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Abstract

The inverse medium problem for a circular cylindrical domain is studied using low-frequency acoustic waves as th
radiation. To second order ink0a (k0 the wavenumber in the host medium,a the radius of the cylinder), only the first thre
terms (i.e., of orders 0,−1 and+1) in the partial wave representation of the scattered field are non-vanishing. This e
the scattered field to be expressed algebraically in terms of the unknown material constants, i.e., the densityρ1, and the rea
and imaginary parts of complex compressibilityκ1 of the cylinder. It is shown that these relations can be inverted to y
explicit, decoupled expressions forρ1 andκ1 in terms of the totality of the far-zone scattered field. These expressions fu
accurate estimations of the material parameters provided theprobe frequency is low and the radius of the cylinder is kno
very precisely.To cite this article: T. Scotti, A. Wirgin, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Reconstruction des trois constants mécaniques matériels d’un cylindre fluide dissipatif à partir de champs acoustiqu
basses fréquences.Le problème inverse de milieu pour un domaine cylindrique circulaire est étudié en employant des onde
acoustiques comme rayonnement d’interrogation. Au second ordre enk0a (k0 le nombre d’onde dans le milieu-hôte eta le
rayon du cylindre), seuls les trois premiers termes (i.e., les ordres 0,−1 and+1) dans le développement en ondes partielles
champ diffracté sont non-nuls. Ce fait permet d’exprimer le champ diffracté de manière algébrique en fonction des pa
matériels que sont la densitéρ1 et les parties réelle et imaginaire de la compressibilité complexeκ1 du cylindre. On montre que
ces relations peuvent être inversées afin de donner lieu à des expressions explicites et découplées pourρ1 andκ1 en fonction de
la totalité du champ diffracté en zone lointaine. Ces expressions fournissent des estimations précises des paramètres
condition que la fréquence de sondage soit basse et lerayon du cylindre soit connu très précisément.Pour citer cet article : T.
Scotti, A. Wirgin, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Retrieving the mechanical material constants (e.g., elastic moduli, density) of a material, either by
measurements of these quantities, or by measurements of other variables from which the material consta
derived with the help of suitable models, is one of the central problems in material science. When the specim
is a solid, the elastic moduli are determined either by the usual static methods or by dynamic methods in
the inversion of data relative to resonant frequencies and/or mode shapes of vibrations excited, for instance
percussive forces [1–4], or relative to velocities and attenuations for ultrasonic wave probe radiation [5]. Ultrasou
methods can also be employed for fluids, or fluid-like materials [5,6].

Another class of material characterization methods, calledresonance spectroscopy[7] combines the underlying
principles of vibratory resonances with an acoustic excitation of the specimen. This technique has al
employed to determine the refractive index of beads by means of laser irradiation [8]. This class of tec
differs from the previous ones in that it relies on measurements of thewavefield diffracted by the specimen, and
appeals to a quite intricate theory relating the resonances to coefficients computed from the diffracted
estimating the material parameters (it can also be employed for estimating the geometrical parameters of
specimen [7–9]). This theory is only feasible for specimens having simple geometry (e.g., spherical,
cylindrical, plate-like). A simple specimen geometry is also required in the standardvibration-resonance an
velocity-attenuation methods if absolute quantitative characterizations are aimed at.

During the last 25 years, another materials-characterization method has been developed which can be ter
wavefield imaging. The underlying idea is: (i) acquire measurements of the field scattered from a specim
series of locations in space arising either from several monochromatic probe fields, and/or from a pulse-lik
field; and (ii) retrieve from these measurements animageof the specimen (i.e., a spatial map of some mate
characteristic, such as wavespeed or attenuation) with the help of a suitable model of the specimen/wave in
Insofar as there is a sharp difference between the material properties of the specimen and those of
medium, this method also gives a picture of the geometry (location, orientation, size and shape) of the sp
When, as is often the case, the reconstructed information relating to the material constants of the specim
reliable, only the reconstructed information of geometrical nature can been exploited (this is calledqualitative
wavefield imaging; otherwise it is calledquantitative wavefield imaging). For instance, computerized diffractio
tomography, making use of a model appealing either to the Rytov or Born approximations of the specime
interaction, is a qualitative wavefield imaging technique except for specimens whose properties differ only
from those of the host medium (this is fortunately the case in biological imaging applications) [6,10–12]
been suggested [10–12] that one of the reasons why Born-based techniques do not furnish reliable estima
material properties (notably the wavespeed, in specimens assumed to be lossless and surrounded by a ho
which is also lossless and has the same density as that of the specimen), is that data relating to low-freque
radiation was either not available or not used in the inversion algorithm.

