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Abstract

This Note presents a new approximate scheme for nonlinear composites. The approximation which is made preserves certain
features of the original second-order scheme of Ponte Castafieda, exactness to second-order in the contrast and existence of
an effective energy, but improves on one drawback, whictihésgap between the strain-energy formulation and the affine
formulation. A numerical example shows the accuracy of the present mdihoide thisarticle: N. Lahellec, P. Suquet, C. R.

Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Composites non linéaires : un schéma exact au second ordre pour lequel la formulation en énergie de déformation
coincide avec la formulation affine.Cette Note présente une nouvelle approximation pour ’'homogénéisation de composites
non linéaires. Cette approximation présepertaines qualités de la méthode duosecordre de Ponte Casieda, qui sont
I'exactitude au second ordre par rapport au constraste des phases et I'existence d’une énergie effective, mais corrige I'un de ses
défauts qui est I'écart entre la méthode de I'énergie et la méthode affine. Un exemple numérique ou des résultats exacts sont
comparés aux résultats de I'approximation proposée, montre la précision de I'appgrogheiter cet article: N. Lahéellec,

P. Suquet, C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Version francaise abrégée

Cet article traite de 'homogénéisation de compositslinéaires. Les équations de comportement de chacune
des phases du composite sont définies a partir d’'un poteritiepar (1). La méthode dévelopée est une extension
de la méthode du second ordre initimlent proposée par Ponte Castafieda [1].

Son principe est de remplacer dans la définition du comportement homogénéisé (déduit de I'expression (2)),
le potentielw™ par son développement @wisiéme ordre donné par (3) autour d’une déformation de référence
constante par phase”). Cette expression fait apparaitre le dépmgdement au second ordre classique de Ponte
Castafieda et un terme cubique que I'on approche par oe t@méaire faisant intervenir une seconde déformation
de référence constante par pha&e qui est définie par (4).

Les deux déformations de référend® et2”) sont choisies de facon a rendre stationnaire le potentiel effectif
défini par (6). Elles sont solutions des équations (9) et (10), dans lesquelles la déformation est solution du
probléme d'équilibre linéaire défini par (12). On montre que le choix précédent fait coincider les estimations
du comportement macroscopique données par la méthode énergétique et affine.

Le modéle proposé est testé sur un exemple numérique. Deux cellules de base constituées d’une matrice
renforgée par des fibres longues aléatoirement réparties{0, 218 etc? = 0, 5) sont étudiées en déformations
planes. Les constituants sont incompressibles et sont définis par le potentiel en loi puissance (19). Sur la Fig. 1
on compare I'estimation de la contrainte d’écoulement effective, définie par (21), donnée par notre modéle (la
résolution de (12) étant réalisée par la méthode des Eléments Finis) avec la valeur exacte (résolution du probléeme
non linéaire par E.F.). Les résultats donnés par notre méthode sont trés proches des résultats exacts.

Pour finir, on montre que I'estimation proposée est exacte au second ordre par rapport au contraste et que dans
le cas d'inclusions rigides elle correspond exactement a la procédure du second ordre de Ponte Castafieda [1].

1. Motivation

The present study is motivated by difficulties encenet in a separate study on composite materials with
elasto-viscoplastic phases. In this study we applied the second-order method of Ponte Castafieda [1], one of the
most accurate procedure available to predict the effeqiioperties of nonlinear cqmosites, to an incremental
potential. The difficulties which were encounteres ¢escribed in [2]) are, by order of importance:

1. The second-order method does not deliver directly an @festress-strain relation. This relation is obtained
by taking the derivative of the effective strainezgy (or complementary energy when a dual approach is
followed). When the effective energy is not found in closed form, its derivati\ﬁgi (¢) has to be evaluated
numerically by computing the energy for different values of the overall strain and then approximating the
derivative of the energy by a difference quotient. Unfortunately, in the problem of interest in [2], the different
terms in these difference quotients correspond to problems which are physically different from the original one
(different strain-rates). This gives rise to a first indstency which is reflected for instance by the dependence
of the results on the time-step in the time-integration of the underlying incremental equations. For the type of
problems addressed in [2], the use of a different quotient should be avoided.

