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Abstract

This Note presents a new approximate scheme for nonlinear composites. The approximation which is made preserv
features of the original second-order scheme of Ponte Castañeda, exactness to second-order in the contrast and e
an effective energy, but improves on one drawback, which isthe gap between the strain-energy formulation and the a
formulation. A numerical example shows the accuracy of the present method.To cite this article: N. Lahellec, P. Suquet, C. R.
Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Composites non linéaires : un schéma exact au second ordre pour lequel la formulation en énergie de déformati
coïncide avec la formulation affine.Cette Note présente une nouvelle approximation pour l’homogénéisation de comp
non linéaires. Cette approximation préserve certaines qualités de la méthode du second ordre de Ponte Castañeda, qui son
l’exactitude au second ordre par rapport au constraste des phases et l’existence d’une énergie effective, mais corrige
défauts qui est l’écart entre la méthode de l’énergie et la méthode affine. Un exemple numérique où des résultats e
comparés aux résultats de l’approximation proposée, montre la précision de l’approche.Pour citer cet article : N. Lahellec,
P. Suquet, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Cet article traite de l’homogénéisation de compositesnon linéaires. Les équations de comportement de cha
des phases du composite sont définies à partir d’un potentielw(r) par (1). La méthode dévelopée est une exten
de la méthode du second ordre initialement proposée par Ponte Castañeda [1].

Son principe est de remplacer dans la définition du comportement homogénéisé (déduit de l’express
le potentielw(r) par son développement autroisième ordre donné par (3) autour d’une déformation de référe
constante par phaseε(r). Cette expression fait apparaître le développement au second ordre classique de P
Castañeda et un terme cubique que l’on approche par un terme linéaire faisant intervenir une seconde déforma
de référence constante par phaseε̂(r) qui est définie par (4).

Les deux déformations de référenceε(r) et ε̂(r) sont choisies de façon à rendre stationnaire le potentiel eff
défini par (6). Elles sont solutions des équations (9) et (10), dans lesquelles la déformation est solu
problème d’équilibre linéaire défini par (12). On montre que le choix précédent fait coïncider les estim
du comportement macroscopique données par la méthode énergétique et affine.

Le modèle proposé est testé sur un exemple numérique. Deux cellules de base constituées d’un
renforçée par des fibres longues aléatoirement réparties (c(1) = 0,218 etc(1) = 0,5) sont étudiées en déformatio
planes. Les constituants sont incompressibles et sont définis par le potentiel en loi puissance (19). Sur
on compare l’estimation de la contrainte d’écoulement effective, définie par (21), donnée par notre mo
résolution de (12) étant réalisée par la méthode des Eléments Finis) avec la valeur exacte (résolution du
non linéaire par E.F.). Les résultats donnés par notre méthode sont très proches des résultats exacts.

Pour finir, on montre que l’estimation proposée est exacte au second ordre par rapport au contraste et
le cas d’inclusions rigides elle correspond exactement à la procédure du second ordre de Ponte Castañed

1. Motivation

The present study is motivated by difficulties encountered in a separate study on composite materials
elasto-viscoplastic phases. In this study we applied the second-order method of Ponte Castañeda [1], o
most accurate procedure available to predict the effective properties of nonlinear composites, to an increment
potential. The difficulties which were encountered (as described in [2]) are, by order of importance:

1. The second-order method does not deliver directly an effective stress-strain relation. This relation is obtain
by taking the derivative of the effective strain-energy (or complementary energy when a dual approac
followed). When the effective energỹw is not found in closed form, its derivative∂w̃

∂ ε̄ (ε̄) has to be evaluate
numerically by computing the energy for different values of the overall strain and then approximati
derivative of the energy by a difference quotient. Unfortunately, in the problem of interest in [2], the dif
terms in these difference quotients correspond to problems which are physically different from the origi
(different strain-rates). This gives rise to a first inconsistency which is reflected for instance by the depende
of the results on the time-step in the time-integration of the underlying incremental equations. For the
problems addressed in [2], the use of a different quotient should be avoided.