The importance of disposing of multi-frequency (and,in particular, low frequency) data is increasing
recognized as the key to success for material characterization in wavefield imaging techniques such as the distorte
Born method [13,14], the modified Born and modified gradient methods [15], and the contrast source meth
The possibility of obtaining a quantitatively-accurate image with these iterative methods is often dependent
being able to initialize the algorithm with a plausible image of the object at the lowest frequency of the
radiation. More often than not, this initial image is obtained via the Born approximation, and since the latte
accurate for large contrasts (between the host and the object) of the material constants, the algorithm has troubl
restoring the right values of the material constants during the iterative process. Thus, it would be useful
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means for obtaining a better estimate of the material constants at low frequencies in the case of contrast
not necessarily small. This is done herein.

In particular, we shall be concerned with the retrieval of the three material constants�κ1, �κ1 andρ1 (wherein
κ1 = �κ1 + i�κ1) of a generally-lossy fluid-like object in a lossless fluid-like host probed by plane-wave ac
radiation. The case�κ1 = 0 of a lossless material can also be treated. No assumption is made concerning
contrasts of density and compressibility between the host and the object. The latter is assumed to be a
cylinder, of known radiusa. The material constants of the host medium (in which the probe radiation propa
are also assumed to be known, as are known the frequency and incident angle of the plane wave probe radiati
as well as the scattered acoustic wavefield in the far zone of the cylinder. The analysis for recovering t
material parameters of the cylinder is focused on the case in which the wavelength (λ0 = 2π/k0, with k0 = ω/c0,
c0 the velocity of bulk waves in the host, andω the angular frequency) of the probe radiation is much larger
the cylinder radius.

2. Physical configuration and governing equations

The scattering body is an infinitely-long circular cylinder whose generators are parallel to thez axis in the
cylindrical polar coordinate system(r, θ, z). The intersection of the cylinder (of radiusa, whose center is locate
at the originO), with thexOy plane defines (see Fig. 1):

(i) the boundary curveΓ = {r = a; 0 � θ < 2π};
(ii) the bounded (inner) region (i.e., that occupied by the body in its cross-section plane)Ω1 = {r < a; 0 � θ <

2π};
(iii) the unbounded (outer) regionΩ0 = {r > a; 0 � θ < 2π}.

It is assumed thatΩ0 andΩ1 are filled with linear, homogeneous, isotropic, time-invariant fluid-like mediaM0

andM1 respectively and thatM1 is possibly lossy. The (generally-complex) bulk wave velocitycj in Mj is related
to the (real) densityρj and (generally-complex) compressibilityκj by cj = (ρj κj )

−1/2.
The cylinder is probed by a monochromatic acoustic plane wave whose propagation vector lies in thexOy

plane. Due to the invariance of the cylinder and incident field with respect toz, the scattered and total fields a

Fig. 1. Problem configuration in thexOy plane.
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also invariant with respect toz. Let U designate pressure, which, due to the previously-mentioned invariance
the form:

U = U(x, t) (1)

with x = (x, y) = (r, θ). This invariance applies also when superscriptsi and d (i for ‘incident’ and d for
‘diffracted’) are attached toU . It is convenient to associateU(x, t) with the total field, it being understood th
the latter takes the formUj(x, t) in Ωj and:

Uj(x, t) = Ui(x, t)δj0 + Ud
j (x, t); x ∈ Ωj (2)

with δjk the Kronecker delta.
We expressU by the Fourier transform

Uj(x, t) =
∞∫

−∞
uj (x,ω)exp(−iωt)dω (3)

with similar expressions forUi andUd . The monochromatic, plane-wave nature of the incident field is such t

ui(x,ω) = exp
[−ik0r cos

(
θ − θ i

)]
(4)

whereinθ i designates the incident angle.
The essential task in both the forward and inverse scattering contexts is to determine

uj (x,ω) = ui(x,ω)δj0 + ud
j (x,ω); x ∈ Ωj (5)

3. Forward and inverse scattering problems

Theforward scattering problem(notably for simulating measured data) is formulated as follows. Given: (i
location, shape, size and composition (material properties)of the scattering body; (ii) the material properties of
host mediumM0; (iii) the incident wavefield (i.e., (4)), as well as the frequency thereof, determine: the field
ud

j ; j = 0,1) scattered by the body at arbitrary points of space.
The generalinverse scattering problemis formulated as follows. Given: (i) the incident wavefield, as well as th

frequency thereof; (ii) the material properties of the host mediumM0; (iii) the wavefield in some subregion ofΩ0,
reconstruct: the location, shape, size and composition of the scattering body.

