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Abstract

A new approach is proposed for the study of the classical Lagrange problem on the optimal form of a column with c
ends and a fixed volume. It is proved that there exists a column with the maximal possible value of thekth eigenvalue and tha
such a column is unique. A methodfor the numerical solution is proposed. The method is based on the analysis of the critic
points of a non-linear functional related to the Lagrange problem.To cite this article: Y.V. Egorov, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur l’optimisation de valeurs propres supérieures.On propose une nouvelle approche au problème classique de Lag
de la forme optimale de la colonne encastrée aux volume et hauteur fixés. On prouve qu’il existe une colonne avec la v
k-ième valeur propre maximale et que tellecolonne est unique. La méthode est basée sur l’étude despoints critiques d’une fonc-
tionnelle nonlinéaire. Une méthode pour la solution numerique du problème est proposée.Pour citer cet article : Y.V. Egorov,
C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The Lagrange problem on the optimal form of a column is important for applications, and interesti
Variational Calculus, since a principally new approach to its solution, different from the classical one, ha
applied. The statement of the problem and the review of results obtained before 2002 can be found in the a
by Seyranian.

In this article the problem of optimization of higher eigenvalues in the Lagrange problem is conside
columns of different configurations. Firstly, the existence and the uniqueness are proved for columns with
maximal possible value of thekth eigenvalue,k ∈ N. This problem, in a slightly different form (for beams), w
studied in the Olhoff articles [2,3], where the applications of such problems to the building theory is discus
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oach was

.

The approach proposed is based on the study of properties of a related non-linear functional. This appr
used in our papers [4–7] for the problem of optimization of the first eigenvalue.

Here the clamped columns are considered. The casesof elastic or free ends can be studied in the same way

2. The statement of the problem and the main results

The Lagrange problem can be reduced (see [1] or [4]) to the following mathematical problem:

Problem L. To find a positive functionQ(x) ∈ C([0,1]) such that

1∫
0

Q(x)α dx = 1, where 0< α � 1 (1)

and such that the minimal valueλ of the functional

L1[Q,y] ≡
∫ 1

0 Q(x)y ′(x)2 dx∫ 1
0 y2(x)dx

(2)

in the function classy ∈ C1(0,1), satisfying

y(0) = 0, y(1) = 0,

1∫
0

y(x)dx = 0 (3)

is maximal.

The numberλ in this problem is the first eigenvalue of the following Sturm–Liouville problem:(
Q(x)y ′)′ + λy = C (4)

for 0 < x < 1 with boundary conditions (3). The constantC here is not given; it is defined by conditions (3).
Now consider a more general problem for any fixedk ∈ N:

Problem Lk . To find a positive functionQ(x) ∈ C[0,1] such that

1∫
0

Q(x)α dx = 1, where 0< α � 1

for which thekth eigenvalueλk of problem (4)–(3) is maximal.

Forα ∈]0,1[ let us define the non-linear functional

F [u,v] ≡
( 1∫

0

[
u′(x)2 + v′(x)2]α/(α−1) dx

)(1−α)/α 1∫
0

[
u(x)2 + v(x)2]dx

in the function classu,v ∈ C1(0,1), satisfying (3).

Definition 2.1.A is the set of positive continuous functionsQ satisfying (1).
S is the set of the functionsy from the classC1(0,1) satisfying(3).
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al
Sk is the set of pairsu,v from the classS such that the functionθ(x) = arctan(v′(x)/u′(x)) is monotone
decreasing andθ(0)−θ(1) � (k+1)π , and the functionr(x) = u′(x)2+v′(x)2 has not more than 2k+1 extremum
points in the interval]0,1[ and is monotone on the intervals between these points and the pointsx = 0 andx = 1.

Rk is the set of the functionsy from the classS, havingk zeroes in]0,1[.

The main idea of our method is to find the pair(u, v), giving the minimal value of the functionalF [u,v] in a
subclass of the setS ×S, and then to show that these functionsu,v define the form of the column with the maxim
value ofλk with the formula

Q(x) = (
u′(x)2 + v′(x)2)−1/(1−α)

Actually the functionalF has an infinity of points of local minimum(uj , vj ) in the spaceS × S on the unit sphere
in H 1(0,1) andF [uj , vj ] → 0 asj → ∞. The most interesting for the considered problem is the point(uk, vk)

such that

F [uk, vk] = m ≡ min
(u,v)∈Sk

F [u,v]

Theorem 2.2.Let 0 < α < 1. There exists an unique solution of Problem Lk . The optimal function Q0 can be found
from the relation

