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Abstract

For a three-dimensiohaxterior problem in the framework of anisofiic elasticity, artificil boundary conditions are
constructed on a polyhedral truncationfage. These conditions do not need an expfarmula for the fundamental matrix.
An approach to adapt the shape of truncation surfaces to the shape of the enclosed cavity is diEcu#sstthis article:
S. Langer et al., C. R. Mecanique 332 (2004).
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Résumé

Conditions aux limites artificielles sur des surfaces polyhédrales de troncature pour des systéemes d’élasticité
tridimensionalle. Pour un probléme extérieur en trois dimensions dans le cadre de I'élasticité anisitrope, on construit des
conditions au bord artificielles sur une surface de troncature polyhédrale. Ces conditions ne nécessitent pas une formule explicite
pour la matrice fondamentale. On étudie ensuite une méthode permettant d’adapter la forme de la surface de troncature a la
forme de cavitéPour citer cet article: S. Langer et al., C. R. Mecanique 332 (2004).
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1. Statement of the problem

Let 2 = R3\G be a homogeneous anisotropic elastic space with the c@vitgunded by a piecewise smooth
closed surface. Introducing the matrices

1 0 0 0 ox3  —0x2 x1 0 O 0 ax3z ax2
dx)" = (0 1 0 —ax3 0 oaxy ) , D(x)" = ( O x2 0 axz3 O axl) (1)
0 0 1 ax2 —axp 0 0O O x3 ax2 axy O
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wherea = 2-1/2 and T stands for transposition, we formulate an exterior elasticity problef s follows

L(Vou(x):= D(=V) TAD(V,)u(x) =0, xen

N " T _ _ 2
(x, Voux) == D(n(x)) AD(Vo)u(x) = g(x), x€dR2=49G

Hereu = (u1,up, u3)' is the displacement vector,the outward unit normal (allectors are treated as columns

in R3), the 6x 6-matrixA is symmetric and positive definite, and contains the elastic moduli. Note that the column
vectorsD(V,)u andAD(V,)u (of height 6) can be understood as the representatives of strains and stresses while
the factorsy in (1) force the norms of the columns &P to coincide with the natural norms of the corresponding
tensors. It is known that, for any surface loading= (g1, g2, g3)" € H'~Y2(3G)3 (the Sobolev—Slobodetskii
space) with e N={1, 2, .. .}, there exists the unique solutiare Hll(;gl(ﬁ)3 which decays ab¢| tends to infinity.

This solution has the asymptotic form

u(@) = (d(=V)F(x) b+ (D(~=Vo)F(x)) a +ii(x) (3)

wherea, b are columnsifiR®, F denotes the fundameni@ x 3)-matrix for the operatoL (V,) in R3 (the Kelvin
tensor in the isotropic case) and the remaindarlifils the estimates

)7k73

|VEG ()| < e (1+ 1x] , keNg=NuU/{0} (4)

outside a neighborhood @f. We focus on computation of the polarization matPixwhich is an intrinsic integral
attribute of a defect in a solid (see, e.g., [1,2]). The colunils..., P8 of P appear as coefficients in the
representation (3) for special rightshd sides in problem (2). Namely, I8¢ denote the unique decaying solution
to problem (2) with the right-hand side

g/(x)=D(n(x))  Ae;, j=1,...,6, e;is thej-th unit vector inR®. (5)
We emphasize that the equalities

/d(x)gi(x)dsFOERG, j=1,...,6 (6)

G

are valid, which lead té = 0 in representation (3) 6t/ (see, e.g., [2]). Thus, we obtain the relations:
71 (x) = (D(=V)F(x)) P/ + Z (x) 7)

Since D(V,)D(x)" equals the 6< 6 unit-matrix, the differenced(x)"e; — Z/(x) satisfies the homogeneous
problem (2) but has a linear growth pg — oo (see (1)).