Hereafter, we shall be concerned mostly with theinverse problem, and, in particular, with one in whichthe
location, size and shape of the body are known beforehand(actually, the size will be determined by measureme),
the task being toreconstruct the composition of the body, embodied in its material propertiesρ1 andκ1, from the
scattered acoustic field in the far zone forlow-frequency probe radiation.

4. Partial wave expressions of the fields

The plane-wave probe radiation admits the partial wave expansion [17]

ui(x,ω) =
∞∑

m=−∞
γmJm(k0r)exp(imθ); ∀x ∈ R

2 (6)

whereinJm(·) is themth order Bessel function and

γm = exp
(−im

(
θ i + π/2

))
(7)
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Similarly,

ud
0(x,ω) =

∞∑
m=−∞

CmH(1)
m (k0r)exp(imθ); ∀x ∈ Ω0 (8)

whereinH
(1)
m (·) is themth order Hankel function, and, on account of the continuity of pressure and the norm

component of particle velocity acrossΓ ,

Cm = γm

Jm(k0a)J̇m(k1a) − βJ̇m(k0a)Jm(k1a)

βḢ
(1)
m (k0a)Jm(k1a) − H

(1)
m (k0a)J̇m(k1a)

(9)

with: Zm(ξ) = Jm(ξ), Zm(ξ) = Ym(ξ) or any linear combination thereof, knowing thatH
(1)
m (ξ) = Jm(ξ)+ iYm(ξ),

with Ym(ξ) themth order Neumann function),̇Z(ξ) := dZ(ξ)/dξ andβ = k0ρ1/k1ρ0.
It is customary, but not necessary, to measure the field in the far zone. In this case, we employ the large-argum

asymptotic form of the Hankel functions [17] to obtain

ud
0(x,ω) ∼ ŭd

0(θ, θ i,ω)

√
2

πk0r
exp

[
i

(
k0r − π

4

)]
; k0r → ∞ (10)

wherein, the so-calledfar-field scattering functionis given by

ŭd
0(θ, θ i,ω) =

∞∑
m=−∞

Cm exp
[
im(θ − π/2)

]
(11)

5. Low-frequency approximation of the scattered field outside of the body and inversion formulas

We make the hypothesis of low frequencies (and/or small cylinder radius),

k0a 	 1 (12)

and employ a second order ink0a perturbation scheme to obtain, with the help of the small-argument asym
forms of the Bessel and Neumann functions [17],

ud
0(x,ω) ∼ iπ(k0a)2

4

[(
κ1

κ0
− 1

)
H

(1)
0 (k0r) − 2i

(
ρ1/ρ0 − 1

ρ1/ρ0 + 1

)
H

(1)
1 (k0r)cos

(
θ − θ i

)]
∀x ∈ Ω0; k0a → 0 (13)

ŭd
0(θ, θ i,ω) ∼ iπ(k0a)2

4

[(
κ1

κ0
− 1

)
− 2

(
ρ1/ρ0 − 1

ρ1/ρ0 + 1

)
cos

(
θ − θ i

)]; k0a → 0 (14)

(note that in [18], the reader is asked to demonstrate (14)). The general problem in (13) and (14) is to exA

andB in terms ofC(θ); ∀θ ∈ [0,2π[ knowing that

C(θ) = A + B cos
(
θ − θ i

); ∀θ ∈ [0,2π[ (15)

We easily find:

A = 1

2π

2π∫
0

C(θ)dθ, B = 1

π cosθ i

2π∫
0

C(θ)cosθ dθ (16)

Applied to (14), this gives:
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κ1 = κ0

[
1+ 4

iπ(k0a)2

1

2π

2π∫
0

ŭd
0(θ, θ i,ω)dθ

]
, (17)

ρ1 = ρ0

[
1− 2/(iπ(k0a)2)1/(π cosθ i)

∫ 2π

0 ŭd
0(θ, θ i,ω)cosθ dθ

1+ 2/(iπ(k0a)2)1/(π cosθ i)
∫ 2π

0 ŭd
0(θ, θ i,ω)cosθ dθ

]
(18)

This shows that: (i)κ1 can be retrieved independently ofρ1; (ii) κ1 is a linear function of the measured far zo
scattered field; whereas (iii)ρ1 is a nonlinear function of this field. More importantly: (17) and (18) constitu
method for determiningρ1 and the real and imaginary parts ofκ1 from the (far-field) scattering function, in a
explicit, analytic manner.