Q0(x) = (
u′(x)2 + v′(x)2)−1−p

, p = α

1− α

where u(x), v(x) is the solution of the system of equations

(
u′(x)

(u′(x)2 + v′(x)2)1+p

)′
+ Mu = C1; u(0) = u(1) = 0;

1∫
0

u(x)dx = 0 (5)

(
v′(x)

(u′(x)2 + v′(x)2)1+p

)′
+ Mv = C2; v(0) = v(1) = 0;

1∫
0

v(x)dx = 0 (6)

where C1 and C2 are constants. Moreover, if k is odd, then u(x) = −u(1− x), v(x) = v(1− x) and C1 = 0, and if
k is even, then u(x) = u(1−x), v(x) = −v(1−x) and C2 = 0. The function Q0 is symmetric, Q0(x) = Q0(1−x),
and can be found also as

Q0(x) =
[

pr(x)

(2p + 1)m

]1+1/p

(7)

where r is the solution to the Cauchy problem: r(0) = (3+ 1/p)m,

r2+2/pr ′2 = 4
[
(c1 − r)

[
(2+ 1/p)m

]1/p
r2+1/p − c2

2

(
(2+ 1/p)m

)2+2/p]
which is not constant on any subinterval, has k + 1 points of minimum in ]0,1[, and

c1 = (3p + 1)
m

p
+ 4m2s2a

2p+2
p , ap =

(
3p + 1

2p + 1

)1/p

c2 = 2msa
p+1
p

√
a−1
p − s2, s = v′(0)

If P(r) = (c1 − r)r2+1/p − c2
2((2 + 1/p)m)2+1/p, and r1, r2 are the real roots of P , then 0 < r1 < r0 =

(3+ 1/p)m < r2 < c1 and
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of
l

of
(k + 1)

r0∫
r1

r1+1/p dr√
P(r)

+ k

r2∫
r0

r1+1/p dr√
P(r)

=
[
(2p + 1)m

p

]1/2p

(8)

(k + 1)

r0∫
r1

dr

(c1 − r)
√

P(r)
+ k

r2∫
r0

dr

(c1 − r)
√

P(r)
= 2kπ

c2

(
p

(2p + 1)m

)1+1/2p

(9)

The latter system of two equations for two unknown constantsm, s can be solved numerically. The existence
unique solution is guaranteed by the first part of Theorem 2.2. Note thatm is the minimal value of the functiona
F in this class, ands is equal tov′(0). The minimal value of thekth eigenvalue isM = 1/m.

In the case whenα = 1 we consider the following auxiliary problem: to find

m = inf

1∫
0

(
u(x)2 + v(x)2)dx

in the class of functions(u, v) ∈ Sk satisfying the relation

u′(x)2 + v′(x)2 = 1

Theorem 2.3.Let α = 1. There exists a unique solution to the Problem Lk . The optimal function Q0 can be found
from the relation

Q0(x) = Mr(x), r(x)2 = (
b − w(x)

)2 + (
z(x) − a(1− 2x)

)2

where M , a, b are constants and w(x), z(x) is the solution of the system of equations

r(x)w′′ = b − w(x), r(x)z′′ = a(1− 2x) − z(x)

w(0) = w′(0) = 0, z(0) = z′(0) = 0

Moreover, w(x) = w(1− x), z(x) = −z(1− x).
The function Q0 is symmetric, Q0(x) = Q0(1 − x),

∫ 1
0 Q0(x)dx = 1, and r can be found also as the solution

to the problem:

r2r ′2 = P(r); P(r) = cr2 − 2r3 − 4a2b2, c = 4a2 + 2
√

a2 + b2

which is not constant on any subinterval and has k + 1 points of minimum in ]0,1[. If P(r) = (c − 2r)r2 − 4a2b2,
and r1, r2 are the real roots of P , then 0 < r1 < r0 = √

a2 + b2 < r2 < c and

(k + 1)

r0∫
r1

r dr√
P(r)

+ k

r2∫
r0

r dr√
P(r)

= 1

2

(k + 1)

r0∫
r1

dr

r
√

P(r)
+ k

r2∫
r0

dr

r
√

P(r)
= kπ + arctan(a/b)

2ab

The latter system of two equations for two unknown constantsa, b can be solved numerically. The existence
the unique solution is guaranteed by the first part of Theorem 2.3.

For the most important in applications cases whenα = 1/2 or 1/3 or 1 we obtained (using MATLAB) the
optimal values ofλ1 andλ2 given in Table 1.