2. This difficulty was not encountered when the affine method [3,4] was used. The affine method deliv
effective stress-strain relations at a given strain, without having to compute the response of the co
at other overall strain states. It is based on the resolution of the same thermoelasticity problem as in
original second-order method, but the local stress and strain fields are used differently. In the affine a
the averages of these fields are taken, whereas in the second-order procedure the average of their
computed. Unfortunately, as is well-known [4], the results of these two averaging procedures are differ
the affine method is less accurate than the second-order method. In particular it is not exact to second-orde
the contrast and is not associated to an overall potential.
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These observations led us to look for a modification of the original second-order procedure for which the
approach and the affine approach would match. There are, however, nice features of the original seco
procedure of Ponte Castañeda which we would like to preserve in our modification: firstly, it is exact to s
order in the contrast, and secondly, the effective constitutive relations of the composite derive from an energy
long as those for the individual phases derive from a potential).

2. Approximate expansion up to order 3 for the effective potential

The composites under consideration in this study are made ofN different homogeneous constituents orphases
r = 1, . . . ,N . In a representative volume elementV of the composite the individual phases occupy differ
domainsVr with characteristic functionsχ(r)(x) and volume fractionc(r). The spatial average over r.v.e.V and
the partial average over domainsVr are denoted with brackets as〈·〉 and〈·〉r . The total and partial averages of
functionf defined onV are denoted as̄f = 〈f 〉 andf̄ (r) = 〈f 〉r .

The constitutive relations of the individual phases derive from a strain-energy potentialw(r):

σ = ∂w(r)

∂ε
(ε) in phaser (1)

In all cases considered in this study, the energy-functionsw(r) are convex and four times differentiable.
The effective constitutive relations for the composite can be deduced [5] from the effective energy:

w̃(ε̄) = Inf
v∈K(ε̄)

〈
w

(
x,ε(v)

)〉
, with K(ε̄) = {v = ε̄ · x + v∗, v∗ periodic on∂V } (2)

For simplicity periodic boundaryconditions have been chosen on∂V .
The potentialsw(r) of interest in our study are nonquadratic. To simplify the variational problem (2), a T

expansion up to third-order ofw(r) is taken about a reference strainε(r) which is uniform in each phase:

w(r)(ε) � w(r)
(
ε(r)

) + ∂w(r)

∂ε

(
ε(r)

) : (ε − ε(r)
) + 1

2

∂2w(r)

∂ε2

(
ε(r)

) :: (ε − ε(r)
) ⊗ (

ε − ε(r)
)

+ 1

6

∂3w(r)

∂ε3

(
ε(r)

) ::: (ε − ε(r)
) ⊗ (

ε − ε(r)
) ⊗ (

ε − ε(r)
)

(3)

As such, this expansion does not simplify the variational problem (2) since the last term in (3) is cubic with
to ε.

A further approximation is introduced by linearizing this cubic term:(
ε − ε(r)

) ⊗ (
ε − ε(r)

) ⊗ (
ε − ε(r)

) � (
ε − ε(r)

) ⊗ (
ε̂(r) − ε(r)

) ⊗ (
ε̂(r) − ε(r)

)
(4)

The new term is now linear with respect toε and involves a second ‘reference strain’ε̂(r) which is uniform in each
phase. The approximation of the potentialw(r) now becomes approximatelyw(r)(ε) � w

(r)
toe(ε) where:

w
(r)
toe(ε) = w(r)

(
ε(r)

) + ∂w(r)

∂ε

(
ε(r)

) : (ε − ε(r)
) + 1

2

∂2w(r)

∂ε2

(
ε(r)

) :: (ε − ε(r)
) ⊗ (

ε − ε(r)
)

+ 1

6

∂3w(r)

∂ε3

(
ε(r)

) ::: (ε − ε(r)
) ⊗ (

ε̂(r) − ε(r)
) ⊗ (

ε̂(r) − ε(r)
)

(5)

An approximation of the effective potential̃w is obtained by substituting (5) into (2).
Following the procedure initiated by Ponte Castañeda and Willis [6] (see also Ponte Castañeda

approximate effective potential can be rendered stationary with respect to the variablesε(r) andε̂(r):

w̃(ε̄) � Stat
ε(r)

Stat
ε̂(r)

Inf
v∈K(ε̄)

〈
wtoe

(
x,ε(v)

)〉
(6)
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The stationarity condition with respect toε(r) can be written:

∂3w(r)

∂ε3

(
ε(r)

) ::
[〈

1

2

(
ε − ε(r)