The polarization matrix is always symmetric and positive definite in the caseGne (see, e.g., [2]); it enjoys
the 4-rank tensor properties after being rewritten in a proper form. Similarly to the classical harmonic capacity
and the virtual mass tensaP, appears as a key object in miscellaneaggmptotic formude, as increments of
potential energy and eigenfrequences due to formation of a void, damage tensors and topological derivatives of
shape functionals (cf. [3—6]), to mention a few. At the sdime, the polarization max has been computed only
for an isotropic space and canonical shape§ such as a ball and a penny-shape crack. By virtue of the integral
representation

P=-AmesG — (A, DZ),,; (8)

whereZ = (Z1,...,Z5) (see [6], p. 178), it is a fair approach to calculateby changingZ/ in (8) for an
approximate solutioi/-® in a truncated domaisez with appropriate artificial boundary conditions (ABC), here

R is a truncation parameter which will be specified later on. However, ABC are usually constructed via an explicit
formula for the fundamental matriX while, as shown in [7], such formulae are still available only for a transverse
isotropic elastic space.
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In this Note we modify the approach [8], used to construct ABC on truncation sphereswinle class of
polyhedral surfacesnd in Section 2 we derive second order differential ABC withemy specification of the
fundamental matrixMoreover, since the shape of the truncation surfigeis no longer fixed, we discuss in
Section 3 an adaptation &f; to the shape of the cavi®y in order to simplify the preparation of data for numerical
schemes.

2. Derivation and justification of ABC

Let T be a polyhedron with the sideB?, ..., ¥/ which aretangent to the unit sphe?. We denotd™ = 3T
and forR > R, we put

Tr={x: R x e T}, Ir={x: R x er}
while the boundRg is chosen such that C Tg,. For each sideZ/, we introduce the Cartesian coordinates
/.2y =6'x ©)

where the axis/ is perpendicular t&/, y/ = (y{, y}) are coordinates on the plaie/ parallel toS/, and®/
is an orthogonal & 3-matrix. In coordinates (9) the operatofV, ) takes the formD(—V,; i) T A/ D(V ;i i)
(see remark below for an exact expression of the matfix The inclusionv € H1(I'z) means that € H1(2£)
for j =1,...,J, moreover, the traces af on Eje and 2§ coincide on the edgeﬁje N 2§ of the polyhedral
surfacelg.

Lemma 2.1.For the derivativesF*' = 3 F¥/ax; of fundamental matrix coluns, there holds the identity
J

—(NF¥, V) =b(F¥, V; Ig) = %Z(AfDé@kai, Dfé@jv);g vV e HY(Iy)® (10)
j=1
where®/ is taken from(9), and
D{e (v, vﬂ) = D(RV},]-, —2- (yj)Tvyf) (11)

is a differential operator on the plang-.

We return to the general problem (2), but with boundary gafalfilling condition (6); recall that this implies
b =0 in (3). We look for an optimal approximation of the soluti@ty a solutionu* to problem (2) restricted to
the truncated domaifer = 2 N Tg. Identity (10) becomes a key tool for creating ABC. Indeed, in the Green's
formula

(LuR, v)g
we replace the termiVu®, v)r, by —b?®, v; I'r) and obtain the variational formulation of the approximation
problem

a(u®, v; 2g) +b(uf, v k) = (g. v)sc Vv e H (2r)? (13)
The function spaceH(2z)® consists of vector functions € H(2z)% such thatv|r, € H(I'z) and
2-aR, uR; 2r) expresses the elastic energy stored by the gyi.e.,

a(u, v; 2) = (AD(V)u, D(V;)v) (14)

Since the above-mentioned change in (12), owing to (10), does not touch the detached asymptotic term in (7), a
discrepancy leftin (13) by|, is only generated by the remainderthe decay (4) of which makes the discrepancy
small. Thus, a technique developed in [8] leads to the following assertion.

R+(NuR,v)aG=a(uR,v;.QR)—(NuR,v)FR (12)
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Theorem 2.2.For any g € L2(3G)3, there exists a unique solutiar® € H1(§2z)3 of problem(13) where the
quadratic formsa andb are taken fron(14) and (10). If g has zero mean value alodds, the solutior® and the
solution(3) of problem(2) are related by

(@4 1x1) Ve (= R Lo(@r) | + | (L4 1x1) 7 (u = uR); La(2p) | < CeR™552|
where the constard, is independent of and R > Ro, provided|e| < 1/2.

g L2(3G)| (15)

Since the special right-hand side (5) of problem (2) o verifies equality (6), we arrive at the following
assertion.

Corollary 2.3. Let PR be the matrix calculated according to formul@) with 7/ changed for the solutiog/-®
of problem(13) whereg = g/ is taken from(5). Then the inequality

HP _ PR; RGXG” < CSR—S—S/Z
holds true withe € (—1/2, 1/2) and the constant, depending om andG.

