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Abstract

We present in this Note a stochastic approach to the matrix-fracture exchange in a heterogeneous fractured porou
We introduce an intermediate scale, called the unit-scale, betweenthe local-scale (fracture-scale) and the large-scale character
istic of the reservoir mesh (reservoir block). This paper focuses on the problem of upscaling fluid exchange phenomena fro
unit scale to the reservoir mesh or block scale. Simplifying the Darcian flow terms enables us to obtain a probabilistic
of the dual continuum problem, in continuous time, in the case of a purely random exchange coefficient. This is then
develop several upscaling approaches to the fluid exchange problem, and to analyze the so-called ‘effective’ exchange coe
cient. The results are a first contribution to the more general problem of upscaling multidimensional flow-exchange pro
space and time, in randomly heterogeneous dual continua.To cite this article: M. Kfoury et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Coefficient d’échange matrice-fracture en milieu poreux fracturé : changement d’échelle par approche stochastiqu
On présente dans cette Note une approche stochastique (probabiliste) du problème d’échange matrice-fractures en milieu por
fracturé hétérogène. On introduit l’échelle intermédiaire des sous-blocs ou « unités », lors du passage de l’échelle loca
des fractures) à l’échelle globale de la maille représentative du réservoir (« bloc réservoir »). Une solution probabiliste
continu, sans transport, avec terme d’échange purement aléatoire, est développée. Ceci permet l’homogénéisation (
ou non) du problème d’échange pur. Les résultats obtenus sont une première contribution au problème plus général
de l’échelle des unités à l’échelle du blocou maille réservoir, pour un écoulement double-milieu avecéchanges matrice-fractur
Pour citer cet article : M. Kfoury et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This work focuses on the upscaling of flow equations for heterogeneous, fractured porous reservoirs, a
encountered in petroleum engineering applications. Two major difficulties arise: (i) the geometrical modeling o
the heterogeneous spatial structure of the oil reservoir;and (ii) the modeling of fluid displacements in the reservo
(fluid dynamics). The data available to achieve these goals are scant and highly uncertain, whence the ide
an upscaling scheme for the flow equations, together with an appropriate model of local scale fluid dynam
of spatial structure (e.g. a porous reservoir with an imbedded fracture network). Before stating the problem
let us briefly review related work.

Fracture networks, fractured matrix, and single medium models.There have been useful developments
random media and fracture network modeling. In particular, fracture network tools relate field observat
core scale, seismic exploration scale, etc.) to basic parameters like fracture apertures, lengths, orientations, den
and connectivity (or coordination number), and these parameters have been used subsequently to derive ‘effec
properties’, such as fracture permeability, associated toa continuum description of thefracture network [1–3]. The
description of matrix flow and its connection to fracture network flow has also led to an important literature [4
We now focus exclusively on the dual continuum approach to this problem.

Dual continuum models of matrix-fracture flow.Barrenblatt et Zheltov [4] were among the first to introdu
a dual continuum flow model that takes into account, notonly fracture flow, but also matrix flow, and, mo
importantly, matrix-fracture exchange flow. For recent work on this model, see [5,6]: the latter includes an analy
of the approximation involved in using the dual continuumequations as a homogenized model for matrix-frac
flow. In the dual continuum approach, one must evaluate a priori the macroscopic exchange coefficient as
with the homogenized description of fluid exchanges between fractures and matrix. This can be done
different ways, as discussed in [6].

Sequential upscaling of matrix-fracture flow.Conceptually, upscaling starts with a fine representation
the reservoir (explicitly resolvingfracture apertures), to end up with a coarser continuum model (called du
continuum) where fractures are no longer ‘visible’. This is illustrated as ‘step (I)’ in Fig. 1. However, the complex
of the spatial structure of real reservoirs should be kept in mind. It may be too drastic to attempt direct up
from small aperture scale up to 100 m size blocks, particularly considering the complications due to per
effects, and the computational costs involved on a single large block compared to smaller units (fracture
may be as large as 105, [1]). For all these reasons, it is proposed here to implement a novel, two-step ups
approach (Ia,Ib) illustrated in Fig. 1.