2. This difficulty was not encountered when the affine method [3,4] was used. The affine method delivers the
effective stress-strain relations at a given strain, without having to compute the response of the composite
at other overall strain states. It is based on theltg®n of the same thermoelasticity problem as in the
original second-order method, but the local stress and strain fields are used differently. In the affine approach
the averages of these fields are taken, whereas in the second-order procedure the average of their energy is
computed. Unfortunately, as is well-known [4], the results of these two averaging procedures are different and
the affine method is less accurate than the second-oreldioah. In particular it is not exact to second-order in
the contrast and is not associated to an overall potential.
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These observations led us to look for a modification of the original second-order procedure for which the energy
approach and the affine approach would match. There are, however, nice features of the original second-order
procedure of Ponte Castafieda which we would like to preserve in our modification: firstly, it is exact to second-
order in the contrast, and secondly, the effective conati#uelations of the composite derive from an energy (as
long as those for the individual phases derive from a potential).

2. Approximate expansion up to orcer 3 for the effective potential

The composites under consideration in this study are madedifferent homogeneous constituentgpbases
r=1...,N. In a representative volume elemevitof the composite the individual phases occupy different
domainsV, with characteristic functiong ) (x) and volume fractior:”). The spatial average over r.v.and
the partial average over domaiis are denoted with brackets &$ and(-),. The total and partial averages of a
function f defined onV are denoted ag = (f) and f") = (f),.

The constitutive relations of the individual phases derive from a strain-energy poiefitial

quw™
o =

(¢) inphase (1)

In all cases considered in this study, the energy-functigfisare convex and four times differentiable.
The effective constitutive relations for the composite can be deduced [5] from the effective energy:
w(e) = IIrCIE_) (w(x,e(®)), with £(&)={v=2&-x+v*, v* periodic ondV} (2)
ve &
For simplicity periodic boundargonditions have been chosen V.
The potentialsy™ of interest in our study are nonquadratic. To simplify the variational problem (2), a Taylor
expansion up to third-order af" is taken about a reference straifi’ which is uniform in each phase:

(r) 2,,(r)
w® (&) ~ w® () + 315; (") : (e — ) + %8811)2 (€D) (e — D) @ (e — &™)
€
193w®
+ 5 81;}3 (s(r)) o (e - s(r)) ® (e - s(r)) ® (e - s(r)) 3)

As such, this expansion does not simplify the variational problem (2) since the last term in (3) is cubic with respect
toe.
A further approximation is introduced by linearizing this cubic term:

(e—e)@(e—eM) @ (e—e”) = (e — ) @ (67 — ) @ (67 — 1) 4)

The new term is now linear with respectd@nd involves a second ‘reference straiff’ which is uniform in each
phase. The approximation of the potentiéf’ now becomes approximately” (e) ~ w") (e) where:

- aw® 192w®
gy =u(6) 4 P ) e - o) 4 3T 60 s o) o —et)
193w ®
i )Y eee (o — (M) a(r) _ () NN
+ 5343 () ::(e—e")® (2 e @ (& e) (5)

An approximation of the effective potentialis obtained by substituting (5) into (2).
Following the procedure initiated by Ponte Castafieda and Willis [6] (see also Ponte Castafieda [7]), the
approximate effective potential can be rendered stationary with respect to the vaelabbesis

6= St I, e 0 ©
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The stationarity condition with respect4§” can be written:
33w ®

s (€)= [<%(s —eM) @ (e - €<r>)> _ %(ém — ) g (67 — )

1
-5 (ko) - M) @ (80 - €(r>)}

19%w®
- )y - _ e () _ o () _ () =
+ 5568 (€M) ((e)r — )@ (8 e ® (8 e")=0 (7
The stationarity condition with respect4d’ can be written:
93w ™ O
o5 () (e —e) @ (67 —) =0 (8)

There exist different ways of solving the systems of nonlinear equations (7) and (8). The approach followed in the
present study consists of identifyie§’ with the average strain over phase

e = (e), '3 9)
The equations (8) are then identically satisfied whereas (7) reduces to:
1
:_SN(r) CGRE (é(”) —iMN)® (é(”) — g =NDED) P (10)
where
o (s B0 o " 5 ")
NOED) = @), P =((e-2) 8 (e &), (1)

Finally, the Euler equations associated with the minimization with respecting2) correspond to a boundary
value problem for a thermoelastic composite material:

o= 4+L": (e — a(’)) inV, dive=0 inV, (e)=¢ (12)
where
qw® 1 92w

r) _ 2 Az .. c" (r — ()

Tr —W(E )+§N (€ )..Cgr, L —W(E ) (13)
An alternative expression of the effective energy can be obtained by taking the average of (5):
192w

— (r) (r) (r) Y ..c"

W= Zc [ )+ 55,2 ( ) :: € } (14)

This expressmhas exactly the same formas in the second-order procedure of Ponte Castafieda [1], except that the
strain field from which the average straifi’ derives is the solution of a different thermoelastic problem.

