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Abstract

We consider regular and singular perturbations of the Dirichlet and Neumann boundary value problems for the H
equation inn-dimensional cylinders. The existence of eigenvalues and their asymptotics are studied.To cite this article: R.R.
Gadyl’shin, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur des perturbations régulières et singulières dans des guides d’ondes acoustiques et quantiques. On considère de
perturbations régulières et singulières des problèmes aux limites de Dirichlet et de Neumann pour l’équation de Helmh
les cylindresn-dimensionnels. Sont étudies l’existence des valeurs propres et de leur comportement asymptotique.Pour citer
cet article : R.R. Gadyl’shin, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

We consider regular and singular perturbations of the Neumann and Dirichlet boundary value probl
H(m)

0 := −(� + µm) in then-dimensional cylinderΠ = (−∞,∞) × Ω , whereΩ ⊂ R
n−1 is a simply connected

bounded domain withC∞-boundary forn � 3 and is an interval(a, b) for n = 2. Hereinafter,µj andφj are

the eigenvalues and eigenfunctions of−�′ := −( ∂2

∂x2
2

+ · · · + ∂2

∂x2
n
) in Ω subject to the same type of the bounda

condition on∂Ω as in the original unperturbed boundary value problem forH(m)
0 on∂Π, µj < µj+1, j = 1,2, . . . .

The functionsφj are assumed to be normalized inL2(Ω). The Neumann problem is a mathematical mo
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describing acoustic waveguide while the Dirichlet one corresponds to a quantum waveguide. It is kno
unperturbed boundary value problems have no eigenfunctions inH 1(Π). At the same time such eigenfunctio
and eigenvalues (bounded states) can emerge under perturbations. We study the questions on existence a
of such emerging eigenvalues and construct their asymptotic expansions. Both cases of regular and
perturbations of these boundary value problems are considered. The regular perturbation treated in the ne
is performed by a small localized linear operator of secondorder. The example of such operator is a small comp
potential as well as other perturbations considered in [1] for the Schrödinger operator on the axis. Other e
are small deformations of strips and cylinders, which can be reduced to the case we consider by a c
variables [2–5]. As a singular perturbation of the Dirichlet and Neumann boundary value problems inΠ we
consider the switching of type of boundary condition at a small segment of the boundary. Such a choice is motiva
by a number of articles having appeared recently and containing both rigorous results for quantum waveguides [3,6
as well as non-rigorous asymptotic results (see [7,8] and other articles of these authors on singularly p
two- and three-dimensional quantum waveguides given in the bibliography of [7,8]. These formal asym
were derived by the method of matching of asymptotic expansions [9] on the basis of scheme employed in
for constructing the asymptotics for scattering frequencies of Helmholtz resonator. However, rigorous justificat
of the asymptotics for these scattering frequencies adduced in [10–12] is based on the compactness o
(boundary) and due to this fact it cannot be applied to the case of a waveguide. The question of an es
of the inverse operator for singularly perturbed waveguides (providing a possibility to justify formal asymptotics)
is treated in the third section. In two concluding sections we construct the leading terms for asymptotic
eigenvalues and poles for the singularly perturbed quantum and acoustic waveguides.

2. Regular perturbation

HereafterHj
loc(Π) denote a set of functions defined onΠ whose restriction to any bounded domainD ⊂ Π

belongs toHj(D), ‖ · ‖G and‖ · ‖j,G are norms inL2(G) andHj(G), respectively. Next, letQ = (−R,R) × Ω ,
whereR > 0 is an arbitrary fixed number,L2(Π;Q) be the subset of functions inL2(Π) with supports in�Q, Lε

be linear operators mappingH 2
loc(Π) into L2(Π;Q) such that‖Lε[u]‖Q � C(L)‖u‖2,Q, where the constantC(L)

is independent ofε, 0< ε � 1. In this section we study the existence and the asymptotics of the eigenvalues
Dirichlet and Neumann boundary value problems forH(m)

ε :=H(m)
0 − εLε in Π . For a small complexk, we define

a linear operatorA(m)(k) :L2(Π;Q) → H 2
loc(Π) as

A(m)(k)g :=
(

m−1∑
j=1

+
∞∑

j=m

)
φj (x

′)
2K

(m)
j (k)

