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Abstract

This Note deals with the development of mathematical methods for the closure of the mass conservation equation for
macroscopic hydrodynamical models of traffic flow on roads. dlbsure is obtained by a phenomenological model, relating
the local mean velocity to local density earlier in time. An evolution equation is obtained for the flux and a stability analysis is
performed; this qualitatively desbes some features of congested fldw.cite this article: V. Coscia, C. R. Mecanique 332
(2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Sur une fermeture des équations de conservation de la masse et I'analyse de la stabilité dans la théorie mathématique
de la circulation véhiculaire. Cette Note est dédiée au dévelopement d’une méthodes mathématiques pour la fermeture des
équations macroscopiques de la conservation de la masse, iv@erdans la modélisation du trafic des véhicules. La fermeture
est obtenue entilisant un modelgphénoménologique approprié pour relier la site moyenne locale a la densité locale (avec
retard en temp). Une équation pour le flux esivdee et une analyseedstabilité est conduitéour citer cet article: V. Coscia,
C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

As is known [1-4], traffic flow phenomena can be déssd by macroscopic equations related to the
conservation of mass and momentum for a flow of vehicles regarded as a continuum. This type of representation
can certainly be criticized, as the mean distances betwebitles are large enough to be in contrast with the
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paradigms of continuum mechanics. On the other hardgdimtrol and optimization of traffic flow conditions on
highways and networks of roads is crucial for an improvement in the quality of life. Thus, it is useful to look for
relatively simple models, suitable for providjian approximate description of the physical reality.

One of the technical difficulties in the assessment of mathematical models is the identification of the parameters
involved. This suggests that, at least for some specific applications, relatively simple models may allow a relatively
more careful identification. Indeed, this is the case of models obtained by the conservation of mass, closed by
a phenomenological relation, suitable for linking the local mean velocity to the local mass density and density
profiles. It is a problem of closure of the mass conservation equation proposed as an alternative to the use of the
mass and momentum equations, with the aim of dealing with the technical difficulty of closing the momentum
equation by phenomenological modelstable for describing the acceléi@n applied to the vehicles in the
elementary volume by all surrounding vehicles.

Recent research papers have shown that first ordelefa are useful for dealing with complex traffic flow
conditions such as variable road conditions [5] or networks of roads [6—8]. Moreover, the analysis developed in
[9], taking advantage of the related qualitative anialysoposed in [10], has shown that the identification of the
parameters of first order models can be effectivelyized. The above identification will be used in the sections
which follow.

An additional aspect to be taken into account is that it is useful to deal with the evolution of the flow rather than
the density. Indeed, measurements for the flow are relatively more precise than those for the density. In addition,
the statement of boundary conditions in the case of netswofrkoads is technicallymmediate for the flow, which
is not the case for the density.

This paper is developed on the basis of the above reasoning and proposes a new closure for the mass
conservation equation based on a delay assumption of the reaction of drivers. This closure, linked with some
analytical interpretation of experimental results given in [9], allows us to derive an evolution equation for the flow.
A qualitative analysis of the stability properties of bue model confirms some ingtidity features of congested
traffic flow observed and interpreted by Kerner [11,12]. The content of this paper is organized thus. Section 2
describes the mathematical setting related to ceatien of mass and momentum. The new model proposed in
this paper is described in Section 3, together with a qualitative analysis of its stability properties. Finally, the last
section deals with a critical analysis and witle hhdication of some research perspectives.

2. Mathematical setting

This section provides the mathematical settietpted to the hydrodynamicadeling of a one-lane flow of
vehicles on a road. The conservation equations will be given, following [4], in terms of dimensionless variables:

e 1 =1,/T is the dimensionless time variable with reference to a characteristictimneret, is the real time;

e x = x, /¢ is the dimensionless space variable witference to a characteristic length of the rdadvherex,
is the real dimensional space;

e u =n/ny is the dimensionless density with reference to the maximum demgityf vehicles corresponding
to bumper-to-bumper traffic jam;

e v =g /vy is the dimensionless velocity with reference to the maximum mean velogityherevg is the
real velocity of the single vehicle;

e ¢ is the dimensionless linear mean flux with reference to the maximum admissible meayy B1x y7 vy .

