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Abstract

We present in this Note a stochastic approach to the matrix-fracture exchange in a heterogeneous fractured porous medium.
We introduce an intermediascale, called the unit-scale, betweka local-scale (fracterscale) and the laegscale character-
istic of the reservoir mesh (reservoir block). This papeugss on the problem of upscaling fluid exchange phenomena from the
unit scale to the reservoir mesh or block scale. Simplifying the Darcian flow terms enables us to obtain a probabilistic solution
of the dual continuum problem, in continuous time, in the case of a purely random exchange coefficient. This is then used to
develop several upscaling approaches to the fluid exchange pradrehto analyze the so-called ‘effective’ exchange coeffi-
cient. The results are a first contribution to the more general problem of upscaling multidimensional flow-exchange processes in
space and time, in randomly heterogeneous dual contifweite thisarticle: M. Kfoury et al., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Coefficient d’échange matrice-fracture en milieu poreux fracturé : changement d’échelle par approche stochastique.
On présente dans cette Note une approche stochastique (prabpbiiiprobléme d’échange matrice-fractures en milieu poreux
fracturé hétérogéne. On introduit I'échelle intermédiaire des sous-blocs ou « unités », lors du passage de I'échelle locale (détails
des fractures) a I'échelle globale de la maille représentative du réservoir (« bloc réservoir »). Une solution probabiliste en temps
continu, sans transport, avec terme d’échange purement aléatoire, est développée. Ceci permet I’homogénéisation (instantanée
ou non) du probléme d'échange pur. Les résultats obtenus sont une premiére contribution au probléme plus général du passage
de I'échelle des unités a I'échelle du blme maille réservoir, pour un éalement double-milieu averchanges matrice-fracture.
Pour citer cet article: M. Kfoury et al., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This work focuses on the upscaling of flow equations for heterogeneous, fractured porous reservoirs, a problem
encountered in petroleum engineerimphcations. Two major difficulties ase: (i) the geometrical modeling of
the heterogeneous spatial structure of the oil reserani;(ii) the modeling of fluid diglacements in the reservoir
(fluid dynamics). The data available to achieve these goals are scant and highly uncertain, whence the idea of using
an upscaling scheme for the flow equations, together with an appropriate model of local scale fluid dynamics and
of spatial structure (e.g. a porous reservoir with an imbedded fracture network). Before stating the problem at hand,
let us briefly review related work.

Fracture networks, fractured matrix, and single medium modEfere have been useful developments on
random media and fracture network modeling. In particular, fracture network tools relate field observations (at
core scale, seismic exploration scale, etc.) to basic parasiigdefracture apertures, lengths, orientations, density,
and connectivity (or coordination number), and these pararméave been used subsequently to derive ‘effective
properties’, such as fracture permeability, associateddontinuum description of tHeacture network [1-3]. The
description of matrix flow and its coestion to fracture network flow has also led to an important literature [4—8].

We now focus exclusively on the dual continuum approach to this problem.

Dual continuum models of matrix-fracture floBarrenblatt et Zheltov [4] were among the first to introduce
a dual continuum flow model that takes into account, aaly fracture flow, but also matrix flow, and, most
importantly, matrix-fracture exchange flow. For recent wanktis model, see [5,6]: the latter includes an analyzis
of the approximation involved in using the dual continuequations as a homogenized model for matrix-fracture
flow. In the dual continuum approach, one must evaluate a priori the macroscopic exchange coefficient associated
with the homogenized description of fluid exchanges between fractures and matrix. This can be done in many
different ways, as discussed in [6].

Sequential upscaling of matrix-fracture flo@onceptually, upscaling starts with a fine representation of
the reservoir (explicitly resolvindracture apertures), to end up with aagser continuum model (called dual
continuum) where fractures are no longésible’. Thisis illustrated as ‘step (1)’ in Fig. 1. However, the complexity
of the spatial structure of real reservoirs should be kept in mind. It may be too drastic to attempt direct upscaling
from small aperture scale up to 100 m size blocks, particularly considering the complications due to percolation
effects, and the computational costs involved on a single large block compared to smaller units (fracture number
may be as large as 10[1]). For all these reasons, it is proposed here to implement a novel, two-step upscaling
approach {4,1p) illustrated in Fig. 1.
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Fig. 1. Upscaling steps and transfer of infotioa at different resolution scales: fracture scale (aperture scale); unit scale ‘dx’ (the block is
partitioned into ‘units’); block scale L (typically the mesh size for the reservoir simulator).
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The first step (@) starts with a fine scale representation of the fractured medium and ends up with small dual
continuum units (partitioning the domain). Bhintroduces a new intermediate scale, thrits, which can be
chosen by considering several criteria (Represent&leenentary Volume, percdian effects, computational
efficiency). Geostatistical analyses of the fracturesgreoir can be used as in [5] to produce, at the end of sigp (I
a raster map of dual continuum properties resolved atittitescale. Each ‘unit’ possses a fracture permeability,
a matrix permeability, and an exchange coefficient.