∫
Π

e−K
(m)
j (k)|x1−t1|φj (t

′)g(t)dt (1)

wherex ′ = (x2, . . . , xn), K
(m)
j (k) = i

√
µm − µj − k2 for j < m, K

(m)
m (k) = k andK

(m)
j (k) =

√
µj − µm + k2

for j > m. By analogy with [1] forf ∈ L2(Π;Q) we search for a solution of

H(m)
ε uε = −k2uε + f, asx ∈ Π, uε = 0

(
or

∂uε

∂ν
= 0

)
asx ∈ ∂Π (2)

(whereν is normal) as

uε = A(m)(k)gε (3)

wheregε ∈ L2(Π;Q). By definition, (3) is the solution of the equationH(m)
0 (k)uε = −k2uε +gε in Π and satisfies

the boundary condition in (2). Substituting (3) into (2), we get that (3) gives a solution for (2) if(
I − εLεA

(m)(k)
)
gε = f (4)
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whereI is identity mapping. IfLε[φm] = 0, due to (1), (3) and (4) it follows that the polek(m)
ε of (3) is equal to,

zero andgε → 0 asε → 0. Thus, there is no small eigenvalue in this case. AssumeLε[φm] 	= 0,

〈F 〉 :=
∫
Π

F dx, T̃ (m)
ε (k)g :=Lε

[
A(m)(k)g

] − 〈gφm〉
2k

Lε[φm], S(m)
ε (k) := (

I − εT̃ (m)
ε (k)

)−1

Applying the operatorS(m)
ε (k) to both sides of Eq. (4), we obtain that(

gε − ε
〈gεφm〉

2k
S(m)

ε (k)Lε[φm]
)

= S(m)
ε (k)f (5)

〈gεφm〉
(

1− ε

2k

〈
φmS(m)

ε (k)Lε[φm]〉) = 〈
φmS(m)

ε (k)f
〉

(6)

The equality (6) allows us to determine〈gεφm〉. Substituting its value into (5), we easily get the formula

gε = ε
2k〈S(m)

ε (k)f 〉S(m)
ε (k)Lε[φm]

2k − ε〈φmS
(m)
ε (k)Lε[φm]〉

+ S(m)
ε (k)f (7)

Formulas (7) and (3) imply, that, ifk(m)
ε is a solution of the equation

2k − ε
〈
φmS(m)

ε (k)Lε[φm]〉 = 0 (8)

then the residue of (3) atk(m)
ε :

ψ(m)
ε = A(m)

(
k(m)
ε

)
S(m)

ε

(
k(m)
ε

)
Lε[φm] (9)

is the solution of the equationH(m)
ε ψ

(m)
ε = λ

(m)
ε ψ

(m)
ε in Π (with the corresponding homogeneous Dirich

or Neumann boundary conditions), whereλ
(m)
ε = −(k

(m)
ε )2. Formulas (1), (9) show that if Rek(1)

ε > 0, then
ψ

(1)
ε ∈ L2(Π) and, hence,λ(1)

ε is the eigenvalue which due to (8) has the asymptotics

λ(m)
ε = −ε21

4

〈
φmLε[φm]〉2 + O

(
ε3) (10)

with m = 1 (and the function (9) is the associated eigenfunction). Form � 2, the formulas (1), (8), (9) imply, that
Rek

(m)
ε > 0 and Imk

(m)
ε > 0, thenψ

(m)
ε ∈ L2(Π), too, and, hence,λ(m)

ε is the eigenvalue of the perturbed proble
with asymptotics (10). In particular, Eq. (8) allows us to maintain that in the case〈φ1Lε[φ1]〉 � δ > 0 there exists
a small eigenvalue.

3. Singular perturbations: convergence of poles and representation of solutions near poles

Assume for simplicity in describing the of perturbations that the domainΩ coincides with the half-spacexn > 0
in some neighborhood of the origin (in variablesx ′), ω is a(n−1)-dimensional bounded domain in the hyperpla
xn = 0 having smooth boundary,ωε = {x: xε−1 ∈ ω}, Γε = ∂Π\ωε . For a givenf ∈ L2(Π;Q), we consider two
singularly perturbed boundary value problems

H(m)
0 uε = −k2uε + f, x ∈ Π, uε = 0, x ∈ Γε (or x ∈ ωε),

∂uε

∂ν
= 0, x ∈ ωε (or x ∈ Γε) (11)

