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Abstract

A simple model for two-dimensional cavity flows is presented. It is based upon the Logvinovich independence princi
Each section of the cavity is assumed to behave independently of the neighbouring ones. The equation of evoluti
cavity interface is derived. It mainly takes into account an added mass effect and is similar to the well-known Rayleigh
equation relative to spherical bubbles. The dynamics of the 2D cavity is controlled by the pressure difference betwee
and the cavity. The model proves to be in good agreement with Tulin’s solution for a steady cavity flow and easily appl
unsteady cavity flows.To cite this article: C. Pellone et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modélisation des écoulements cavitants bidimensionnels basée sur le principe d’indépendance de Logvinovich. Une
modélisation simple des écoulements cavitants bidimensionnelsest proposée. Elle est basée sur le principe d’indépendan
Logvinovich qui suppose que chaque section de cavité se comporte indépendamment des voisines. L’équation d’évolution
l’interface est présentée dans cette Note. Elle prend essentiellement en compte un effet de masse ajoutée et est co
l’équation de Rayleigh–Plesset qui régit l’évolution d’une bulle sphérique. La dynamique d’une cavité bidimensionnelle
contrôlée par la différence entre la pression de cavité et la pression à l’infini. Le modèle est en bon accord avec la so
Tulin pour un écoulement supercavitant stationnaire et est facilement applicable à une configuration instationnaire.Pour citer
cet article : C. Pellone et al., C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This paper addresses the modelling of two-dimensional unsteady cavity flows. Cavity flows are chara
by the coexistence of two phases, liquid and vapour. The latter can be due to cavitation or to the inje
non-condensable gas into the liquid flow, as it is the case for ventilated supercavitating flows.

The two phases are supposed to be separated by a well-defined interface. It is assumed that there is n
mixing between them in the form of small bubbles, for instance, or at least that such a zone is limited in space.
is especially the case for supercavitation, which is actually characterized by a vapour cavity of usually la
with respect to the cavitator. The interface of such a supercavity is clearly defined except in the vicinity o
closure where the cavity breaks up into smaller scale vapour structures. Fig. 1 shows a typical view of a
supercavity generated by a two-dimensional circular cylinder. Such cavity flows can be found around hig
supercavitating torpedoes as an example.

Several techniques are available for the modelling of cavity flows. Apart from analytical or quasi-ana
methods applicable to simple and often linearized configurations [1], we can mention the boundary elemen
which is particularly powerful [2]. Other methods based on the resolution of Navier–Stokes equations a
available with various types of cavitation models (see e.g. [3–5]).

In this paper, a different model based on the Logvinovich independence principle is proposed. This princ
has been widely used in Russia and Ukraine for the modelling of axisymmetric cavity flows ([6–9], see also [1]).
axisymmetric configurations, a logarithmic singularity appears as the radial distance from the axis tends to
It is then necessary to limit the computational domain to an artificial maximum radius. In the two-dimension
this singularity is expected to be stronger and a special procedure, presented in this paper, has to be dev
overcome the difficulty.

The Logvinovich independence principle consists in assuming that each cross-section of the cavity evolve
pendently of the neighbouring ones and that its evolution is mainly controlled by the pressure difference b
the cavity and the pressure at infinity or in other words by the cavitation numberσ (cf. Eq. (6) for a definition
of σ ). In comparison with Navier–Stokes techniques that are very time-consuming, one of the main adv
of this technique is its simplicity, in particular for unsteady cavity flows. It does not take into account v
effects, which is generally not a serious limitation for supercavity flows since they are mainly governed by
The model presented below also requires that the slenderness of the cavity is small enough. This is generally t
for supercavitation since the cavity length increases more rapidly than its thickness as the cavitation nu
decreased (cf. Eq. (10)).

Fig. 1. Supercavity flow around a two-dimensional circular cylinder in the LEGI hydrodynamic tunnel. The dissymmetry between the u
and lower part of the cavity is due to the free surface. (Cylinder diameter: 5 cm, flow height in undisturbed conditions: 40 cm, flow veloc
12 m/s, cavitation number: 0.05.)
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2. Equation of evolution of the cavity interface

Consider the flow around a two-dimensional cavitator and its cavity in an infinite liquid medium as schem
shown on Fig. 2. For simplicity, we consider a symmetric configuration with respect to the planey = 0. The
slender body approximation consists in assuming that the velocity does not differ significantly from the velocity
infinity U∞. In other words, the two componentsu andv of the flow velocity shown in Fig. 2 are supposed to
everywhere small with respect toU∞.