) ⊗ (
ε − ε(r)

)〉
r

− 1

6

(
ε̂(r) − ε(r)

) ⊗ (
ε̂(r) − ε(r)

)
− 1

3

(〈ε〉r − ε(r)
) ⊗ (

ε̂(r) − ε(r)
)]

+ 1

6

∂4w(r)

∂ε4

(
ε(r)

) ::: (〈ε〉r − ε(r)
) ⊗ (

ε̂(r) − ε(r)
) ⊗ (

ε̂(r) − ε(r)
) = 0 (7)

The stationarity condition with respect toε̂(r) can be written:

∂3w(r)

∂ε3

(
ε(r)

) :: (〈ε〉r − ε(r)
) ⊗ (

ε̂(r) − ε(r)
) = 0 (8)

There exist different ways of solving the systems of nonlinear equations (7) and (8). The approach followe
present study consists of identifyingε(r) with the average strain over phaser:

ε(r) = 〈ε〉r def= ε̄(r) (9)

The equations (8) are then identically satisfied whereas (7) reduces to:

1

3
N (r)

(
ε̄(r)

) :: (ε̂(r) − ε̄(r)
) ⊗ (

ε̂(r) − ε̄(r)
) = N (r)

(
ε̄(r)

) :: C(r)
ε (10)

where

N (r)
(
ε̄(r)

) = ∂3w(r)

∂ε3

(
ε̄(r)

)
, C(r)

ε = 〈(
ε − ε̄(r)

) ⊗ (
ε − ε̄(r)

)〉
r

(11)

Finally, the Euler equations associated with the minimization with respect tov in (2) correspond to a bounda
value problem for a thermoelastic composite material:

σ = τ (r) + L(r) : (ε − ε(r)
)

in V, divσ = 0 in V, 〈ε〉 = ε̄ (12)

where

τ (r) = ∂w(r)

∂ε

(
ε̄(r)

) + 1

2
N (r)

(
ε̄(r)

) :: C(r)
ε , L(r) = ∂2w(r)

∂ε2

(
ε̄(r)

)
(13)

An alternative expression of the effective energy can be obtained by taking the average of (5):

w̃ =
N∑

r=1

c(r)

[
w(r)

(
ε̄(r)

) + 1

2

∂2w(r)

∂ε2

(
ε̄(r)

) :: C(r)
ε

]
(14)

This expressionhas exactly the same form as in the second-order procedure of Ponte Castañeda [1], except th
strain field from which the average strainε̄(r) derives is the solution of a different thermoelastic problem.

3. Effective constitutive relations

Two (apparently) different expressions for the overall stress and for the effective constitutive relations
derived from (6) and (12). The first expression is obtained by taking the derivative of the potential (6) with
to ε̄, whereas the second expression is obtained by taking the average of the stress field solution of (12). T
derivative of the potential yields:

σ̄ = ∂w̃

∂ ε̄
(ε̄) with w̃(ε̄) = Stat

ε(r)
Stat
ε̂(r)

Inf
v∈K(ε̄)

〈
wtoe

(
x,ε(v)

)〉
(15)
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∂w̃

∂ ε̄
(ε̄) =

〈
∂wtoe

∂ε
: ∂ε

∂ ε̄

〉
+

N∑
r=1

c(r)

[〈
∂w

(r)
toe

∂ε(r)

〉
r

: ∂ε(r)

∂ ε̄
+

〈
∂w

(r)
toe

∂ ε̂(r)

〉
r

: ∂ ε̂(r)

∂ ε̄

]
(16)

The two last terms in the above expression vanish (stationarity of〈wtoe〉 with respect toε(r) and ε̂(r)). By Hill’s

lemma, and since〈∂ε

∂ ε̄
〉 = I , the first term reduces to:〈

∂wtoe

∂ε
(ε)

〉
:
〈
∂ε

∂ ε̄

〉
=

〈
∂wtoe

∂ε
(ε)

〉
=

∑
r

c(r)τ (r) (17)

The comparison of (17) with (12) shows that∂w̃
∂ ε̄ (ε̄) = 〈σ 〉, whereσ is the stress field solution of (12).

In conclusion, it has been shown that the constitutive relations obtained by derivation of the effective
energy (6)coincide with the constitutive relations obtained by averaging the stress and strain fields solution
thermoelastic problem (12). In short, the strain-energy procedure and the affine procedure coincide.