LetΓ R
0 = ∂Π ∩∂Q, ΩR = ∂Q\Γ R

0 , Γ R
ε = Γ R\ωε . For eachV ∈ H 2(Q), we denote byσε :H 2(Q) → H 1(Q)

the inverse operator for the following boundary value problems

�Wε = �V, x ∈ Q, Wε = V, x ∈ ΩR

Wε = 0, x ∈ Γ R
ε (or x ∈ ωε),

∂Wε

∂ν
= 0, x ∈ ωε

(
or x ∈ Γ R

ε

)
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Let χ±(x1) be an infinitely differentiable mollifier function equalling to one for±x1 � R/2 and vanishing for
±x1 � R, Π± = {x: x ∈ Π, ±x1 > 0}, p± be the restriction operator fromΠ to Π±, p

Q
± be the restriction

operator fromΠ± to Π± ∩ Q,

A
(m)
± (k)g± :=

∞∑
j=1

φj (x
′)

2K
(m)
j (k)

∫
Π±

(
e−K

(m)
j (k)|x1−t1| − e−K

(m)
j (k)|x1+t1|)φj (t

′)g±(t)dt, x ∈ Π±

A(m)
ε (k)g := (1− χ+)A

(m)
+ (k)p+g + (1− χ−)A

(m)
− (k)p−g

+ χ+χ−σε

(
p

Q
+A

(m)
+ (k)p+g + p

Q
−A

(m)
− (k)p−g

)
, g ∈ L2(Π;Q)

We construct the solution of (11) in the form

uε =A(m)
ε (k)gε (12)

wheregε is a some function belonging toL2(Π;Q). Substituting (12) into (11), by analogy with [13] we dedu
that this function is a solution of (11) in the case

gε = (
I + T (m)

ε (k)
)−1

f (13)

where, for any fixedε, T
(m)
ε (k) is a holomorphic operator-valued function and, for any fixedk, T

(m)
ε (k) is a

compact operator inL2(Π;Q). The analysis of this family with respect toε (which is similar to [14] and base
on [13]) and the representations (12), (13) show that there exists one polek

(m)
ε → 0 of the solution of (11) and fo

smallk, this solution meet the representation

uε(x, k) = ψ
(m)
ε (x)

2(k − k
(m)
ε )

∫
Π

ψ(m)
ε (y) f (y)dy + ũε(x, k), ‖ũε‖1,D � C(D,Q)‖f ‖Π (14)

for any bounded domainD ⊂ Π . The residueψ(m)
ε at this pole is a solution to the equationH(m)

0 ψ
(m)
ε = λ

(m)
ε ψ

(m)
ε

in Π , whereλ
(m)
ε = −

(
k
(m)
ε

)2
, satisfies the boundary conditions from (11) and for any fixedx1 converges toφm

(up to a multiplicative constant) asε → 0. This convergence, the representation (12) and the definition ofA(m)
ε (k)

imply that

ψ(m)
ε (x) =

m−1∑
j=1

aε
jφj (x

′)e−|x1|K(m)
j (km

ε ) + aε
mφm(x ′)e−|x1|k(m)

ε + o
(
e−|x1|δ) as|x1| → ∞

whereaε
m = 1+ o(1) asε → 0 andδ > 0 some fixed number. In partially, this asymptotics implies that

there exists eigenvalueλ(1)
ε provided Rek(1)

ε > 0 (15)

if m � 2, Rek
(m)
ε > 0 but Imk

(m)
ε < 0 andaε

1 	= 0, then there is no an eigenvalue (1

there is no an eigenvalue if Rek(m)
ε � 0 (17)

Thus, in fact we need to construct and to justify asymptotics of the polek
(m)
ε (and, an additional, asymptotics

the residueψ(m)
ε in the case (16)) which generates the eigenvalue or does not. As above mentioned in the

regular perturbation the asymptotics for pole can obtained by simple calculations in (8), while dealing with s
perturbation, we have no such an equation. On the other hand,the representation (14) allows us to justify the meth
of matching asymptotic expansions in constructing the asymptotics for the polesk

(m)
ε and for the residueψ(m)

ε .
As it has been mentioned above, the formal construction of complete asymptotics of poles for the bo

valued problems (11) and for Helmholtz resonator [10–12] is similar. This is why in the next two section w
construct first perturbed terms of poles only.
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4. Singular perturbation of quantum waveguide: asymptotics of poles and eigenvalues

Let Sn be the unit sphere inRn, G
(D)
m (x, y, k) be the Green function of the unperturbed Dirichlet bound

value problem inΠ, Φm = ∂
∂xn

φm(x ′)|x ′=0 	= 0, Ψ
(D)
m (x, k) = −2kΦ−1

m
∂

∂yn
G

(D)
m (x, y, k)|y=0. By definition

Ψ (D)
m (x, k) → φm(x ′), k → 0 for any fixedx 	= 0 (18)