3. Effective constitutive relations

Two (apparently) different expressions for the overall stress and for the effective constitutive relations can be
derived from (6) and (12). The first expression is obtained by taking the derivative of the potential (6) with respect
to &, whereas the second expression is obtained by taking the average of the stress field solution of (12). Taking the
derivative of the potential yields:

_ 0w _ L
¢ =—=(@ with@(@) = ?}r?@}r?tv E|’rC1f (wioe (x, £(v))) (15)
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It becomes:
N

~ () ) (r) Alr)

w _ 0Wioe O0& ") 0Wype 0e 0Woe 0€&

— (&) = =)+ —+ T — 16
oz & < de 8€> ;C 0e | "oz T\ | oe (16)

The two last terms in the above expression vanish (stationaritygf) with respect toe™ and&”). By Hill's

. e .
lemma, and smcea—_) = I, the first term reduces to:
&

Owee \\ [08) _ [OWre N\ N 0o
< ” (€)>‘<aé>_< ” (e)>_2r:c T (17)

The comparison of (17) with (12) shows tt%i (8) = (o), Whereo is the stress field solution of (12).

In conclusion, it has been shown that the constitutive relations obtained by derivation of the effective strain-
energy (6)coincide with the constitutive relations obtained by averaging the stress and strain fields solution of the
thermoelastic problem (12). In short, the strain-energy procedure and the affine procedure coincide.

As a consequence, an alternative expression for the average stress predicted by the third-order expansion method
can be obtained by taking the average of the stress field solution of the thermoelasticity problem (12)

- ") () Y LTS N S G
Utoe=20 T :Zo 7(s )+§N (") CY (18)
r r

It is seen that the second-order moment of the strain fluctuaﬂéfﬁsappears explicitly in this expression.

4. A numerical example

The accuracy of the approximation provided by the third-order expansion (5) and the resulting scheme (6) can
be assessed by comparing fully nonlinear Finite Element results with the predictions of the approximate scheme.
To avoid further approximations which would complicate the understanding of the results, the local problem (12)
is also solved numerically by the FEM. We consider two-dimensional composites, made of fibers dispersed in
a surrounding matrix. Their microstructure is characterized by the two unit-cells shown in Fig. 1 corresponding
to two different fiber volume fractions” = 0.218 andc® = 0.5. Both phases are incompressible power-law
materials with the same exponent:

O,(’)go & m+1
w(e) = O—(E) when tr(e) =0, +oo otherwise (19)
m+1\ &g

The macroscopic loading condition imposed to the unit-cell is an in-plane deformation in the form:
e=¢11(e1Qe1—e2® e2) (20)

Due to the lack of symmetry of the unit-cell the overall stress is a general in-plane stress (there is no longitudinal
stress since the overall strain is a pure shear). An effective flow sigdes the composite can be defined as
. _ 80 m
UOZUeq(__) (21)
8eq
The comparison are carried out for two specific unit cells. The predictions of the approximate scheme and of exact
calculations are shown in Fig. 1 for a contraéil)/aéz) =5 (phase E fibers). The two sets of results can be

hardly distinguished wheef = 0.218 and are in good agreement whéh = 0.5. Similar comparison for other
values of the contrast and more generatmostructures is left for future work.
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Fig. 1. Two-dimensional composgieFibers stronger than the matnigl) /oéz) = 5. Effective flow-stress (21) as a function of the nonlinearity
exponentn. (a) ¢V =0.218; (b)cD = 0.5.