The second stepy) starts with the dual continuumnmitsand ends up with a larger continulbtock (reservoir
mesh). The ‘local scale’ is described by a dual continuum model with random coefficients, and the large scale is a
generalized continuum (as yet unknown). Tliscond upscalirigproblem has not been addressed before. Braester
et al. [9] have treated a dual continuum problem whesetfire permeability is a random field, but their exchange
coefficient was assumed deterministic and constant over the entire domain. Since the exchange coefficient term
may be formally equivalent mathematically to a lineaewtical vaction source term, there is some literature about
transport, with the most relevant to our study being reaction coefficient; see the paper by Alvarado, with a small
pertubation analysis of the problem [11]. In the remairafehis Note, we consider the case of a dual continuum,
with randomly heterogeneous exchange coefficientvemdnalyse upscaling for the ‘pure’ exchange problem.

2. Governing equations for the dual continuum at the unit scale

The governing equations at the unit scale are [4,6]:
0 m 1 m m f
(memE{Pm} =V. ;Kmov{Pm} _a({Pm} —{Pr} ) (1)

9 1 :
dres5- P} =V (ﬁKf - V{Pf}f> —a((Pr} = (Pu)") @

where{P,,"} and {Pff} are, respectively, the pressurdad] in the matrix and fractures (phase-averaged over
a unit volume),c,, andcy [Pa~!] are the compressibility coefficients in the matrix and fractufés,and K s

are the equivalent permeabilities of the matrix and of the fracture network at unit ¢gaded¢ » represent the
[dimensionleds/olumetric fractions of the matrix and fractures in the unlih addition, is the dynamic viscosity

of the fluid[ Pa.s], and finally, [ Pa—1s~1] represents the matrix-fractureschange coefficient at unit scale.

We will now assume, in the dual continuum model atdhéh), (2), that the matrix is only weakly conductive
compared to the fracture network, that&S, <« K, which allows us to neglect pressure gradient ‘diffusive
transport’ terms in the matrix flow equation (1). We assume also that, since the fracture medium permeability
is comparatively high, the pressure gradient in fingcture continuum’ is negligible in each sub-bloc unit. We
assume also that fluctuationsgf, c.., ¢ andcy are negligible.

The simplified dual continuum flow problem over a block is now governed by the differential system:

J

e m __ m _ f

at{Pm} = i ({Pm} {Pf} ) (3)
D P == (P — (P 4)
ot nerey

Furthermore, we now define a mean pressure denPtenhd a pressure difference called ‘exchange pressure’,
denotedP. This yields a more compact formulation of the system (3) and (4):

1 Matrix porosity n’ is implicitly taken into account, via,, or else viac,.
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{Pu}™ —{Ps})

p=—"2 1. p= 5
S ; ©)
P ~ P ~

a—=—g_P and 8—:—gP (6)
at c at c

1 1 1 1 1 1 1 1

Lt an) e i-a o)
¢ 2u\Pmem drcy ¢ 2u\Pmem drcy

Before considering solution of this problem in a randoredium, note that the first equation in (6) governs the
‘exchange’ pressure alone. It dagst depend on the ‘mean’ pressure, which is governed by the second equation.
Therefore, the exchange pressure equation can be analyzed and solved independently.

3. Exact probabilistic solution of the dual continuum exchange problem

We develop here the exact probabilistic solution, antinuous time, of the dual continuum matrix-fracture
exchange problem as formulated above (5) and (6). The exchange coefficient is taken as a random variable, or
equivalently, gpurely randomspatial field. The exchange pressure is therefore also purely random at any given
time ‘t’. We compute exactly the time-dependent probability distribution and moments of exchange pressure,
which leads to an exact closure of the upscaling problefi{$je effective macroscopic exchange equation and
coefficients are thus calculated either instantaneously or globally over the entire history of the exchange process.

3.1. Probability distribtion of exchange pressure

We now focus on the exchange equation (first ¢igman (6)) governing ‘exchange pressuﬂ%.’ We normalize
this equation using the constant deterministic paraméitgrs, and the mean coefficieat
P(x,t i} t ¢
:~(x ); oAy =a; a=>; 1 —; to=i (8)
Po(x,0)

oo’ fo o0
wherea is the meap of the mass exchange coefficientThe random exchange problem is now described by the
dimensionless equation:

p(x, )

d

£ =—ap; p(x,0) = po(x) )
wherep(¢) is the random exchange pressure @gds the deterministic initial corition. Its stochastic solution is :

p=2gla,t)=poe " (10)