Thev-component on the cavity interface (denotedvc) is deduced from the kinematic condition on the interfa
This condition infers that, if a fluid particle is on the interface at a given time, it will remain on it at any subse
time until it reaches the closure region where it will separate from the cavity. Hence,vc is given by:

vc = ∂yc

∂t
+ U∞

∂yc

∂x
(1)

wherey = yc(x, t) is the equation of the cavity interface at timet .
Furthermore, thev-component vanishes at infinity where the flow is uniform. Then, it is expected to dec

when moving away from the cavity. For a spherical bubble, the radial velocity behaves like 1/r2 1. In the axisym-
metric case, the continuity equation shows that it decreases as 1/r. By integration, this leads to the logarithm
singularity for the pressure already mentioned. For the two-dimensional case, we assume that thev-component
behaves like a given power 1/yn of the distancey to the plane of symmetry. It will be shown later that exponenn

depends upon the cavitation numberσ and approaches 1 whenσ approaches 0. Nevertheless,n is supposed to b
always greater than 1 so that no singular behaviour is expected. Thev-component is then assumed to be given

v(x, y, t) = vc

[
yc

y

]n

=
[
∂yc

∂t
+ U∞

∂yc

∂x

][
yc

y

]n

(2)

In the slender body approximation and for an inviscid fluid, the momentum balance in they-direction writes:

dv

dt
= − 1

ρ

∂p

∂y
(3)

wherep is the pressure,ρ the liquid density and d/dt the transport derivative given by:

d

dt
= ∂

∂t
+ U∞

∂

∂x
(4)

Fig. 2. Schematic view of a cavityflow and general notations.

1 r is the distance to the bubble centre in the sphericalcase or to the cavity axis in the axisymmetric case.
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The equation of evolution of the cavity interface is obtained by introducing expression (2) for thev-component
in the momentum balance (3) and integrating from the cavity interfaceyc where the pressure is the cavity press
pc to infinity wherep is denotedp∞. We finally obtain the following equation:

yc
d2yc

dt2 +n

(
dyc

dt

)2

= −(n−1)U2∞
σ

2
(5)

In this equation d/dt is still the transport derivative (4) andσ is the usual cavitation number defined by:

σ = p∞ − pc

(1/2)ρU2∞
(6)

Eq. (5) is similar to the Rayleigh–Plesset equation2 which allows the computation of the time evolution o
spherical bubble when submitted to a given pressure differencep∞ − pc. It suggests to follow any cross sectio
of the 2D cavity in a Lagrangian way, as it is advected downstream at flow velocityU∞. During its downstream
movement, the temporal evolution of the cross-sectional area is given by Eq. (5). Initial conditions have to
specified at the instant of shedding of the cross section by the cavitator. They concern the initial size of th
section and its derivative which are connected respectively to the size of the cavitator and the slope of th
cavity detachment.

Eq. (5) expresses the Logvinovich principle according to which the temporalevolution of a given cross sectio
of the cavity is independent of the neighbouring ones. The main effect that is taken into account in Eq. (5) is
added mass effect connected to the inertia of the surrounding liquid.

3. Discussion

At this step, the exponentn is still unknown. In order to determine it, the steady case is examined. The shap
the cavity is given by the steady version of Eq. (5):

d2(y2
c)

dx2
= −(n − 1)σ (7)

To get Eq. (7), we assumedn close to unity in the left-hand side of Eq. (5) only. It is checked below that th
a good approximation. This equation has the followingelliptic solution for the shape of the cavity interface:

y2
c

(n − 1)(σ/2)(�2/4)
+ (x − �/2)2

�2/4
= 1 (8)

where� is the cavity length. This solution is such that the cavity thickness is zero at both endsx = 0 andx = �.
The cavity slenderness is:

δ =
√

(n − 1)
σ

2
(9)

In order to determinen, we compare the present solution to the classical one obtained by Tulin [10] for the
flow about a symmetrical body in an infinite flow field (see also [1]). According to Tulin’s linearized solutio
cavity is also elliptic and its slenderness is:

δ = σ/2

1+ σ/2
(10)

2 The left-hand side of the classical Rayleigh–Plesset equation would correspond ton = 3/2.
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Fig. 3. Comparison of the present model with Tulin’s solution for the evolution of the cavity length with the cavitation number. Case
symmetrical wedge of chord lengthc and half vertex angle 8 degrees in an infinite flow field. The cavity length is non-dimensioned
wedge chord length.