5. Comments
5.1. Compositeswith small contrast: exactness of the method to second-order in the contrast

The composites considered in this section haweall contrast. The energy functionsy” deviate from a
uniform energywo by a small quantity characterized by a small parameter

w® () = wo(e) + 15w (e)

An exact expansion in powers ofof the effective properties of the cquosite and of the local stress and strain
fields as been performed by Ponte Castafieda and Suquet [8]. It reads as:

_ .0 t2..0 3 dwO _ .0 t2..0 3
e(x)=¢+1e (x)+Es (x)+O(t ) a,(x)zg(e)+m (x)+Ea (x)+O(t ) (22)

The first order termg® anda © solve the following linear thermoelastic problem

%) =L:&%x) +T(x), div(e®) =0, (% =0 (23)
where
92u0 d
0 _ - _ —-
L" = Bsas(a)’ T(x) = —aséw(x)(e)

Similarly the second-order tern#8 anda© solve another linear thermoelastic problem

%)=L 8%x) +0(x), div(¢%) =0, (% =0, where (24)

92 33w?
0(x) =28L(x): %) + N%(x) ® °(x), SL(x)= 2w, 8), N°= 3 ® (25)
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A similar expansion can be performed for the approximate stress and strain fields solution of the thermoelasticity
problem (12) (reference to the fact that these fields are solution of the approximate thermoelastic problem obtained
by the third-order expansion is added for clarity):

_ .0 tz..o 3 w0 .0 12 ..0 3
Eroe(X) =& +16°(x) + Eeme(x) +0O(°), Oioe(x) = E(e) +16%(x) + Eome(x) +O(°) (26)

The terms of order 0 and 1 coincide with the corresponding terms in the exact expansion (22). The terms of order

280, anda?, solve the following system
G9e=L": 80, + 0, div(63,) =0, (2.)=0 (27)

where the eigenstrefg. in phase reads:

Broe(x) = 281" : £0(x) + 2NO(@) :: [6% @ (6%x) — 8°")] + NO(8) : (@ &°) (28)
It is readily seen thatf.), = (6), and therefore thawff)e)r = (&0),. Then it results from the second-order
expansions (22) and (26) th@tandé e coincide up to second-orderin

5.2. Two-phaserigidly-reinforced composites

We consider now the case of two-phase rigidly-reinforced composites (the contrast between the phases is
therefore infinite). In this case the averagraim in the phases is completely determined:

1
iW=0  ®=— (29)

where phase 1 is the rigid phase. The second mométte gtrain field in the deformable phase can be deduced
from the effective energy of the thermoelastic composite as:
1 _ dAL

- - 1
. (r) _ = .= _ 2
—8 > & Ccl’ = c(2)€ L0 :e, where AL=L c(Z)L (30)

(e®e) L, oL
& [ = —F57 €
27 .2

Finally the effective energy predicted by the present method can be written as:

~ 1 1 -
) — @ 2 = . .z
w(e)=c w(c(z)e)—i— 24=:.AL.e (31)

It coincides with the effective energy predicted by the second-order procedure [1].
5.3. Further comments

o As shown by relation (5.30) in Ponte Castafieda and Suquet [5] (see also relation (35) in [4]), the difference
between the macroscopic stress predicted by the standard affine procedure and the original second-order
procedure can be expressed in termsW8P, C” and an additional termad” /de which is not explicit,
as:

i} dw® 1 _ de®

Osoe = Xr:c'(r)[—ae (e(r)) + EN(r)(e(r)) i Cé’) : e :| (32)
This relation suggests that one way to close the gap between the affine and the second-order procedure would be
to add a term involvingv ") andC{"” to the polarization stress fieltw " /de(¢") defining the thermoelastic
problem in the original second-order procedure. Titiexactly what the present method does through (13)
which leads to (18).
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e The present method makes use of the average of tlemdearder fluctuations of the strain field in each phase
(see Eq. (10)) as in the new second-order method of Ponte Castafieda [7]. However the predictions of the
present method seem to be closer to the original second-order method [1].

e When the contrast between the phases is varied, the above results show that the present method coincides with
the original second-order procedufdmnte Castafieda in the two limiting cases of small contrast (coincidence
up to second-order) and in the case of rigidly-reinforced composites (the case of voided materials has not
been investigated so far). Therefore we do not exfage differences between the predictions of the two
methods regarding the effective properties of the composite, even at intermediate values of the contrast. The
main advantage of the method is, in our opinion, that it combines the advantages of the energy formulation
(exactness to second-order) with the advantages of the affine procedure in which the approximate local stress
and strain fields are defined as the solutions of (12).

e As shown above, the present method has no gap between the strain-energy formulation and the affine
formulation. However, there exists a gap between trersenergy formulation antthe complementary energy
formulation.
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