Fig. 1. Upscaling steps and transfer of information at different resolution scales: fracture scale (aperture scale); unit scale ‘dx’ (the bl
partitioned into ‘units’); block scale L (typically the mesh size for the reservoir simulator).
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The first step (Ia) starts with a fine scale representation of the fractured medium and ends up with sma
continuum units (partitioning the domain). This introduces a new intermediate scale, the ‘units’, which can be
chosen by considering several criteria (RepresentativeElementary Volume, percolation effects, computationa
efficiency). Geostatistical analyses of the fractured reservoir can be used as in [5] to produce, at the end of stepa),
a raster map of dual continuum properties resolved at theunit scale. Each ‘unit’ possesses a fracture permeabilit
a matrix permeability, and an exchange coefficient.

The second step (Ib) starts with the dual continuumunitsand ends up with a larger continuumblock (reservoir
mesh). The ‘local scale’ is described by a dual continuum model with random coefficients, and the large s
generalized continuum (as yet unknown). This ‘second upscaling’ problem has not been addressed before. Brae
et al. [9] have treated a dual continuum problem where fracture permeability is a random field, but their excha
coefficient was assumed deterministic and constant over the entire domain. Since the exchange coeffic
may be formally equivalent mathematically to a linear chemical vaction source term, there is some literature a
transport, with the most relevant to our study being reaction coefficient; see the paper by Alvarado, with
pertubation analysis of the problem [11]. In the remainder of this Note, we consider the case of a dual continu
with randomly heterogeneous exchange coefficient, andwe analyse upscaling for the ‘pure’ exchange problem

2. Governing equations for the dual continuum at the unit scale

The governing equations at the unit scale are [4,6]:

φmcm
∂

∂t
{Pm}m = ∇ ·

(
1

µ
Km.∇{Pm}m

)
− α

({Pm}m − {Pf }f )
(1)

φf cf
∂

∂t
{Pf }f = ∇ ·

(
1

µ
Kf · ∇{Pf }f

)
− α

({Pf }f − {Pm}m)
(2)

where{Pm
m} and {Pf

f } are, respectively, the pressures [Pa] in the matrix and fractures (phase-averaged o
a unit volume),cm andcf [Pa−1] are the compressibility coefficients in the matrix and fractures,Km andKf

are the equivalent permeabilities of the matrix and of the fracture network at unit scale,φm andφf represent the
[dimensionless] volumetric fractions of the matrix and fractures in the unit.1 In addition,µ is the dynamic viscosity
of the fluid[Pa.s], and finally,α [Pa−1s−1] represents the matrix-fracturesexchange coefficient at unit scale.

We will now assume, in the dual continuum model at hand (1), (2), that the matrix is only weakly conducti
compared to the fracture network, that isKm � Kf , which allows us to neglect pressure gradient ‘diffus
transport’ terms in the matrix flow equation (1). We assume also that, since the fracture medium perm
is comparatively high, the pressure gradient in the‘fracture continuum’ is negligible in each sub-bloc unit. W
assume also that fluctuations ofφm, cm, φf andcf are negligible.

The simplified dual continuum flow problem over a block is now governed by the differential system:

∂

∂t
{Pm}m = − α

µφmcm

({Pm}m − {Pf }f )
(3)

∂

∂t
{Pf }f = − α

µφf cf

({Pf }f − {Pm}m)
(4)

Furthermore, we now define a mean pressure denoted�P , and a pressure difference called ‘exchange press
denotedP̃ . This yields a more compact formulation of the system (3) and (4):

1 Matrix porosity ‘n’ is implicitly taken into account, viaφm or else viacm .
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�P = {Pm}m + {Pf }f
2

; P̃ = {Pm}m − {Pf }f
2

(5)

∂P̃

∂t
= −α

c̄
P̃ and

∂ �P
∂t

= −α

c̃
P̃ (6)

1

c̄
= 1

2µ

(
1

φmcm
+ 1

φf cf

)
and

1

c̃
= 1

2µ

(
1

φmcm
− 1

φf cf

)
(7)

Before considering solution of this problem in a randommedium, note that the first equation in (6) governs
‘exchange’ pressure alone. It doesnot depend on the ‘mean’ pressure, which is governed by the second equ
Therefore, the exchange pressure equation can be analyzed and solved independently.