As a consequence, an alternative expression for the average stress predicted by the third-order expansi
can be obtained by taking the average of the stress field solution of the thermoelasticity problem (12)

σ̄ toe =
∑

r

c(r)τ (r) =
∑

r

c(r)

(
∂w(r)

∂ε

(
ε̄(r)

) + 1

2
N (r)

(
ε̄(r)

) :: C(r)
ε

)
(18)

It is seen that the second-order moment of the strain fluctuationsC(r)
ε appears explicitly in this expression.

4. A numerical example

The accuracy of the approximation provided by the third-order expansion (5) and the resulting scheme
be assessed by comparing fully nonlinear Finite Element results with the predictions of the approximate
To avoid further approximations which would complicate the understanding of the results, the local proble
is also solved numerically by the FEM. We consider two-dimensional composites, made of fibers dispe
a surrounding matrix. Their microstructure is characterized by the two unit-cells shown in Fig. 1 corresp
to two different fiber volume fractionsc(1) = 0.218 andc(1) = 0.5. Both phases are incompressible power-
materials with the same exponent:

w(r)(ε) = σ
(r)
0 ε0

m + 1

(
εeq

ε0

)m+1

when tr(ε) = 0, +∞ otherwise (19)

The macroscopic loading condition imposed to the unit-cell is an in-plane deformation in the form:

ε̄ = ε̄11(e1 ⊗ e1 − e2 ⊗ e2) (20)

Due to the lack of symmetry of the unit-cell the overall stress is a general in-plane stress (there is no long
stress since the overall strain is a pure shear). An effective flow stressσ̃0 for the composite can be defined as

σ̃0 = σ̄eq

(
ε0

ε̄eq

)m

(21)

The comparison are carried out for two specific unit cells. The predictions of the approximate scheme and
calculations are shown in Fig. 1 for a contrastσ

(1)
0 /σ

(2)
0 = 5 (phase 1= fibers). The two sets of results can

hardly distinguished whenc(1) = 0.218 and are in good agreement whenc(1) = 0.5. Similar comparison for othe
values of the contrast and more general microstructures is left for future work.
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Fig. 1. Two-dimensional composites. Fibers stronger than the matrixσ
(1)
0 /σ

(2)
0 = 5. Effective flow-stress (21) as a function of the nonlinear

exponentm. (a)c(1) = 0.218; (b)c(1) = 0.5.

5. Comments

5.1. Composites with small contrast: exactness of the method to second-order in the contrast

The composites considered in this section havea small contrast. The energy functionsw(r) deviate from a
uniform energyw0 by a small quantity characterized by a small parametert .

w(r)(ε) = w0(ε) + tδw(r)(ε)

An exact expansion in powers oft of the effective properties of the composite and of the local stress and str
fields as been performed by Ponte Castañeda and Suquet [8]. It reads as:

ε(x) = ε̄ + t ε̇0(x) + t2

2
ε̈0(x) + O

(
t3), σ t (x) = ∂w0

∂ ε̄
(ε̄) + t σ̇ 0(x) + t2

2
σ̈ 0(x) + O

(
t3) (22)

The first order termṡε0 andσ̇ 0 solve the following linear thermoelastic problem

σ̇ 0(x) = L0 : ε̇0(x) + τ (x), div
(
σ̇ 0) = 0,

〈
ε̇0〉 = 0 (23)

where

L0 = ∂2w0

∂ε∂ε
(ε̄), τ (x) = ∂

∂ε
δw(x)(ε̄)

Similarly the second-order termsε̈0 andσ̈ 0 solve another linear thermoelastic problem

σ̈ 0(x) = L0 : ε̈0(x) + θ(x), div
(
σ̈ 0) = 0,

〈
ε̈0〉 = 0, where (24)

θ(x) = 2δL(x) : ε̇0(x) + N0ε̇0(x) ⊗ ε̇0(x), δL(x) = ∂2

∂ε2
δw(x, ε̄), N0 = ∂3w0

∂ε3
(ε̄) (25)



