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Abstract

We investigate the stability problem related to the basic slip flows of liquids in plane microchannels by using the Na
concept. We found that if the Navier slip parameter (Ns) equals 0.06, the critical Reynolds number (Recr) becomes 213.6. Ther
are short-wave instabilities, however, when we further increaseNs to 0.07 or 0.08. Recr becomes 132.9 forNs = 0.08 if we
neglect the short-wave instability.To cite this article: A.K.-H. Chu, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Instabilité des écoulements glissant de liquides. Nous étudions la stabilité de l’écoulement de base d’un liquide dan
microcanal plan en présence de glissement aux parois, en utilisant le concept de glissement de Navier. Nous tro
le nombre de Reynolds critique (Recr) diminue à 213,6 quand le paramètre de glissement de Navier (Ns) augmente à 0,06
Cependant, il existe des instabilités à courte longueur d’onde quand nous augmentons le paramètreNs à des valeurs de 0,0
et 0,08.Recr décroît à 132,9 pourNs = 0,08 si on néglige les instabilités d’onde courte.Pour citer cet article : A.K.-H. Chu,
C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Incomplete momentum accommodation of colliding particles along an interface (say, between a soli
fluid) will generate nonzero slip velocities at the solid wall (since the average of the bulk velocity of incomin
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reflecting particles is not zero) has been intensively reported, due to the rapid progress of current mea
techniques [1–5]. For example, Tretheway and Meinhart [1] used micron-resolution particle image velo
(MPIV) to measure the velocity profiles of water flowing through 30× 300 µm channels. The velocity profile
were measured to within 450 nm of the microchannel surface. They found that, when the microchannel surf
was coated with a 2.3 nm thick monolayer of hydrophobic octadecyltrichlorosilane, an apparent velocity
measured just above the solid surface. This velocity is approximately 10% of the free-stream velocity and yield
a slip length (the corresponding distance extrapolated from the nonzero to zero velocity in the direction no
the wall) of approximately 1 µm [1]. They claimed that, for this slip length, slip flow is negligible for length s
greater than 1 mm, but must be considered at the micro- and nano-scales.

Craig et al. [2], however, reported direct measurements of hydrodynamic drainage forces, which sho
evidence of boundary slip in a Newtonian liquid. The degree of boundary slip was found to be a function
liquid viscosity and the shear rate, as characterized by the slip length, and is up to∼20 nm. This has implication
for confined biological systems, the permeability of microporous media for the lubrication of nanomachines,
will be important in the microcontrol of liquid flow. These reports confirm previous theoretical and experime
attempts [6–9] ([7,8] treated weak slip flows in rarefied gases using the incompressible flow assumption,
Mach number is much smaller than one). Note that researchers normally relate the nonzero slip veloci
Knudsen number, defined as the ratio of the mean free path,L, of the fluid, to the characteristic length of the flo
say,d [7–9]. In fact, incomplete (energy) accommodation of colliding particles will then lead to a temperatur
jump along the interacting solid–fluid region [10,11].

Slip flows of gases normally occur in very-low pressure environments where the velocity-slip phenom
common in rarefied gas dynamics [12–15] or microdomain [16,17] (see the detailed references therein). A
latter, considering the forthcoming physical applications of micro- or nano-electromechanical systems (M
NEMS [18–22]), we need to better understand the development of temporal instability in slip flows. People ha
already studied the stability of viscous slip flows of rarefied gases between rigid parallel plates [23] and o
the rough flow-stability characteristics [24] (using a Monte Carlo code). The relevant stability study related to s
flows of liquids, however, is rather limited [25–28].

The linear stability analysis for this flow, which considers infinitesimal perturbations (ψ ′, the perturbed stream
function, could be decomposed into normal modes, each component varying with time as eσ t for some complex
numberσ = s + iω; s andω are real numbers) to the basic-flow stream functionψ0, starts by substitutingψ0 + ψ ′
into the 2D incompressible Navier–Stokes equations together with nonzero slip conditions and obtains
Sommerfeld (O–S) equation after linearization [24,29]. To check the stability characteristics, the O–S e
should be solved for slip flows and a curve of marginal stability will be found. Thiscurve comes from the mod
s = 0, while if s > 0 for a mode, then the corresponding disturbance will be amplified, growing exponentiall
time (the instability happens).