3. Exact probabilistic solution of the dual continuum exchange problem

We develop here the exact probabilistic solution, in continuous time, of the dual continuum matrix-fractu
exchange problem as formulated above (5) and (6). The exchange coefficient is taken as a random va
equivalently, apurely randomspatial field. The exchange pressure is therefore also purely random at any
time ‘t ’. We compute exactly the time-dependent probability distribution and moments of exchange pr
which leads to an exact closure of the upscaling problem(s).2 The effective macroscopic exchange equation
coefficients are thus calculated either instantaneously or globally over the entire history of the exchange p

3.1. Probability distribution of exchange pressure

We now focus on the exchange equation (first equation in (6)) governing ‘exchange pressure’P̃ . We normalize
this equation using the constant deterministic parametersP0, t0, and the mean coefficientᾱ:

p(x, τ ) = P̃ (x, t)

P̃0(x,0)
; α0 = ᾱ; a = α

α0
; τ = t

t0
; t0 = c̄

α0
(8)

whereᾱ is the mean3 of the mass exchange coefficientα. The random exchange problem is now described by
dimensionless equation:

∂p

∂τ
= −ap; p(x,0) = p0(x) (9)

wherep(t) is the random exchange pressure andp0 is the deterministic initial condition. Its stochastic solution is

p = g(a, τ ) = p0 e−aτ (10)

Let us denotefp(p) andfA(a) theProbability DensityFunctions (PDF’s) of the purely random variablesp and
a respectively. We note thatg is a monotonically decreasing function ofa. This helps establish the exact relati
between the PDF of dimensionless pressure ‘p’ and the PDF of exchange coefficient ‘a’:

fp(p) = fA(a)

|g′(a)| (11)

After calculation, we obtain the probability law ofp(τ), that is, respectively, thePDF and the cumulative
distribution function (CDF) of p at timeτ :

fp

(
p(τ)

) = 1

p
× 1

τ
× fA

(
a(p)

); Fp

(
p(τ)

) = 1− FA

(
−1

τ
ln

(
p

p0

))
(12)

2 As will be seen, there are several ways to define the upscaling problem.
3 The ‘mean’ is the mathematical expectation, which is also the arithmetic mean taken through the ensemble space of realizat

Furthermore, if the ergodicity hypothesis is satisfied, this is also equivalent to a spatial mean.
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3.2. Mean exchange pressure

In order to treat the upscaling problem, we first need to determine the mean (or mathematical expect
the time-dependent exchange pressurep(τ), in terms of the assumedPDF of the random exchange coefficienta.
Based on earlier results, we obtain:

p̄(τ ) =
∫

�+
pfp(p)dp = 1

τ

∫
�+

fA

(
−1

τ
ln

(
p

p0

))
dp = p0

+∞∫
−∞

fA(b)e−bτ db (13)

where we transformed the variable of integration usingb = − 1
τ

ln(
p
p0

), which can be interpreted as anoth
normalized version of the random exchange coefficient.

3.2.1. Case of a uniform distribution of the exchange coefficienta

Here the random variablea has a uniformPDF over the interval[amin, amax] (amin ≈ 0):

fA(a) = 1

amax− amin
(14)

Let us define for convenience the following quantities (all related to the uniformPDF):

ā = amax+ amin

2
; �a = amax− amin

2
(15)

Note thatā = 1 by previous normalization, and sincea � 0. We must have here, by constructionamin ≈ 0 and
amax� 2. Using the general expression (13) for the mean exchange pressure, we obtain:

p̄ = p0 × e−aminτ − e−amaxτ

(amax− amin) × τ
= p0 × e−āτ sinh(�a × τ )

�a × τ
(16)

3.2.2. Case of an exponential distribution of the exchange coefficient
Here we assume that the random variablea has an exponentialPDF fA(a) over the semi-infinite interva

]0,+∞[. Using again the general expression (13) for the mean exchange pressure, we obtain:

fA(a) = 1

ā
× e−a/ā; p̄ = p0 × 1

1+ ā × τ
(17)

Note that a random variablea with exponential distribution always satisfiesσa = ā. From (8), we haveα0 = ᾱ,
so thatā = 1 by construction. Regrouping all results, we obtain finally the time-evolution of the mean exc
pressure, both graphically in Fig. 2, and analytically inthe previous equations (16) and (17). These are comp
to the so-calleddeterministic or ‘naïve mean’ exchange pressure, i.e.,p̄ = p0 ×e−τ . This corresponds to the dec
of pressure in a homogeneous medium with constant coefficientα0 = ᾱ, which is a kind of ‘naïve’ homogenizatio
of the random problem. Fig. 2 shows examples of averaged pressure evolution for the different PDF, and for t
different upscaling laws.

