existence of uniform fields innon-smooth dissipative heterogeneous materials and ab
the use of uniform fields to the derivation of exact results for them. The present paper deals with this open
by considering an elastoplastic fibre-reinforced composite as a prototype of non-smooth dissipative heterogen
materials.

The notation adopted in this work is as follows. Scalars are denoted by Greek letters, and vectors b
face minuscule Latin letters. Second- and fourth-order tensors are designated by light- and bold-face m
Latin letters, respectively. The components of a vector, second- or fourth-order tensor are represente
corresponding light-face letter with a suitable number of subscripts.

2. Local constitutive laws

The two-phase material investigated in the present work is made up of aligned parallel continuou
embedded in a matrix. The fiber and matrix phases areassumed to be individually homogeneous and perfe
bonded together across their interface but no restrictions are imposed on the transverse geometry and d
of the fibers. The composite under consideration is thushomogeneous along the fiber direction and heterogen
in the transverse plane.

The matrix, referred to as phase 1, is assumed to have an elastoplastic behavior. LetE(1) andS(1) denote its
strain and stress tensors, respectively. As usual in elastoplasticity,E(1) is decomposed into an elastic partE

(1)
e and

a plastic partE(1)
p :

E(1) = E(1)
e + E(1)

p (1)

The elastic stress–strain relation is taken to be linear and isotropic:

S(1) = L (1)
(
E(1) − E(1)

p

)
, L (1) = λ(1)I ⊗ I + 2µ(1)1 (2)

whereI is the second-order identity tensor,1 is the fourth-order identity tensor on the space Sym of second-or
symmetric tensors,L (1) is the elastic stiffness tensor,λ(1) andµ(1) are the constants of Lamé. In addition, the v
Mises criterion with a linear isotropic hardening is adopted:

f
(
S(1), α

) = ∥∥devS(1)
∥∥ −

√
2

3
g(α) � 0 (3)

g(α) = σe + kα (4)
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where‖devS(1)‖ represents the norm of the stress deviator devS(1) = (1− I ⊗ I/3)S(1), α the isotropic hardening
parameter,σe the initial yield stress, andk the material hardening constant. Using the normality rule, we hav
following evolution laws:

Ė(1)
p = γ

∂f

∂S(1)
= γ

devS(1)

‖devS(1)‖ , α̇ = −γ
∂f

∂g
=

√
2

3
γ (5)

γ � 0, f � 0, γf = 0 (6)

In order to obtain an explicit incremental stress–strain relation for the matrix, we first use (2)–(5) to ca
ḟ (S(1), α) as follows:

ḟ
(
S(1), α

) = 2µM : Ė(1) − (2µ + 2k/3)γ (7)

with

M = dev(E(1) − E
(1)
p )

‖dev(E(1) − E
(1)
p )‖

(8)

Making the assumption thatk > −3µ(1) and accounting for the requirement thatγ � 0, we derive from the classica
consistency conditioṅf = 0 that

γ = 2µ〈M : Ė(1)〉+
2µ + 2k/3

(9)

where〈x〉+ is equal to 0 ifx < 0 and tox if x � 0. Next, it is easy to obtain the incremental stress–strain rela
for the matrix as follows:

Ṡ(1) = L (1)Ė(1) if f < 0 or bothf = 0 and dev
(
E(1) − E(1)

p

) : Ė(1) � 0 (10a)

Ṡ(1) =
(

L (1) − 6µ(1)

3+ k/µ(1)
M ⊗ M

)
Ė(1) if both f = 0 and dev

(
E(1) − E(1)

p

) : Ė(1) > 0 (10b)

Note that the assumptionk > −3µ(1) does not exclude the description of softening elastoplastic materials (Ng
and Bui [10]).

The fibers, called phase 2, are taken to be linearly elastic and isotropic. Thus, its stress–strain relation
given by

S(2) = L (2)E(2), L (2) = λ(2)I ⊗ I + 2µ(2)1 (11)

whereλ(2) andµ(2) are the Lamé constants of the fibers.