6. Numerical results

We applied formulas (17) and (18) to retrieve the density and complex compressibility from the fa
scattering function, assuming that the radiusa was obtained beforehand by an appropriate measurement proc
In particular, we computed the relative errors (see Figs. 2 and 3):

δρ1 :=
∣∣∣∣ ρ̃1 − ρ1

ρ1

∣∣∣∣, δ�κ1 :=
∣∣∣∣�κ̃1 − �κ1

�κ1

∣∣∣∣, δ�κ1 :=
∣∣∣∣�κ̃1 − �κ1

�κ1

∣∣∣∣ (19)

(whereinρ1, κ1, are the actual values of density and compressibility (i.e., those employed in generating th
andρ̃1 is the value of density obtained from (18), while�κ̃1, �κ̃1 are the values of the real and imaginary parts
the complex compressibility obtained from (17)) over a range offrequencies corresponding to 10−5 � k0a � 1.0.
The far-field data was simulated using (11) in which the lower and upper limits of the series were replaced by−5
and+5 respectively and use was also made of (10). The other parameters involved in the production of t
were:θ i = 0, ρ0 = 1000 kg/m3, c0 = 1500 m/s,ρ1 = 1200 kg/m3, with c1 = 1600+ i160 m/s for the so-called
low-contrast cylinder andc1 = 2500+ i250 m/s for the so-called high-contrast cylinder.

Fig. 2. Relative error of�κ1 (left panel),�κ1 (middle panel)
and ρ1 (right panel) as a function of wavenumberk0 (note
that k0 increases linearly with frequency) for the relatively-low
contrast cylinder. The continuous line curves apply to the exact
radius case whereas the discontinuous line curves apply to the
error-ridden radius case.

Fig. 3. Relative error of�κ1 (left panel),�κ1 (middle panel)
and ρ1 (right panel) as a function of wavenumberk0 for the
relatively-high contrast cylinder. Same notations as in Fig. 2.
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To test the sensitivity of the method to cylinder radius measurement error, the reconstruction ofρ̃1, �κ̃1, �κ̃1
was made in two cases: (i) using in (17) and (18) the exact value (1 m) for the radiusa (i.e., zero measureme
error of this parameter); and (ii) using in (17) and (18) anerror-ridden value (1.07 m) for the radius (i.e., 7
measurement error fora). Note that in both cases, the computation via (11) of the data pertaining to the fa
scattering function was carried out assuming the exact valuea = 1 m for the radius.

One sees from Fig. 2 (solid curves) that in order to get relative errors of all three mechanical material parame
of the low-contrast cylinder inferior or equal to 10%, the probe frequency should be such thatk0a is not greater
than∼ 0.35 provided the measurement ofa is free of error.

One observes in the same figure (discontinuous curves) that when the error-ridden radius is introduced
inversion computation, employing frequencies such thatk0a is not greater than∼ 0.35 results in relative errors i
all three mechanical material parameters that can be as large as 23%.

In Fig. 3 one sees (solid curves) that the radius error has a relatively-smaller effect in the high-contrast
case, but in order to obtain relative errors of all threemechanical material parameters inferior to 10%,k0a must
not exceed∼ 0.1 when the exact value of the radius is employed, and no frequency, however small, will en
obtain reconstructions with less than 10% error by use of the error-ridden radius.

7. Conclusion

The asymptotic method for low frequency probe radiation is interesting in that it provides solutions to t
inverse medium problem which can be written inclosed formand areunique(recall that non-uniqueness is an o
encountered feature of inverse medium problems [19]). Moreover, these solutions do not rely (as those a
to the Born approximation) on the assumption of low bulk velocity and density contrasts. However, for a
operating frequency, the error of the asymptotic low frequency reconstructions has been found to increase wit
velocity contrast. This can be overcome by employinglower frequencies for higher-contrast cylinders.

Radius measurement error appears to have less effect on the error of reconstructions for higher- than f
contrast cylinders. Whatever the contrast of material parameters, the effect of radius measurement error on
accuracy of the reconstructions is found to be relatively large, which means that the unstable nature [19
material parameter reconstruction is not fundamentally modified by the advantage of being able to carry ou
reconstruction in closed form.

The asymptotic solutions of the inverse problem obtained with low-frequency probe radiation should prov
suitable starting solutions for reconstructions carried outwith higher-frequency probe radiation as well as poss
explanations of the difficulties encountered in inverse medium problems such as the one considered herein.
may also provide decent estimates of the material parameters of homogeneous (andeven inhomogeneous) bodi
of more general shapes.

The method outlined herein is transposable to othercanonical bodies: homogeneous fluid slabs and sph
homogeneous elastic slabs, circular cylinders and spheres, and to fluid-like or elastic circular tubes and
shells.
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