If α = 1/2 the optimal columns fork = 1 andk = 2 are obtained by rotation around thex-axis of the curves
shown in Fig. 1.
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Table 1
Optimal values ofλ1 andλ2

α λ1 λ2

1/3 52.667196 123.653245
1/2 52.356254 117.880174
1 47.003050 107.984669

Fig. 1. Optimal columns.

3. Proof of Theorem 2.2 (forα < 1)

Lemma 3.1.There exist two functions (u0, v0) ∈ Sk such that

sup
(u,v)∈Sk

F [u,v] = F [u0, v0] = M

These functions are linearly independent, analytic in ]0,1[ and satisfy the Euler–Lagrange equations (5), (6).
Moreover the functions u0 and v0 have k and k + 1 zeroes, respectively, in the interval ]0,1[. Furthermore, if k is
odd, then the function u0 is odd, and v0 is even, and if k is even, then the function u0 is even, and v0 is odd.

Set

L[Q,u,v] =
∫ 1

0 Q(x)(u′(x)2 + v′(x)2)dx∫ 1
0 (u(x)2 + v(x)2)dx

Let u0, v0 be the functions found in Lemma 3.1 such that
∫ 1

0 (u′
0(x)2 + v′

0(x)2)−p dx = 1. LetQ0(x) = (u′
0(x)2 +

v′
0(x)2)−1−p. Obviously,Q0 ∈ C∞[0,1] andQ0(x) = Q0(1− x).

We have

L[Q0, u0, v0] =
∫ 1

0 Q0(x)(u′
0(x)2 + v′

0(x)2)dx∫ 1
0 (u0(x)2 + v0(x)2)dx

=
∫ 1

0 (u′
0(x)2 + v′

0(x)2)−p dx∫ 1
0 (u0(x)2 + v0(x)2)dx

= 1

m

On the other hand, ifQ is a function fromA, then

inf
u∈Rk, v∈Rk

L[Q,u,v] � inf
(u,v)∈Sk

L[Q,u,v] � 1

m
≡ M
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e same

7)

11–421.
Therefore, supQ infy∈Rk L1[Q,y] � M.

One can then check that

inf
y∈Rk

L1[Q0, y] = inf
(u,v)∈Sk

L[Q0, u, v] = L[Q0, u0, v0] = M

Let infu∈Rk,odd L[Q0, u,0] = µ. As in [5], using the Sturm–Liouville theory one can show thatM = µ and
u1 = cu0. Using Lemma 2 from [4], one can check that infv∈Rk,evenL[Q0,0, v] is attained on a functionv1, which
is proportional tov0.

If y ∈ Rk , theny = u + v, whereu ∈ Rk,odd, v ∈ Rk,even. Therefore,

L1[Q0, y] =
∫ 1

0 Q0(x)(u′(x)2 + v′(x)2)dx∫ 1
0 (u(x)2 + v(x)2)dx

� M

since
1∫

0

Q0(x)u′(x)2 dx � M

1∫
0

u(x)2 dx,

1∫
0

Q0(x)v′(x)2 dx � M

1∫
0

v(x)2 dx

as it has been shown before. Adding the inequalities, we obtain that

inf
y∈Rk

L1[Q0, y] = inf
(u,v)∈Sk

L[Q0, u, v] = L[Q0, u0, v0] = L1[Q0, y0] = M

andy0 = u0 + v0.
Let us provethe uniqueness. If Q0 is a solution to Problem Lk, then there exists a solution(u1, v1) ∈ Sk of (5),

(6) such thatQ0(x) = (u′
1(x)2 + v′

1(x)2)−p−1. Note that

u1(0) = 0, v1(0) = 0, u′
1(0)2 + v′

1(0)2 = a−1
p

There is an orthogonal transformation

ũ0 = α1u1 + α2v1, ṽ0 = α3u1 + α4v1

such that the solution(ũ0, ṽ0) satisfies the equations:ũ0(0) = 0, ṽ0(0) = 0, ṽ′
0(0) = k, ũ′

0(0) =
√

a−1
p − k2, and

therefore, coincides with the solution found in Lemma 3.1, as the solution of the Cauchy problem with th
initial data. Thus

Q0(x) = (
ũ′

0(x)2 + ṽ′
0(x)2)−p−1 = (

u′
0(x)2 + v′

0(x)2)−p−1

Therefore, any solution of the Lagrange problem coincides with the solution found above, in Lemma 3.1.
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