Let us denotef, (p) and f4(a) the Probability DensityFunctions PDF’s) of the purely random variablgs and
a respectively. We note thatis a monotonically decreasing function®@f This helps establish the exact relation
between the PDF of dimensionless presspieahd the PDF of exchange coefficienat:

fa(a)
(p)=
TP =10 @)
After calculation, we obtain the probability law gf(t), that is, respectively, th®DF and the cumulative
distribution function CDF) of p attimer:

(11)

1 1 1
(po) =5 %2 x ala)i Frlpe) =1 Fa(~7in(£) 12)

2 As will be seen, there are several ways to define the upscaling problem.
3 The ‘mean’ is the mathematical expectation, which is also tithraetic mean taken through the ensemble space of realizations.
Furthermore, if the ergodicity hypothesis is sfitig, this is also equivalent to a spatial mean.
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3.2. Mean exchange pressure

In order to treat the upscaling problem, we first need to determine the mean (or mathematical expectation) of
the time-dependent exchange pressufe), in terms of the assumdeDF of the random exchange coefficient
Based on earlier results, we obtain:

+00
1 1
por= [ ormdp=1 [ fa(=30(L))do=po [ pwret o (139

pPo
Rt Rt

where we transformed the variable of integration using —%In(%), which can be interpreted as another
normalized version of the random exchange coefficient.

3.2.1. Case of a uniform distribution of the exchange coefficient
Here the random variablehas a unifornPDF over the intervalamin, amax] (¢min ~ 0):

fala) = _ (14)

dmax — dmin
Let us define for convenience the following quantities (all related to the uniRiDiF):

amax+ amin; Ag — dmax — Amin (15)
2 2

Note thata = 1 by previous normalization, and sinae> 0. We must have here, by constructiogi, ~ 0 and

amax < 2. Using the general expression (13) for the mean exchange pressure, we obtain:

a=

_ g dmint — g~ dmaxt e 9 sinh(Aa x 1)
P =poX - = po X (16)
(@max — amin) X T Aa xT

3.2.2. Case of an exponential distribution of the exchange coefficient

Here we assume that the random variablbas an exponentid®DF f4(a) over the semi-infinite interval
10, +o0[. Using again the general expression (13) for the mean exchange pressure, we obtain:

1

l+axrt

Note that a random variablewith exponential distribution always satisfies=a. From (8), we have, = &,
so thata = 1 by construction. Regrouping all results, we obtain finally the time-evolution of the mean exchange
pressure, both graphically in Fig. 2, and analyticallyhia previous equations (16) and (17). These are compared
to the so-calledleterministic or ‘naive mean’ exchange pressue, p = po x € *. This corresponds to the decay
of pressure in a homogeneous medium with constant coeffigieate, which is a kind of ‘naive’ homogenization
of the random problem. Fig. 2 shows examples of averageskpre evolution for the different PDF, and for the
different upscaling laws.

1 _ )
fat@)==x e p=pox 17

4. Upscaling of matrix-fracture exchange process
4.1. Instantaneous upscalirflpcal in time, global in space

One possible upscaling approach (amongst othersjo igletermine the instantaneous, time-dependent,
homogenized exchange coefficient(r) such thatd1(z) verifies exactly a ‘global’ differential equation that has
the same form as the local equation, but with the local random exchange coefficieAtbeing replaced by the
upscaled time-dependent exchange coefficiarit). Thus, we definel1(r) by imposing:

0 _ _ayp (18)
at
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= Nalve Mean (exp{- 1))
-8~ Exact (Unif. Law)
o9 &~ Approx. (Unlf. Law)
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Fig. 2. Temporal relaxation of mean exchange presgirg for different types of averages: ‘naive’ mean, exact mean for uniformly and
exponentially distributedr (see this section), and comparison with mean presBara approximate perturbatiosolutions (not detailed
here), [10].

This gives immediately:

dp E(a x p)
p(t)ydr E(p)

The analytical relation given by (19) allows us to calculdtgr) by exploiting earlier probabilistic relations

(PDF and expectation op(t)). This is done in particular for the case wheres uniformly distributed in the

[amin, @max] interval? and in the case of an exponential distributfofihe time-dependent instantaneous upscaled
coefficient is finally given analytically below at least for the two types of probability laws considered in thi$work.

Ai(t)=—

d
—wnp) & A= (19)
T

(20)

h(A 1
Upscaling for uniform distributiond= 1, Aa~2): Ai(r)=a — Aa(c (Baz) _ >

sh(Aat) Aart
Upscaling for exponential distribution{ =a = 1): Aj1(r) =

21

l+ar (21)
These results indicate that the ‘exact’ upscaledftment is far from constant. The upscaled coefficidat )

is initially equal to thearithmetic mean(s = 0), but decreases monotonically with time thereafter, to reach a

minimum asymptotic valuel1(co) ast — oco. However, we can state a more general result, which holds for all

the distributions examined so far:

rILmooAl(t) = A1(c0) (22)

where A1(o0) is the harmonic mean of the local coefficieat when ;ux(ax)z/kf > 1 and will be equal to the
minimum of the local coefficienta” for ;we(ax)z/kf <« 1. These results are currently being used to assess the
physical significance of each type of prdiilty distribution in a more complke model of the exchange process
involving also variable porosities and compressibilities.