In what follows the characteristic time will be assumed according to the conditiop T = ¢; this means that
T is the time necessary to cover the whole road length at the maximum mean velocity.

Macroscopic models are obtained by conservatignagions corresponding to mass and linear momentum,
referring, for each lane, to the variables- u(z, x) € [0, 1], andv = v(¢, x) € [0, 1].
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Still referring to [4], the reference framework is that concerning conservation of mass, and linear momentum

ou d

— + —(uv)=0

ot 0x (1)
ov

dv
E—i_va—f[uvv]

where f defines the acceleration of the vehicleshe elementary volume. The woedceleration is used, when
dealing with traffic flow models, to avoid the use of the tdonte for a system where the mass cannot be properly
defined.

3. On the closure of mass conservation — a new first order model

The closure of the first equation in (1) can be obtained by exploiting the interpretation of the experimental data
proposed in [9]. Considering that this equation involves hotind v, a self-consistent model can be obtained
if a phenomenological relation can be proposed to into by a suitable analytical or functional equation.
Experimental results provide the above link in steady uniform flow conditions.

Specifically, the following model:

u<ues: v=1

2)

U— U
UZ>uUue. v=exp—o 1

}, a>0

was proposed in [9] referring to the so callediocity diagramwherev is related ta: in steady uniform flow, or to
the fundamental diagram, where the fluxg is related ta:.

Referring to the above model, is a critical density which separates the free flow from the congested flow,
while « is a parameter related to the specific features of the road and environmental conditions. Comparisons with
experimental data show the following ranges of variability of the above parameters:

uc €[0,.1] a €[1,25] )

where relatively larger values afdenote strong decay of the mean velocifthdocal density and hence relatively
less favourable road-weather conditions. Analogously, relatively larger valugsdeiote persistence of the free
flow conditions and hence favourable road-weather conditions.

The above analytic expressions cannot be used to d@sendss conservation equation. Indeed, as critically
analyzed in [4], one cannot use a relation which is vaticgteady uniform equilibrium conditions to close an
equation that should be valid far from these conditionse o the above reasoning, various closures have been
proposed in the literature, which take into account eitherdelay of the driver to reach the above equilibrium
conditions or the fact that the driver has a perception ofléresity different from thegal density as it is influenced
by the local density gradients [13].

In this Note we assume that the velocity at which cars travel is appropriate to the density at an earlier time:

v(ﬁ):v(u(x,t—r)) 4)
wherer is a parameter, small with respect to one, that corresponds to a relatively large time, thus introducing a

kind of retarded adaptation of the driver to the actual traffic conditions. In terms of flux, the closure relation is
expressed as:

—u

(5)

u<Lue.: v=1 g=u
uzuc: v<l g=e0

where

g=9@) =u eXp{ —a ﬁl_ fe } 6)
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Now, wheniz > u., from (4) and (6) we get:

o) =u E‘Xp{—aﬁl_ M_C } =uv(u(x,t—1))

—Uu

Considering that the retardation parameter is small, from the previous relation we find:

0 1- ad -
o) =uv(u) — ruv’(u)—u =u(l+ taiuc—u ex —ocu te , u=(W)r=0, ast—0
ot A—u)? ot 1—u

whereu without a bar means the density evaluated at timer. Computing the time derivative @f(iz) for smallz,
we finally get the following model:

dq _ _du

gzl( : 3u8t if u <uc

by )
g_z]( = qs(a”t)a_q + ¥ (u) 4 + tf(u)(a_q)z i it > ue

o1 0x drox Y

where:
= U—Ue
D (n) = —exp{—a }
1—u

V() — au(l—uc)ex U — U
=12 -

and:
= . all—u) oa(l—uc) U— U
F(u)__(l—u)3 <2+ - )exp{—al_u}

Some interesting features of the latter model can be exploited using relation (4) to close the continuity equation
in (1). In the case of a small retardation time we find:

L P ®)
ar T4 ax_fax(’“’ “ 8t>
where:

q' () =v(u) + uv'(u) 9

In the case of nearly uniform traffic flow, the densitgan be considered ‘almost’ constamtx, t) = U + w(x, t).
Substituting back into (9) and retaining terms up to the first ordes,izve have that the density ‘perturbations’
obey the following linearized equation:

Jw 92w

ow
— "U)y— = "(U)—— 10
o1 +q (U) x tUv (U)axat (10)

It is easy to verify that the above equations have solutions in the form of normal magdes = W gkator with
the growth-rate parameterdepending on the perturbation wavelength as:
—ikq'(U)
="
1-ikUvU)t
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On the other hand, the retardation parametisrsmall, for we can approximate the functieiir) as:
w=—ikqg'(U) +k*Uq (U)W (U)r, forr <1 (11)
Finally, the absolute value of the perturbations varies as:
lw(x, )| = |W explik(x — g'(U)1) } Ve OV | < |y U O )t (12)

While the quantitie?> and U are certainly positive, we must consider the sign of the proglt(&f)v’ (U). The

termv’(U) is less than zero whenever> u.. On the other hand, it is pretty easy to verify, assuming the velocity
diagram (2), that the quantity (U) = v(U) + U v/(U) is negative for < U < 2+ a(1 — u.), which is certainly

true, since O< u. < U < 1. Then, the exponential term in Eq. (12) grows for larg&€his means that, in case of

heavy traffic, uniform flows are (linearly, and then also nonlinearly) exponentially unstable, that is, small density
perturbations increase in time, possibly leading to onthefobserved instabilities of congested traffic flow such

as ghost queues and ‘stop—go’ phenomena. These phenomena, which are documented and analyzed in [11,12], are
described by this model in terms of instability.

4. Critical analysis and perspectives

A first order macroscopic model of traffic flow has been proposed in this Note, by closing the mass conservation
equation using a relation which describes the retardation of the driver to reach the uniform steady equilibrium
conditions that are experimentally observed and that mayalytcally represented. First order models should be
regarded as a relatively simpler alternative to second order models [14,15]. First order models may have a relatively
lower ability for describing traffic flow phenomena, but certainly show flexibility to be used in the description of
road networks [5]. Moreover, the identification of parameters appears to be a well understood problem, following
the analysis developed in [9].

The model is then effectively ready for practical applications. Indeed, it is interesting that it has the ability to
describe instability properties which are experiméptabserved. This positive output, however, should not hide
that the macroscopic description shbble, as already mentioned in Sectigrrdplaced by alternative modeling
such as that obtained by a collective description of dynamical systems [16] or by generalized Boltzmann or mean
field models, as documented in [17], based on the methods of generalized kinetic theory [18].

Bearing all the above in mind, it is worth pointing out a few problems which are left open by this Note, and that
may be regarded as research perspectives for applied mathematicians:

(i) The model describes a phase transition correspondingta,. with a moving boundary separating the free
flow from the congested flow. An interesting problem refers to the analysis of the evolution of the above boundary.

(i) The model is based on the concept of a ‘retardation’ of the driver to reach the uniform steady equilibrium
conditions. On the other hand, one may argue, as in [10], that the trend of the driver is to steady equilibrium
conditions nonuniform in space, according to the model prep@s[13]. Thus, it may be interesting to develop a
qualitative stability analysis based on the effect of the ‘retardation’ term.

Finally, one may observe that the tetnis a parameter which corresponds ‘globally’ to the driver’s behaviour,
while it is well understood that drivers show differebehaviour corresponding to their being aggressive,
experienced, inexpert or fearful. Thus, one may considas a random variable with values spanning a certain
interval, which is an attempt to consider all above scenario of behaviours. Héeaerandom variable and the
dynamics is stochastic, as effectively observed in real flow conditions.
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