3. Affine transform for the elasticity system

Employing an approach used in [9] in the framework of two-dimensional elasticity, we consider the affine
transform

X X=mx (16)
wherem = (m;;) is a(3 x 3)-matrix with detn = 1.
By a direct calculation, we obtain that problem (2) in the new variable=eps the form
D(—Vy)TAD(Vu(x) =0, xeR3A\G
D(nX) 'AD(VU(X) =g(x), X €dG

whereG = {x e R3: x € G}, ux) = m ") tu(x), gx) = |m ") nx)|"tmg(x), A= MAM" and the matrix
M of size(6 x 6) can be written as follows

17)

m%l m%z m%3 ﬁmlzmlg \/zm]_]_mlg «/ﬁmllmlz
2 2 2
m31 m32 m33 \/§m32m33 «/§m3lm33 «/§m3lm32

V2maimz1 ~2mpomzy ~2mozmzz mozmzz+moomzz mogmz1+moimaz  mpomsy+ maims2
2miimz1 2migmzz ~2migm3z migmzp+migmaz migmay+miimaz migmai+miimsz
V2myimp1r N2miomay N2migmaz migmoz+miomaz migmay+miymaz  migmor+miimao

Remark 1.If m/ = @/ is an orthogonal matrix as in (9), thé/ is orthogonal as well while the matri&/ in (10)
is equal toM AM T

We do not rewrite tensor and vector fields xrcoordinates! Instead of this, we introduce ‘nonphysical’
displacementsal and stresses D(Vy)u(x) so that we immerse our original problem (2) into a ‘virtual elastic
world’. We emphasize that if problem (17) is solved, real elastic fields can be reconstructed from the solution by
simple algebraic calculations. At the same time, using this transformation, one can avoid the assumption on the
polyhedron? in Section 2. Indeed, one can choose a convex polyhedron, e.g., with sides tangent to an ellipsoid,
and transform by (16) the ellipsoid into unit ball. Then one can either deal with problem (17), or one has to
transform back the ABC constructed for problem (17aatordance to (10). In this way, it is possible to choose
any parallelepipedx: |xx| < Ly} as the polyhedroff. Then the matrices look as follows:

m=diag{L7}, L1, L3, M=diag{L? Ly% L3 Lyt Lyt Lot (18)
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The corresponding ABC provide accuracy (15) while positind sizes of the parallelepiped can be adopted to the
shape of the cavity.

Proposition 3.1.The polarization matrice® and P, calculated for problemg2) and (17) respectively, are rela-
ted by

P=MPMT (19)

Letm®, m? andm = m'm? be the matrices of the affine transforiti) while M, M2 andM are found in
accordance with the formulzefore the remark. A direct calculatiofithe matrix products leads to the equality

M = M*Mm?

This homomorphism property shows that the Sebf symmetric and positive definitéé x 6)-matricesA,

which can play a role of elastic moduli matrix in the elasticity problem (2), can be divided into classes of
algebraically equivalent matrice§or the algebraic equivalent matricésandA, any attribute and characteristics

of problem (2) are transformed with the help of elementary algebraic operations into the attribute and
characteristics of problem (17) and vice versa. In particular, the fundamental iRétyinf the operatoL (V) =
D(—Vy) TAD(Vy) € R® takes the form

1

FOO = (m") " F(m x)m™* (20)

As it was mentioned, the fundamental matfiXx) is known for a transverse isotropic elastic space while the
corresponding matrixA contains 5 arbitrary constants. Thus, formula (20) gives an exact expression of the
fundamental matri¥ (x) for an elastic material with % (9 — 1 — 3) = 10 constants. Here 9 stands for the number
of entries of the matrixz, 1 for the normalization factor causing @et= 1, and 3 corresponds to rotations of the
space which, of course, cannot influence elastic properties. Unfortunately, the authors do not know a description
of the class§ of elastic materials which are algebraically equivalent to transverse isotropic materials forming the
classT and, due to (20), have an explicit formula for the fundamental matrix. In any gasenuch wider tharg
(take, e.g., matrices (18)).

In R arbitrary anisotropic material has 213 = 18 free constants (3 is used, e.g., to fix the Cartesian
coordinates). Based on the fact that the matvixx MAM T gains 5= 9 — 3 — 1 constants fronm, we formulate

Conjecture 3.2.Any anisotropic material is algebraically equivalent to an elastic material with a plane of elastic
symmetry.

It is known (see, e.g., [9]) that in the two-dimensional case any materiald5- 1 constants) is algebraically
equivalent to an orthotropic material, where two Young moduli coincide §3- (4 — 1 — 1) constants).
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