4. Upscaling of matrix-fracture exchange process

4.1. Instantaneous upscaling(local in time, global in space)

One possible upscaling approach (amongst others) isto determine the instantaneous, time-depend
homogenized exchange coefficientA1(τ ) such thatA1(τ ) verifies exactly a ‘global’ differential equation that h
the same form as the local equation, but with the local random exchange coefficienta or A being replaced by th
upscaled time-dependent exchange coefficientA1(τ ). Thus, we defineA1(τ ) by imposing:

∂p̄

∂τ
= −A1(τ )p̄ (18)
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Fig. 2. Temporal relaxation of mean exchange pressurep̄(t) for different types of averages: ‘naïve’ mean, exact mean for uniformly
exponentially distributedα (see this section), and comparison with mean pressurefrom approximate perturbation solutions (not detailed
here), [10].

This gives immediately:

A1(τ ) = − 1

p̄(τ )

dp̄

dτ
= − d

dτ
(ln p̄) ⇔ A1(τ ) = E(a × p)

E(p)
(19)

The analytical relation given by (19) allows us to calculateA1(τ ) by exploiting earlier probabilistic relation
(PDF and expectation ofp(τ)). This is done in particular for the case wherea is uniformly distributed in the
[amin, amax] interval,4 and in the case of an exponential distribution.5 The time-dependent instantaneous upsca
coefficient is finally given analytically below at least for the two types of probability laws considered in this w6

Upscaling for uniform distribution (̄a = 1, �a ≈ 2): A1(τ ) = ā − �a

(
ch(�a τ)

sh(�a τ)
− 1

�a τ

)
(20)

Upscaling for exponential distribution (σa = ā = 1): A1(τ ) = ā

1+ āτ
(21)

These results indicate that the ‘exact’ upscaled coefficient is far from constant. The upscaled coefficientA1(τ )

is initially equal to thearithmetic mean(t = 0), but decreases monotonically with time thereafter, to rea
minimum asymptotic valueA1(∞) asτ → ∞. However, we can state a more general result, which holds fo
the distributions examined so far:

lim
τ→∞A1(τ ) = A1(∞) (22)

whereA1(∞) is the harmonic mean of the local coefficient ‘a’ when µα(δx)2/kf � 1 and will be equal to the
minimum of the local coefficient ‘a’ for µα(δx)2/kf � 1. These results are currently being used to asses
physical significance of each type of probability distribution in a more complete model of the exchange proce
involving also variable porosities and compressibilities.

4 In this first case we have by construction 0≈ amin � ā = 1� amax� 2.
5 In this second case, by construction,σa = ā = 1, the minimum value ofa is theharmonic meanof a.
6 For comparison, the ‘naïve’ upscaling would be the expected value (arithmetic mean) of the random exchange coefficient.



M. Kfoury et al. / C. R. Mecanique 332 (2004) 679–686 685

t
fracture

define

ion

se of a
t of

ub-blocks

we

time
4.2. Non-instantaneous upscaling(global in space and time)

We now modify the previous upscaling criterion to obtain a single global coefficientA�. We want the constan
A� to be representative, not only of the spatial scale of the block, but also of the entire history of the matrix-
exchanges from initial time up to infinite time. To achieve this, we use an optimization approach. First, let us
a class of objective functions (Jω, Iω) parametrized by the exponentω � 1:7