4 In this first case we have by constructiorQimip <a =1 < amax < 2.
5 In this second case, by constructie, = a = 1, the minimum value of is theharmonic mearf a.
6 For comparison, the ‘naive’ upscaling would be the expected valtitarfietic meajof the random exchange coefficient.
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4.2. Non-instantaneous upscalifgjobal in space and tinje

We now modify the previous upscaling criterion to obtain a single global coeffigieriVe want the constant
A* to be representative, not only of the spatial scale of the block, but also of the entire history of the matrix-fracture
exchanges from initial time up to infinite time. To achieve this, we use an optimization approach. First, let us define
a class of objective functiond, I,) parametrized by the exponent> 1:’

1w +o0 Ax T w /o
Jo = (/ ‘p (0) p(r) T) - (/‘ p*(x) Ap(r) dr) (23)
s 1 po Po
P =pox e ™" (24)
(1) =E(p(1) = E(poe ) (25)

We introduce the notation' for normalized pressurg/ po and we study two case far (w =1, 2).
First case w = 2. We now determine the global coefficiefit by minimizing J> (or its square):

+00
Min(J2)?> < Min/(e’A*t—y(r))zdr (26)
0

After some manipulations, and taking into account thais independent of time, we find the general solution
of this problem quasi-analytically. Namely; is the solution of the equation:

+o00

1 _ —A*T - _ = *

2A*_/e y(r)dr = L{j(x), A*} (27)
0

with the notationL{y(z), s} representing the.aplace Transfornmof function y(¢), wheres is the (generally
complex) parameter of the Laplace Transform. Note that) stands forE{exp(—at)}. For exponentially
distributed @', this yields an equation involving the exponential intedglx):

1—2A*expA’Ei(A*)=0 = A*=0.610 (28)

In order to see the practical implications of these upscaling results (Table 1), we consider briefly the case of a
multidimensional domain (or reservoir block) made upVotinits (or sub-blocks). The discrete space equivalent of
the previous results is then obtained by replacing mathematical expectations by discrete sums over the sub-blocks
for largeN.

Second case» = 1. We propose now to minimize the objective functin(Eq. (23)), i.e., with thd_; normas
minimisation criterion. This yields:

+00 +00
Min J1 = / |y*(r) = y(0)| dr = / lexp(—A*t) — E{exp(—at)}| dr (29)
0

In the case of the exponential distribution, usingvimas results and the first-order optimality condition, we
obtain thatA* must satisfy exactly the integral equation:

400
0= / T x exp A7 xsignle™T — Ele™ "} dr with E{e T} =
0
In this integral, the two curves decrease monotonically with time. We assume that they cross at a unigtie time

1
l+ar

(30)

7 The functionalJ,, (1,,) has the form of arL,, norm in the space of functiong(z) (Ap(7)).
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Table 1

The global exchange coefficiedt* upscaled over the entire time history

A*, PDF Uniform]0, 1] Exponential §, =a =1) Gaussiand = 0.5, o, = 0.167)
Aérithmetic 0.503165 0425914 0501000

Al armonic 0.043877 0074843 0450123

Ain I 0.330297 0247759 0453652

Aftin b 0.468319 0385606 0488491

which depends on the unknowt. This is a consistant assumption for our case which can be verified ex post. This
allows us to solve the problem and obtain the following analytical results:

* * 1
A*x1*~1678 and €4 =—— _ = A*~0.385 (31)
14axrt*
It is interesting to note that the upscaled coefficiénif equations (28), (31) satisfy the inequalities:
0~ E{a~1} " < A* < Efa) (32)

That is, the global exchange coefficient (upscaled oveg timstory) is between the harmonic and arithmetic means
of the local coefficient. In comparison, rectilat the instantaneous upscaled coeffici¢ptgoes from arithmetic
mean at early times, to harmonic mean or minimum value aff large times.

5. Conclusion and outlook

In conclusion, we have analyzed a novel upscaling problem for matrix-fracture exchange flow in a saturated
random medium governed by dual continuum equations. édtig fracture pressure gradients, we developed
exact random pressure solutions forfelieént probability distributions of ghnexchange coefficient. We used these
results to upscale the exchange coefficient analyticallyedas different upscaling criteria (instantaneous, time
history, etc.). This work will be continued in other papeneluding comparisons with perturbation solutions (see
theory in [10] and some results in Fig. 2) and with numerical simulations.
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