The previous numerical approach showed that a planePoiseuille flow is stable if the Reynolds number is le
thanRecr ∼ 5772 (where the no-slip approach was adopted and the result was obtained by Orszag using the
method [29]). These results do not agree with experimental studies, which show that Poiseuille flow may
unstable at Reynolds numbers as low as∼360 (partly due to the coarseness of their micron channels, cf. Pf
et al. [18,19]) or∼1000 [30–32]. As interface or wall noise normally occur in MEMS or NEMS applications
propose here to study the influence of the Navier’s slip velocity [33,34] (applicable to liquids) in the stability o
slip flows. In fact, this approach might also be valid to gases [35,36].

In this Note, we use the verified numerical code [35–37] toinvestigate the linear stability problem linked to tho
basic slip flows of liquids in a microdomain. Our results show that the critical Reynolds numberRecr becomes 213.6
(when the Navier slip parameterNs is 0.06; here,Ns = µS/d is the dimensionless Navier slip parameter;S is a
proportionality constant asus = Sτ , τ , the shear stress of the bulk velocity,us , the dimensional slip velocity; for
no-slip case,S = 0, but for a no-stress condition.S = ∞, µ is the fluid viscosity,d is one half of the channel width
which is much less than the conventional case [29].Recr could be further lowered to 132.9 or 165.3, however, if
we neglect the short-wave instability which occurs atNs = 0.08 or 0.07.



A.K.-H. Chu / C. R. Mecanique 332 (2004) 895–900 897

ations.
re terms,

e

g
time is
of

arated
imate
ortional
on into
)

e have

ary

con-
pectral

-mark
the

cases
tical
ect due
is
nd
is not
d due to

-wave
2. Formulation

Following the usual method of linearized stability theory, we havevi(xi, t) = v̄i(xi) + v′
i (xi, t), and similarly,

p(xi, t) = p̄(xi) + p′(xi, t) for the velocity and pressure terms in the incompressible Navier–Stokes equ
Then by substituting these into the dimensionless 2D Navier–Stokes equation, and eliminating the pressu
the linearized equation or so-called O–S equation, which governs the variation of the disturbances is:

(D2 − α2)2φ = iαRe
[
(ū − λ)(D2 − α2)φ − (D2ū)φ

]
, (1)

whereD ≡ d/dy, Re = ρumaxd/µ is the Reynolds number based on a half channel-width,d , andumax is the
maximum velocity of the basic flow (at the center-line).ρ is the density of the fluid.̄u = 1 − y2 is the (mean)
basic velocity profile of the flow (−1 � y � 1) [29]. The stream function for the disturbance,Ψ , such thatu′ =
−∂Ψ/∂y, v′ = −∂Ψ/∂x, is assumed to have the formΨ (x, y, t) = φ(y)exp[iα(x −λ t)] in the usual normal-mod
analysis,α is the wave number (real) andλ is λr + i λi . This is a kind of Tollmien–Schlichting transversal wave,λi

is called the amplification factor, andα equals to 2πΛ−1, whereΛ is the wave length of the Tollmien–Schlichtin
perturbation [24]. In the usual temporal stability problem, in which the growth or decay of a disturbance in
considered, we takeα andRe to be real and then treat the (complex) wave-speedλ as the eigenvalue parameter
the problem.

To consider the effect of the nonzero slip velocity (existing along the solid walls), as the bulk fluid is sep
from the solid boundaries by a thin layer of fluid of lower viscosity, we adopt in the following the approx
approach which Navier [34] used. In this thin layer, velocity field is almost linear and the shear stress is prop
to the velocity. They are both continuous in the whole flow regime. To take the leading order approximati
account, with the dimensionless form, we then have the slip velocity at the wall (the subscriptw means at the wall

uw = Ns
dū

dy
|w, (2)

whereNs is the (dimensionless) Navier slip parameter. For the case of flows in plane microchannels, w
ū = ∓Ns du/dy (cf. [7–9] or [16,17]),v = 0 aty = ±1.

The basic slip flow now has this form:ū(y) =(1− y2 + 2Ns ). Boundary conditions forφ in Eq. (1) remain the
same as that in [29,35–37]:φ(±1) = Dφ(±1) = 0, since we are only interested in the neutral stability bound
for the primary slip flow of liquids.

We adopt the Chebyshev polynomial expansion approach to approximate the O–S equation and boundary
ditions. After that, we solve the eigenvalue problem [29] by using the verified code [35–37] which uses the s
method [38].