The identification of Eqs. (9) and (10) allows the determination of exponentn:

n = 1+ σ/2

(1+ σ/2)2 (11)

Exponentn is then always greater than unity and approaches unity whenσ tends to zero.
Finally, the equation of evolution of the steady cavity is:

d2(y2
c)

dx2
= −2

[
σ/2

1+ σ/2

]2

(12)

The solution of Eq. (12) in terms of the evolution of the cavity length with the cavitation number is compa
Tulin’s solution in Fig. 3 in the particular case of a wedge. The present solution is in good agreement with
original one. The systematic difference which is observed between the two is not so critical since it is well kno
that, from an experimental viewpoint, cavity closure is affected by large fluctuations due to cavity unsteadin
that the cavity length is then not defined very accurately in practice.

It has been checked that, if the exact value ofn given by Eq. (11) is taken instead of unity in the left-hand s
of Eq. (12), this makes no significant difference in the range of cavitation numbers considered in Fig. 3.

In the unsteady case, the temporal evolution of the cavity is governed by Eq. (5). The principle of the sim
of an unsteady cavity is then the following. At each time step, a new ‘slice’ of cavity is shed by the cavitator. Ea
slice is advected downstream independently and the evolution of its cross section is governed by Eq. (5). At ea
time step, the whole cavity is reconstructed by piling up the different slices of cavity shed at previous time
At time steps 1,2, . . . , k, the cavity is then made of 1,2, . . . , k slices respectively.

Unsteadiness can have several origins. It can be caused by variations of pressure or cavitation number
Another source of unsteadiness may be due to the movement of the cavitator or to the possible deformat
walls at constant cavitation number. If so, from a mathematical viewpoint, the unsteady behaviour of the cav
inates in the initial conditions, at the instant of shedding ofeach cross section, and not in Eq. (5) itself. Unsteadi
can also be due to pressure oscillations inside the cavity, as observed for ventilated pulsating supercav
present model is able to account for these various sources of unsteadiness.

A difficulty arises as for the choice of exponentn in the unsteady case. It has been shown thatn is a function of
the cavitation number for the steady case. It seems then reasonable to use the same determination ofn (Eq. (11)) in
the unsteady case. However, this is not fully justified and needs to be further validated against experimental res
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Fig. 4. Unsteady behaviour of the cavity past a symmetrical wedge in thecase of sinusoidal oscillations of the cavitation number (chord length
c = 1, half vertex angle: 8 degrees, time step:�t = 0.1, flow velocity: U∞ = 1, space step:�x = U∞�t = 0.1). Variation of the applied
cavitation numberσ with time t : σ = 0.2 − 0.15sint . Top view of the cavity at different time steps between 0 and 200, coloured by cav
thickness (maximum thickness in white). The origin of space steps corresponds to the basis of the wedge from which the cavity detaches.

An example of solution is given in Fig. 4 for an oscillatory cavitation number in the case of the symm
wedge already considered in Fig. 3. Fig. 4(b) presents a collection of top views of the cavity as a functio
distance from the wedge basis at different times. The grey level is representative of the cavity thickness. T
part at the bottom of diagram 4(b) corresponds to the starting stage and more precisely to the advection o
first cross section of the cavity shed at the first time step.

Here, the oscillation frequency has been chosen so that it is comparable to the advection time�/U∞ based on
the maximum cavity length. Significant unsteady effects arethen expected. This can be seen by the phase differ
between the oscillations in pressure and cavity length. When the cavitation number is minimum, the cavit
is not maximum and, moreover, the maximum cavity length is much smaller than that which would be es
from Fig. 3 assuming a quasi-steady behaviour.

It can be also observed on Fig. 4 that at some instants (typically around time step 125), the cavity is m
of two separate parts. This is characteristic of the development of an undulation of the cavity interface whi
to a local pinching of the cavity and the subsequent separation of part of the cavity. The model is then
of predicting the break-off of the cavity and the production of a large scale vapour structure which co
downstream.

The present model appears to have the capabilities of predicting the steady and unsteady behaviour
dimensional cavity flows. It is based upon an Eq. (5) which can be considered as a 2D version of the Ra
Plesset equation and which can easily be solved numerically. The model appears to be intermediate betw
analytical techniques which are limited to simple and usually steady configurations and more sophistica
time-consuming techniques as the resolution of Navier–Stokes equation together with a cavitation model.
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