Ψ (D)
m (x, k) = Φmxn + 4k

Φm|Sn|
xn

rn
+ O

(
kr−n+2), r = |x| → 0, k → 0 (19)

Taking into account (18), outside small neighborhood ofωε we construct the residueψ(m)
ε in the formψ

(m)
ε (x) ∼

Ψ
(D)
m (x, k

(m)
ε ). Nearωε we construct asymptotics by using the method of matching asymptotic expansions

in the variablesξ = ε−1x. The structure of the expansions ofψ
(m)
ε in this zone and of the polek(m)

ε are inspired by
the following consideration. Whenx = εξ andk = k

(m)
ε , both terms in right-hand side of (19) must have the sa

order with respect toε. This degree determines the first term in the interior layer forψ
(m)
ε , while the right-hand

side of (19) (rewritten in variablesξ and fork = k
(m)
ε ) determines the asymptotics of this term asρ = |ξ | → ∞.

Due to these reasons, we construct asymptotics as

k(m)
ε = εnτ (m)

n + · · · , ψ(m)
ε (x) = εv

(m)
1 (ξ) + · · · (20)

v
(m)
1 (ξ) = Φmξn + 4τ (m)

n

(
Φm|Sn|

)−1
ξnρ

−n + o
(
ρ−n+1), ρ → ∞ (21)

Substituting (20) in (11) (withf = 0 andk = k
(m)
ε ), we obtain the boundary value problem forv

(m)
1 :

�ξv
(m)
1 = 0, ξn > 0, v

(m)
1 = 0, ξ ∈ Γ,

∂v
(m)
1

∂ξn

= 0, ξ ∈ ω (22)

whereΓ = {ξ : ξn = 0, ξ /∈ ω}. It is known, there exists the solutionXn of (22) with asymptoticsXn(ξ) =
ξn + cn(ω)ξnρ

−n + o(ρ−n+1) asρ → ∞, wherecn(ω) > 0. Thus it follows from (21) that

v
(m)
1 (ξ) = ΦmXn(ξ), τ (m)

n = 4−1cn(ω)|Sn|Φ2
m > 0 (23)

By (20), (23) we have Rek(m)
ε > 0 and, hence (see (15)), there exists eigenvalue

λ(1)
ε = −ε2n

(
cn(ω)|Sn|Φ2

1

4

)2

+ o
(
ε2n

)
Form � 2, constructing next terms for expansionsk

(m)
ε andψ

(m)
ε (similar [10–12]) one can obtain that

Imk(m)
ε = −ε2n

(
cn(ω)|Sn|Φm

4

)2 m−1∑
j=1

Φ2
j√

µm − µj

+ o
(
ε2n

)
< 0, aε

1 ∼ k
(m)
ε Φ1

K
(m)
1 (k

(m)
ε )Φm

	= 0

whereΦj = ∂
∂xn

φj (x
′)|x ′=0. Therefore, the polek(m)

ε admits the asymptotics (20), (23), but (see (16)) does
generate an eigenvalue of the considered singular perturbation of the Dirichlet boundary value problem.

5. Singular perturbation of acoustic waveguide: asymptotics of poles

Let G
(N )
m (x, y, k) be the Green function of the unperturbed Neumann boundary value problem,φm(0) 	= 0,

Ψ
(N )
m (x, k) = −2kφ−1

m (0)G
(N )
m (x,0, k), αn(r) = r−n+2 for n � 3 andα2(r) = − ln r. By definition

Ψ
(N )
m (x, k) → φm(x ′), k → 0 for any fixedx 	= 0

Ψ
(N )
m (x, k) = φm(0) + 4k

(
φm(0)|Sn|

)−1
αn(r) + O

(
kr−n+3−δ2

n
)
, r → 0, k → 0

(24)
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whereδs
J is the Kronecker delta. Taking into account (24) and following the method of matching asym

expansions similar the previous section we obtain that

k
(m)
ε = εn−2τ

(m)
n−2 + · · · , n � 3, k

(m)
ε = − ln−1 ε τ

(m)
0 + · · · , n = 2

τ
(m)
n−2 = −Cn(ω)|Sn|φ2

m(0)

4
< 0, n � 3, τ

(m)
0 = −πφ2

m(0)

2
< 0, n = 2

(25)

whereCn(ω) > 0 is the capacity of the diskω. Thus, Rek(m)
ε < 0. Therefore, the polek(m)

ε meets the asymptotic
(25), but (see (17)) it does not generate an eigenvalue of the considered singular perturbation of the N
boundary value problem.
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