N. Lahellec, P. Suquet / C. R. Mecanique 332 (2004) 693–700 699

lasticity
obtained

of order

er

hases is

ced

ference
nd-order

would be
c
(13)
A similar expansion can be performed for the approximate stress and strain fields solution of the thermoe
problem (12) (reference to the fact that these fields are solution of the approximate thermoelastic problem
by the third-order expansion is added for clarity):

εtoe(x) = ε̄ + t ε̇0(x) + t2

2
ε̈0

toe(x) + O
(
t3), σ toe(x) = ∂w0

∂ ε̄
(ε̄) + t σ̇ 0(x) + t2

2
σ̈ 0

toe(x) + O
(
t3) (26)

The terms of order 0 and 1 coincide with the corresponding terms in the exact expansion (22). The terms
2 ε̈0

toe andσ̈ 0
toe solve the following system

σ̈ 0
toe = L0 : ε̈0

toe + θ toe, div
(
σ̈ 0

toe

) = 0,
〈
ε̈0

toe

〉 = 0 (27)

where the eigenstressθ toe in phaser reads:

θ toe(x) = 2δL(r) : ε̇0(x) + 2N0(ε̄) :: [ ˙̄ε0(r) ⊗ (
ε̇0(x) − ˙̄ε0(r))] + N0(ε̄) : 〈ε̇0 ⊗ ε̇0〉

r
(28)

It is readily seen that〈θ toe〉r = 〈θ〉r and therefore that〈σ̈ 0
toe〉r

= 〈σ̈ 0〉r . Then it results from the second-ord
expansions (22) and (26) thatσ̄ andσ̄ toe coincide up to second-order int .

5.2. Two-phase rigidly-reinforced composites

We consider now the case of two-phase rigidly-reinforced composites (the contrast between the p
therefore infinite). In this case the average strain in the phases is completely determined:

ε̄(1) = 0, ε̄(2) = 1

c(2)
ε̄ (29)

where phase 1 is the rigid phase. The second moments of the strain field in the deformable phase can be dedu
from the effective energy of the thermoelastic composite as:

〈ε ⊗ ε〉2 = 1

c(2)
ε̄ : ∂L̃

∂L(2)
: ε̄, C(r)

ε = 1

c(2)
ε̄ : ∂�L̃

∂L(2)
: ε̄, where �L̃ = L̃ − 1

c(2)
L(2) (30)

Finally the effective energy predicted by the present method can be written as:

w̃(ε̄) = c(2)w

(
1

c(2)
ε̄

)
+ 1

2
ε̄ : �L̃ : ε̄ (31)

It coincides with the effective energy predicted by the second-order procedure [1].

5.3. Further comments

• As shown by relation (5.30) in Ponte Castañeda and Suquet [5] (see also relation (35) in [4]), the dif
between the macroscopic stress predicted by the standard affine procedure and the original seco
procedure can be expressed in terms ofN (r), C(r)

ε and an additional term d̄ε(r)/dε̄ which is not explicit,
as:

σ̄ soe =
∑

r

c(r)

[
∂w(r)

∂ε

(
ε̄(r)

) + 1

2
N (r)

(
ε̄(r)

) :: C(r)
ε : dε̄(r)

dε̄

]
(32)

This relation suggests that one way to close the gap between the affine and the second-order procedure
to add a term involvingN (r) andC(r)

ε to the polarization stress field∂w(r)/∂ε(ε̄(r)) defining the thermoelasti
problem in the original second-order procedure. Thisis exactly what the present method does through
which leads to (18).
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• The present method makes use of the average of the second-order fluctuations of the strain field in each ph
(see Eq. (10)) as in the new second-order method of Ponte Castañeda [7]. However the prediction
present method seem to be closer to the original second-order method [1].

• When the contrast between the phases is varied, the above results show that the present method coin
the original second-order procedure of Ponte Castañeda in the two limiting cases of small contrast (coincid
up to second-order) and in the case of rigidly-reinforced composites (the case of voided materials
been investigated so far). Therefore we do not expectlarge differences between the predictions of the
methods regarding the effective properties of the composite, even at intermediate values of the cont
main advantage of the method is, in our opinion, that it combines the advantages of the energy form
(exactness to second-order) with the advantages of the affine procedure in which the approximate loc
and strain fields are defined as the solutions of (12).

• As shown above, the present method has no gap between the strain-energy formulation and th
formulation. However, there exists a gap between the strain-energy formulation andthe complementary energ
formulation.
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