3. Existence of uniform strain fields

Let Ω denote the closed domain occupied by a representative volume element of the two-phase
described above and letΩ(i) stand for the corresponding closed sub-domain of phasei (= 1,2). The boundary
of Ω is designated by∂Ω . If the fiber direction is described by a unit vectorn, then any unit vectorn⊥ normal to
the interfaceΓ betweenΩ(1) andΩ(2) is perpendicular ton.

Consider the case where the plastic strainE
(1)
p and the isotropic hardening parameterα of phase 1 are uniform

in the latter and their values are given and frozen. We look for a macroscopic strain�E such that the homogeneo
boundary displacement condition

u(x) = �Ex on∂Ω (12)
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induces a uniform strain field overΩ . If E(i) is the resulting uniform strain field overΩ(i), this means that

E(1) = E(2) = �E (13)

It is known from Dvorak [6] and He [8] that such a uniform strain field exists if and only if the resulting s
fieldsS(i) overΩ(i) (i = 1,2) satisfy the interface stress continuity condition, i.e.,

S(1)n⊥ = S(2)n⊥ (14)

for any unit vectorn⊥ perpendicular ton. By means of the orthogonal projection operatorsP⊥ andP introduced
by He [8] as

P⊥(n) = 1− P(n) = 1− n ⊗ n ⊗ n ⊗ n (15)

(14) can be written in the equivalent but more convenient form:

P⊥(n)
(
S(1) − S(2)

) = 0 (16)

Using (2), (11) and (13) in (16) and accounting for the plastic incompressibilty condition trE(1)
p = 0 due to(5)1,

we obtain a system of 5 non-homogeneous linear equations with the 6 matrix components of�E as unknowns:

P⊥[
λ̂(tr �E)I + 2µ̂�E ] = 2µ(1)P⊥E(1)

p (17)

whereλ̂ = λ(1) − λ(2) andµ̂ = µ(1) − µ(2). Clearly, the non-homogeneous linear system (17) admits an in
number of solutions which result from the superposition of the solutions of the associated homogeneou
system withE(1)

p = 0 to a particular solution of (17) withE(1)
p �= 0. The existence of solutions to (17) implies t

existence of uniform strain fields in the elastoplastic composite under consideration.
To specify the solutions to (17) in an explicit component way, let an orthonormal basis{e1,e2,e3} be chosen

with e1 coinciding with the fiber directionn. Then, all the solutions of (17) take the following form:

�E11 = ε, �E22 = −λ̂µ̂ε + (2µ̂ + λ̂)µ(1)E
(1)
p22− λ̂µ(1)E

(1)
p33

2µ̂(µ̂ + λ̂)
(18a)

�E33 = −λ̂µ̂ε + (2µ̂ + λ̂)µ(1)E
(1)
p33− λ̂µ(1)E

(1)
p22

2µ̂(µ̂ + λ̂)
, �Eij = µ(1)

µ̂
E

(1)
pij (i �= j) (18b)

whereε ∈ ]−∞,∞[ is a strain control parameter which can vary arbitrarily. WhenEp
ij = 0, (18a) and (18b) reduc

to

�E = diag(ε, ηε, ηε) with η = − λ̂/2

µ̂ + λ̂
(19)

This uniform strain is axisymmetric about the fiber direction.

4. Determination of uniform strain loading paths

In the foregoing section, the plastic strainE
(1)
p and hardening parameterα of phase 1 are taken to be uniform

known and fixed; moreover, they are tacitly assumed to be compatible with the necessary and sufficient
strain condition (16). In fact,E(1)

p andα are two unknowns and vary generally with the macroscopic strai�E.
Consequently, the problem of determining uniform strain fields in an elastoplastic fibre-reinforced comp
fundamentally a nonlinear problem. Further, this problemcannot be generally solved analytically. In this secti
we propose a modified return-mapping algorithm which allow us to numerically find out uniform strain lo
paths whenE(1)

p andα change.
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A comprehensive presentation of theclassical return-mapping (or catching-up) algorithm of elastoplasticity ca
be found in the book of Simo and Hughes [11]. Compared with the classical problem of integrating an elast
law, the problem of determining a uniform strain loading path includes the additional requirement that (17) m
be satisfied. Hence, a macroscopic strain increment
�En at a generic stepn cannot be imposed in an arbitrary wa