3. Results and discussions

The preliminary verification for our numerical code was made [35–37] by comparing with the bench
results of Orszag (obtained in 1971). After that, we canobtain (using double-precision machine accuracy)
detailed complex spectra (λr + i λi ) for general slip cases and plot the neutral boundary curve for different
as shown in Fig. 1. We tune the slip parameterNs to be 0, 0.001, 0.01, 0.05, and 0.06. The corresponding cri
Reynolds numbers (Recr) are 5772, 5282, 2480, 290.5, and 213.6, respectively. It seems the boundary eff
to the slip velocity [33,34] will degrade the flow stability significantly. Thepossible physical reasoning for th
early instability compared to the no-slip case is that there are unbalanced conservation laws for the translation a
angular momentum (relevant to vorticity production) along the solid–fluid interface once the slip velocity
zero therein. Resonance or amplification of noise waves along this abrupt interface could be easily triggere
whatever unknown mechanism.

The critical Reynolds number might shift to the much lower values,≈165.3 and 132.9, when the Navier slip
parameterNs increases to 0.07 and 0.08 even though we found some strange spectra related to the short
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Fig. 1. Comparison of the Navier-slip effects due toNs = 0.001,0.01,0.05, and 0.06 on the neutral stability boundary of the plane Poiseu
flow. The critical Reynolds number of the flow,Recr ∼ 5772,2480,213.6 for the different casesNs = 0,0.01,0.06, respectively.Ns is the slip
parameter introduced by Navier [34].

Fig. 1. Comparaison des effets de glissement dûs aux valeursNs = 0,001, 0,01, 0,05, et 0,06 sur la courbe de stabilité neutre de l’écoule
de Poiseuille plan. Le nombre de Reynolds critique de l’écoulement,Recr ∼ 5772, 2480, 213,6 pour les casNs = 0, 0,01, 0,06, respectivemen
Ns est le paramètre de glissement introduit par Navier [34].

Fig. 2. Comparison of Navier-slip effects forNs = 0.07 and 0.08 on the neutral stability boundary of the plane Poiseuille flow.Recr ∼ 165.3
and 132.9 for casesNs = 0.07 and 0.08, respectively, if we neglect the strange short-wave (larger wave number) instability (λi > 0). λr is the
phase speed of the disturbance [24,29].

Fig. 2. Comparaison des effets de glissement pourNs = 0,07 et 0,08 sur la courbe de stabilité neutre d’un écoulement de Poiseuille
Recr ∼ 165,3 et 132,9 pour les casNs = 0,07 et 0,08, respectivement, si on néglige les instabilités d’onde courteλi > 0 (grands nombres
d’onde).λr est la vitesse de phase de la perturbation [24,29].

instability (which has a certain origin, qualitatively similar to those long-wave spectra reported in [37]). We
these in Fig. 2. We can observe the upper branch of the neutral stability boundary (solid curves of larg
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numbersα) keeps increasing as the Reynolds number increases forNs = 0.07 or 0.08. Those of smallerNs cases,
which were shown in Fig. 1, however, will finally decrease, even if the Reynolds number keeps increasing
are relevant to the long-wave instability. During the search for these least stable modes (long wave) [24,29],
noticed that there are similar spectrareported in [37], which have near-zeroλi as we lower the Reynolds numb
and, meanwhile, raise the wave number. The (λi ) finally become positive asNs = 0.07 (λr ∼ 0.798,0.982 as
illustrated) or 0.08 (λr ∼ 0.83 as illustrated). We thus termed them ‘modes of short-wave instability’ as
wave numbers are higher than those found at neutral boundaries (e.g., the phase speed of the disturbanλr are
close to around 0.27 and 0.26 for Ns = 0.07, and 0.08, respectively) for the same Reynolds numbers. From
corresponding length scales, we interpret that these short- and long-wave instabilities are due to the increasin
Navier slip along the liquid-wall interface. However,the detailed reasoning which could explain such strang
earlier instabilities (smaller critical Reynolds numbers for differentNs ) remains unknown.

We noticed that in real microfludic or nanofludic devices the apparent effect of slip velocities cannot be
glected. The challenge is how to use a simplified approach to simulate microscopically the velocity-slip ef
a wide range of physical parameters related to the real solid–fluid interface. There are, in fact, other crucial
sues such as randomness, nonhomogeneous slip velocities, thermal effects (e.g., compressibility), etc. Our results,
however, could serve as a baseline or starting point for these more complicated problems.

We finally conclude that boundary noise (the Navier slip velocities) will premature any instabilitymechanism
considering the temporal growth of the disturbances. Either the range of wave numbers relevant to the pro
small-amplitude disturbance wave or the Navier slip parameters as well as Reynolds numbers of the b
flows must be carefully selected for the optimal flow control usage in scientific applications of MEMS or N
Further interesting issues are related to the nonlinear stability [39,40] of these slip flows.
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