Jω =
( +∞∫

0

∣∣∣∣p�(τ )

p0
− p̄(τ )

p0

∣∣∣∣ω dτ

)1/ω

; Iω =
( +∞∫

0

∣∣∣∣A�p�(τ )

p0
− Ap(τ)

p0

∣∣∣∣ω dτ

)1/ω

(23)

p�(τ ) = p0 × e−A�τ (24)

p̄(τ ) = E
(
p(τ)

) = E
(
p0 e−aτ

)
(25)

We introduce the notation ‘y ’ for normalized pressurep/p0 and we study two case forω (ω = 1,2).
First case, ω = 2. We now determine the global coefficientA� by minimizingJ2 (or its square):

Min(J2)
2 ⇔ Min

+∞∫
0

(
e−A�τ − ȳ(τ )

)2 dτ (26)

After some manipulations, and taking into account thatA� is independent of time, we find the general solut
of this problem quasi-analytically. Namely,A� is the solution of the equation:

1

2A�
=

+∞∫
0

e−A�τ ȳ(τ )dτ = L
{
ȳ(τ ),A�

}
(27)

with the notationL{y(t), s} representing theLaplace Transformof function y(t), where s is the (generally
complex) parameter of the Laplace Transform. Note thatȳ(τ ) stands forE{exp(−aτ)}. For exponentially
distributed ‘a’, this yields an equation involving the exponential integralEi(x):

1− 2A� expA�Ei
(
A�

) = 0 ⇒ A� = 0.610 (28)

In order to see the practical implications of these upscaling results (Table 1), we consider briefly the ca
multidimensional domain (or reservoir block) made up ofN units (or sub-blocks). The discrete space equivalen
the previous results is then obtained by replacing mathematical expectations by discrete sums over the s
for largeN .

Second case, ω = 1. We propose now to minimize the objective functionJ1 (Eq. (23)), i.e., with theL1 normas
minimisation criterion. This yields:

Min J1 =
+∞∫
0

∣∣y�(τ ) − ȳ(τ )
∣∣dτ =

+∞∫
0

∣∣exp(−A�τ) − E
{
exp(−aτ)

}∣∣dτ (29)

In the case of the exponential distribution, using previous results and the first-order optimality condition,
obtain thatA� must satisfy exactly the integral equation:

0=
+∞∫
0

τ × exp−A�×τ ×sign
{
e−A�τ − E

{
e−aτ

}}
dτ with E

{
e−aτ

} = 1

1+ āτ
(30)

In this integral, the two curves decrease monotonically with time. We assume that they cross at a uniqueτ �,

7 The functionalJω (Iω) has the form of anLω norm in the space of functionsp(τ) (Ap(τ)).
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Table 1
The global exchange coefficientA∗ upscaled over the entire time history

A∗, PDF Uniform]0,1] Exponential (σa = ā = 1) Gaussian (̄a = 0.5, σa = 0.167)

A∗
Arithmetic 0.503165 0.425914 0.501000

A∗
Harmonic 0.043877 0.074843 0.450123

A∗
Min J2

0.330297 0.247759 0.453652

A∗
Min I2

0.468319 0.385606 0.488491

which depends on the unknownA�. This is a consistant assumption for our case which can be verified ex pos
allows us to solve the problem and obtain the following analytical results:

A� × τ � ≈ 1.678 and e−A�×τ � = 1

1+ ā × τ �
⇒ A� ≈ 0.385 (31)

It is interesting to note that the upscaled coefficientA� of equations (28), (31) satisfy the inequalities:

0≈ E
{
a−1}−1 � A� � E{a} (32)

That is, the global exchange coefficient (upscaled over time history) is between the harmonic and arithmetic me
of the local coefficient. In comparison, recall that the instantaneous upscaled coefficientA1 goes from arithmetic
mean at early times, to harmonic mean or minimum value ofa at large times.

5. Conclusion and outlook

In conclusion, we have analyzed a novel upscaling problem for matrix-fracture exchange flow in a sa
random medium governed by dual continuum equations. Neglecting fracture pressure gradients, we develo
exact random pressure solutions for different probability distributions of the exchange coefficient. We used the
results to upscale the exchange coefficient analytically, based on different upscaling criteria (instantaneous, t
history, etc.). This work will be continued in other papers, including comparisons with perturbation solutions (
theory in [10] and some results in Fig. 2) and with numerical simulations.
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