First, assume that, at stepn, the total strain�En, the plastic strainE(1)
pn and the hardening parameterαn are

uniform and completely defined. The corresponding phase stresses are calculated by using the form
and (11):

S(1)
n = L (1)

(�En − E(1)
pn

)
, S(2)

n = L (2) �En (20)

Further, the criterion (3) and the condition (17) are assumed to be satisfied at stepn, i.e.,

fn ≡ 2µ(1)
∥∥dev

(�En − E(1)
pn

)∥∥ −
√

2

3
(kαn + σe) � 0 (21)

P⊥[
λ̂
(
tr �En

)
I + 2µ̂�En

] = 2µ(1)P⊥E(1)
pn (22)

Next, we proceed to determineuniform strain increments
�En by solving the following nonlinear problem:

P⊥[
λ̂
(
tr
�En

)
I + 2µ̂
�En

] = 〈f trial
n+1〉+

1+ k/(3µ(1))
P⊥Mn+1 (23)

where

f trial
n+1 ≡ 2µ(1)

∥∥dev
(�En + 
�En − E(1)

pn

)∥∥ −
√

2

3
(kαn + σe) (24)

Mn+1 = dev(�En + 
�En − E
(1)
pn )

‖dev(�En + 
�En − E
(1)
pn )‖

(25)

These formulae are obtained by using the basic idea of the return-mapping algorithm (see, e.g., Moreau, [1
and Hughes [11]) and accounting for the requirement (17). Finally, for any solution
�En to (23) together with (24
and (25), we can calculate the uniform strain, the plastic strain and the hardening parameter at stepn + 1:

�En+1 = �En + 
�En (26)


γn+1 = 〈f trial
n+1〉+

2µ(1) + 2k/3
, E

(1)
p(n+1) = E(1)

pn + 
γn+1Mn+1, αn+1 = αn +
√

2

3

γn+1 (27)

Thus, we can compute all uniform strain loading paths for the elastoplastic composite and the resulting
strain and hardening parameter of phase 1.

We remark that the initial assumption that the plastic strain tensorE
(1)
p and hardening parameterα of phase 1

are uniform in the latter is a posteriori justified by the fact that a uniform loading path results in uniform s
and, consequently, uniform plastic strains in phase 1.

5. Microstructure-independent exact results

Denoting the volume average of the local stress tensor field by�S, the effective stiffness tensor byL̄ , and the
macroscopic plastic strain by�Ep (which is not the simple volume average of the local plastic strain field)
effective elastic stress–strain relation of the composite takes the form

�S = L̄ (�E − �Ep) (28)

As no limitations are imposed on the transverse geometry and distribution of the fibres, the effective s
tensorL̄ is generally monoclinic with respect to a transverse plane of the fibres. Now, with the help of un
strain fields, we proceed to establish exact relations betweenL̄ , L (1) andL (2).
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Let us define the orthogonal projection operatorQ by

Ker
[
P⊥(

L (1) − L (2)
)] = {�E: �E = QE,E ∈ Sym} (29)

where Ker stands for the kernel of a linear operator. The complementary orthogonal projection operatoQ⊥ is
given by

Q⊥ = 1− Q (30)

In fact, the operatorQ characterizes the solutions of (17) withE
(1)
p = 0. By (19), we obtain

Q = 1− Q⊥ = H ⊗ H with H = 1√
1+ 2η2

diag(1, η, η) (31)

Next, using a procedure owing to He and Bary [9] (see also Chen and Zheng [13]), we can show that there are
following exact relations:

Q
[
L̂
(
Q⊥L̂Q⊥)−1 − 1

](
L̄ − 〈L〉)Q = 0 (32a)

Q
[
L̂
(
Q⊥L̂Q⊥)−1 − 1

](
L̄ − L (2)

)
Q⊥ = 0 (32b)

Above, L̂ is the differenceL̂ = L (1) − L (2), (Q⊥L̂Q⊥)−1 is the inverse to be understood in the sense
(Q⊥L̂Q⊥)−1(Q⊥L̂Q⊥) = (Q⊥L̂Q⊥)(Q⊥L̂Q⊥)−1 = Q⊥, 〈·〉 is the volume average, and〈L〉 = c(1)L (1) + c(2)L (2)

with c(i) being the volume fraction of phasei. We remark that the coordinate-free exact results (32a) and (32b
identical to the relevant ones given by Dvorak [6] in matrix component forms.

Once a uniform strain loading path is determined by using the method presented in Section 3, we can exa
find out two points on the effective yield surface, even though the form of the latter is unknown. For sim
consider the particular case where the uniform loading path is axisymmetric with respect to the fibre d
n = e1. Correspondingly, the components ofE

(1)
p are such thatE(1)

p22= E
(1)
p33 andE

(1)
pij = 0 for i �= j , and Eqs. (18a

and (18b) reduce to

�E11 = ε, �E22 = �E33 = ηε − µ(1)

2(µ̂ + λ̂)
εp, �Eij = 0 (i �= j) (33)

whereη is defined in Eq. (19) andεp = −2E
(1)
p22= −2E

(1)
p33. Clearly, (33) includes (19) as a particular case. N

using the formulae (2), (11) and (13) and accounting for the fact thatE
(1)
p11= −(E

(1)
p22+ E

(1)
p33) = εp, we calculate

the non-zero stress components of phases 1 and 2 as follows:

S
(1)
11 =

(
2µ(1) + µ̂λ(1)

µ̂ + λ̂

)
ε − µ(1)

(
2+ λ(1)

µ̂ + λ̂

)
εp (34a)

S
(2)
11 =

(
2µ(2) + µ̂λ(2)

µ̂ + λ̂

)
ε − µ(1)λ(2)

µ̂ + λ̂
εp (34b)

S
(1)
22 = S

(1)
33 = S

(2)
22 = S

(2)
33 = µ(1)λ(2) − µ(2)λ(1)

µ̂ + λ̂
ε − µ(1)(λ(2) + µ(2))

µ̂ + λ̂
εp (34c)

The corresponding macroscopic stress tensor�S is given by�S = 〈S〉 = c(1)S(1) + c(2)S(2), i.e.,

�S11 =
(

2〈µ〉 + µ̂〈λ〉
µ̂ + λ̂

)
ε −

(
2c(1)µ(1) + µ(1)〈λ〉

µ̂ + λ̂

)
εp (35a)

�S22 = �S33 = µ(1)λ(2) − µ(2)λ(1)

µ̂ + λ̂
ε − µ(1)(λ(2) + µ(2))

µ̂ + λ̂
εp (35b)

�Sij = 0 for i �= j. (35c)
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Introducing the expressions of the stress componentsS
(1)
ij of phase 1 into the criterion (3) together with (4) a

assuming that the elastic properties of phases 1 and 2 are well-ordered in the sense that

λ̂µ̂ = (
λ(1) − λ(2)

)(
µ(1) − µ(2)

)
� 0 (36)

we obtain

− (µ̂ + λ̂)(kα + σe)

µ(1)(2µ̂ + 3λ̂)
+

(
1− µ(2)

2µ̂ + 3λ̂

)
εp � ε � (µ̂ + λ̂)(kα + σe)

µ(1)(2µ̂ + 3λ̂)
+

(
1− µ(2)

2µ̂ + 3λ̂

)
εp (37)

For any value ofε verifying (37), the corresponding macroscopic stress tensor calculated by (35a)–(35c) is in
on the effective yield surface associated to a pair of values ofεp andα which are compatible with the axisymmetr
uniform loading path under consideration. In particular, when the minimum and maximum values ofε prescribed
by (37) are taken, the formulae (35a)–(35c) give two macroscopic stress tensors�S− and�S+ corresponding to two
points on the effective yield surface. Precisely, the non-zero matrix components of�S− and�S+ have the following
expressions:

�S±
11 = ±2〈µ〉(µ̂ + λ̂) + 〈λ〉µ̂

µ(1)(2µ̂ + 3λ̂)
(kα + σe) − µ(2)

(
2〈µ〉 + 3〈λ〉

2µ̂ + 3λ̂
− 2c(2)

)
εp (38a)

�S±
22 = �S±

33 = ±µ(1)λ(2) − µ(2)λ(1)

µ(1)(2µ̂ + 3λ̂)
(kα + σe) − µ(2)(3λ(1) + 2µ(1))

2µ̂ + 3λ̂
εp (38b)

These formulae clearly show thatεp affects the hardening of the composite. Settingεp = 0 andα = 0, the resulting
stress tensors�S− and�S+ given by (38a) and (38b) correspond to two points on the effective initial yield surfa

It should be emphasized that all foregoing results hold regardless of the transverse geometry and dis
of the fibres. In other words, these results are relevant only to the phase volume fractions and properti
composite.

6. A numerical example

As an example of application, we consider a composite consisting of an aluminum matrix reinforced by
fibres. The phase volume fractions and properties are given as follows:

– Aluminum:c(1) = 0.95, λ(1) = 37 MPa, µ(1) = 21.1 MPa, σe = 0.45 MPa, k = 1 MPa;
– Boron:c(2) = 0.05, λ(2) = 105.7 MPa, µ(2) = 158 MPa.

Solving the nonlinear problem formulated by (23)–(25), an axisymmetric uniform strain loading path is
out and presented in Fig. 1(a). The resulting plastic strainεp along the fibre direction is illustrated in Fig. 1(b), a
the corresponding macroscopic stress–strain relations are shown in Fig. 1(c) and (d).

In particular, forεp = α = 0, the two initial yield stress tensorsS+ and S− have the following numerica
component values

S+ = diag(0.757,0.161,0.161), S− = diag(−0.757,−0.161,−0.161)

When, for example,εp = α = 0.03, the numerical component values of the yield stress tensorsS+ andS− become

S+ = diag(3.031,1.685,1.685), S− = diag(1.417,1.341,1.341)

Above, the unit of the stress components is MPa.
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Fig. 1. (a) An axisymmetric uniform strain loading path; (b) the resulting plastic strain along the fibre direction; (c) the macroscopic stren
relation�S11 − �E11; (d) the macroscopic stress–strain relation�S22 − �E11 or �S33 − �E11.

7. Final remarks

As in the case of a linearly or nonlinearly elastic fibre-reinforced composite, the existence of uniform
fields in an elastoplastic fibre-reinforced composite is due to the fact that it is homogeneous along t
direction. However, since the behavior of the constituentsof the latter is loading-path-dependent and non-smoot
the determination of uniform strain fields is much more difficult. In particular, the theorem of implicit func
which is the key to extending the concept of uniform fields to smoothly nonlinear elastic heterogeneous m
(He [8], He and Bary [9]), is no longer applicable. The return-mapping based algorithm of Section 3 is an e
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way to find out loading paths generating uniform strain fields in the considered elastoplastic fibre-rein
composite. This algorithm can be generalized to more complicated elastoplastic fibre-reinforced composites
Section 4, a uniform loading path axisymmetric about the fibre direction was considered and exploited to
exact results for the effective yield surface. The possibility of having non-axisymmetric uniform loading path
should be examined in a forthcoming work. In fact, for a linearly or nonlinearly elastic fibre-reinforced com
consisting of isotropic phases, the uniform strain fields can be only axisymmetric with respect to the fibre di
It seems that this would not be the only possibility for an elastoplastic fibre-reinforced composite.
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